Articles | Volume 22, issue 2
Hydrol. Earth Syst. Sci., 22, 1299–1315, 2018
https://doi.org/10.5194/hess-22-1299-2018
Hydrol. Earth Syst. Sci., 22, 1299–1315, 2018
https://doi.org/10.5194/hess-22-1299-2018

Research article 20 Feb 2018

Research article | 20 Feb 2018

Combining satellite data and appropriate objective functions for improved spatial pattern performance of a distributed hydrologic model

Mehmet C. Demirel et al.

Related authors

CLASSIFICATION SYSTEM DRIVES DISAGREEMENT AMONG BRAZILIAN VEGETATION MAPS AT A SAMPLE AREA OF THE SEMIARID CAATINGA
E. Bontempo, M. C. Demirel, C. Corsini, F. Martins, and D. Valeriano
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-3-W12-2020, 201–206, https://doi.org/10.5194/isprs-archives-XLII-3-W12-2020-201-2020,https://doi.org/10.5194/isprs-archives-XLII-3-W12-2020-201-2020, 2020
Selection of multi-model ensemble of general circulation models for the simulation of precipitation and maximum and minimum temperature based on spatial assessment metrics
Kamal Ahmed, Dhanapala A. Sachindra, Shamsuddin Shahid, Mehmet C. Demirel, and Eun-Sung Chung
Hydrol. Earth Syst. Sci., 23, 4803–4824, https://doi.org/10.5194/hess-23-4803-2019,https://doi.org/10.5194/hess-23-4803-2019, 2019
Short summary
The SPAtial EFficiency metric (SPAEF): multiple-component evaluation of spatial patterns for optimization of hydrological models
Julian Koch, Mehmet Cüneyd Demirel, and Simon Stisen
Geosci. Model Dev., 11, 1873–1886, https://doi.org/10.5194/gmd-11-1873-2018,https://doi.org/10.5194/gmd-11-1873-2018, 2018
Short summary
The skill of seasonal ensemble low-flow forecasts in the Moselle River for three different hydrological models
M. C. Demirel, M. J. Booij, and A. Y. Hoekstra
Hydrol. Earth Syst. Sci., 19, 275–291, https://doi.org/10.5194/hess-19-275-2015,https://doi.org/10.5194/hess-19-275-2015, 2015
Short summary

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Modelling approaches
A novel method for cold-region streamflow hydrograph separation using GRACE satellite observations
Shusen Wang, Junhua Li, and Hazen A. J. Russell
Hydrol. Earth Syst. Sci., 25, 2649–2662, https://doi.org/10.5194/hess-25-2649-2021,https://doi.org/10.5194/hess-25-2649-2021, 2021
Short summary
A Bayesian approach to understanding the key factors influencing temporal variability in stream water quality – a case study in the Great Barrier Reef catchments
Shuci Liu, Dongryeol Ryu, J. Angus Webb, Anna Lintern, Danlu Guo, David Waters, and Andrew W. Western
Hydrol. Earth Syst. Sci., 25, 2663–2683, https://doi.org/10.5194/hess-25-2663-2021,https://doi.org/10.5194/hess-25-2663-2021, 2021
Short summary
Projected changes in Rhine River flood seasonality under global warming
Erwin Rottler, Axel Bronstert, Gerd Bürger, and Oldrich Rakovec
Hydrol. Earth Syst. Sci., 25, 2353–2371, https://doi.org/10.5194/hess-25-2353-2021,https://doi.org/10.5194/hess-25-2353-2021, 2021
Short summary
Technical note: Diagnostic efficiency – specific evaluation of model performance
Robin Schwemmle, Dominic Demand, and Markus Weiler
Hydrol. Earth Syst. Sci., 25, 2187–2198, https://doi.org/10.5194/hess-25-2187-2021,https://doi.org/10.5194/hess-25-2187-2021, 2021
Short summary
How catchment characteristics influence hydrological pathways and travel times in a boreal landscape
Elin Jutebring Sterte, Fredrik Lidman, Emma Lindborg, Ylva Sjöberg, and Hjalmar Laudon
Hydrol. Earth Syst. Sci., 25, 2133–2158, https://doi.org/10.5194/hess-25-2133-2021,https://doi.org/10.5194/hess-25-2133-2021, 2021
Short summary

Cited articles

Allen, R. G., Pereira, L. S., Raes, D., and Smith, M.: Crop Evapotranspiration – Guidelines for Computing Crop Water Requirements, FAO Irrigation and drainage paper 56, http://www.fao.org/docrep/x0490e/x0490e00.htm (last access: 16 February 2018), 1998.
Berezowski, T., Nossent, J., Chormański, J., and Batelaan, O.: Spatial sensitivity analysis of snow cover data in a distributed rainfall-runoff model, Hydrol. Earth Syst. Sci., 19, 1887–1904, https://doi.org/10.5194/hess-19-1887-2015, 2015.
Beven, K. and Freer, J.: Equifinality, data assimilation, and uncertainty estimation in mechanistic modelling of complex environmental systems using the GLUE methodology, J. Hydrol., 249, 11–29, https://doi.org/10.1016/S0022-1694(01)00421-8, 2001.
Campolongo, F., Cariboni, J., and Saltelli, A.: An effective screening design for sensitivity analysis of large models, Environ. Model. Softw., 22, 1509–1518, https://doi.org/10.1016/j.envsoft.2006.10.004, 2007.
Chen, J. M., Chen, X., Ju, W., and Geng, X.: Distributed hydrological model for mapping evapotranspiration using remote sensing inputs, J. Hydrol., 305, 15–39, https://doi.org/10.1016/j.jhydrol.2004.08.029, 2005.
Download

The requested paper has a corresponding corrigendum published. Please read the corrigendum first before downloading the article.

Short summary
Satellite data offer great opportunities to improve spatial model predictions by means of spatially oriented model evaluations. In this study, satellite images are used to observe spatial patterns of evapotranspiration at the land surface. These spatial patterns are utilized in combination with streamflow observations in a model calibration framework including a novel spatial performance metric tailored to target the spatial pattern performance of a catchment-scale hydrological model.