Articles | Volume 22, issue 2
https://doi.org/10.5194/hess-22-1299-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-22-1299-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Combining satellite data and appropriate objective functions for improved spatial pattern performance of a distributed hydrologic model
Geological Survey of Denmark and Greenland, Øster Voldgade 10, 1350 Copenhagen, Denmark
Department of Civil Engineering, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey
Juliane Mai
Department Computational Hydrosystems, UFZ – Helmholtz Centre for Environmental Research, Leipzig, Germany
Department of Civil and Environmental Engineering, University of Waterloo, Waterloo, Canada
Gorka Mendiguren
Geological Survey of Denmark and Greenland, Øster Voldgade 10, 1350 Copenhagen, Denmark
Department of Environmental Engineering, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
Julian Koch
Geological Survey of Denmark and Greenland, Øster Voldgade 10, 1350 Copenhagen, Denmark
Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen, Denmark
Luis Samaniego
Department Computational Hydrosystems, UFZ – Helmholtz Centre for Environmental Research, Leipzig, Germany
Geological Survey of Denmark and Greenland, Øster Voldgade 10, 1350 Copenhagen, Denmark
Related authors
E. Bontempo, M. C. Demirel, C. Corsini, F. Martins, and D. Valeriano
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-3-W12-2020, 201–206, https://doi.org/10.5194/isprs-archives-XLII-3-W12-2020-201-2020, https://doi.org/10.5194/isprs-archives-XLII-3-W12-2020-201-2020, 2020
Kamal Ahmed, Dhanapala A. Sachindra, Shamsuddin Shahid, Mehmet C. Demirel, and Eun-Sung Chung
Hydrol. Earth Syst. Sci., 23, 4803–4824, https://doi.org/10.5194/hess-23-4803-2019, https://doi.org/10.5194/hess-23-4803-2019, 2019
Short summary
Short summary
This study evaluated the performance of 36 CMIP5 GCMs in simulating seasonal precipitation and maximum and minimum temperature over Pakistan using spatial metrics (SPAtial EFficiency, fractions skill score, Goodman–Kruskal's lambda, Cramer's V, Mapcurves, and Kling–Gupta efficiency) for the period 1961–2005. NorESM1-M, MIROC5, BCC-CSM1-1, and ACCESS1-3 were identified as the most suitable GCMs for simulating all three climate variables over Pakistan.
Julian Koch, Mehmet Cüneyd Demirel, and Simon Stisen
Geosci. Model Dev., 11, 1873–1886, https://doi.org/10.5194/gmd-11-1873-2018, https://doi.org/10.5194/gmd-11-1873-2018, 2018
Short summary
Short summary
Our work addresses a key challenge in earth system modelling: how to optimally exploit the information contained in satellite remote sensing observations in the calibration of such models. For this we thoroughly test a number of measures that quantify the fit between an observed and a simulated spatial pattern. We acknowledge the difficulties associated with such a comparison and suggest using measures that regard multiple aspects of spatial information, i.e. magnitude and variability.
M. C. Demirel, M. J. Booij, and A. Y. Hoekstra
Hydrol. Earth Syst. Sci., 19, 275–291, https://doi.org/10.5194/hess-19-275-2015, https://doi.org/10.5194/hess-19-275-2015, 2015
Short summary
Short summary
This paper investigates the skill of 90-day low-flow forecasts using three models. From the results, it appears that all models are prone to over-predict runoff during low-flow periods using ensemble seasonal meteorological forcing. The largest range for 90-day low-flow forecasts is found for the GR4J model. Overall, the uncertainty from ensemble P forecasts has a larger effect on seasonal low-flow forecasts than the uncertainty from ensemble PET forecasts and initial model conditions.
Qiutong Yu, Bryan A. Tolson, Hongren Shen, Ming Han, Juliane Mai, and Jimmy Lin
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2023-237, https://doi.org/10.5194/hess-2023-237, 2023
Preprint under review for HESS
Short summary
Short summary
It is challenging to incorporate the spatial distribution information of input variables when implementing LSTM models for streamflow prediction. This paper presents a novel hybrid modeling approach to predict streamflow while accounting for spatial variability. We evaluated the performance against lumped LSTM predictions in 224 basins across the Great Lakes region in North America. This approach shows promise in predicting streamflow at large ungauged basin.
Samah Larabi, Juliane Mai, Markus Schnorbus, Bryan A. Tolson, and Francis Zwiers
Hydrol. Earth Syst. Sci., 27, 3241–3263, https://doi.org/10.5194/hess-27-3241-2023, https://doi.org/10.5194/hess-27-3241-2023, 2023
Short summary
Short summary
The computational cost of sensitivity analysis (SA) becomes prohibitive for large hydrologic modeling domains. Here, using a large-scale Variable Infiltration Capacity (VIC) deployment, we show that watershed classification helps identify the spatial pattern of parameter sensitivity within the domain at a reduced cost. Findings reveal the opportunity to leverage climate and land cover attributes to reduce the cost of SA and facilitate more rapid deployment of large-scale land surface models.
Hafsa Mahmood, Ty P. A. Ferré, Raphael J. M. Schneider, Simon Stisen, Rasmus R. Frederiksen, and Anders V. Christiansen
EGUsphere, https://doi.org/10.5194/egusphere-2023-1872, https://doi.org/10.5194/egusphere-2023-1872, 2023
Short summary
Short summary
Temporal drain flow dynamics and understanding of their underlying controlling factors are important for water resource management in tile-drained agricultural areas. This study examine whether simpler, more efficient machine learning (ML) models can provide acceptable solutions compared to traditional physics based models. We predicted drain flow time series in multiple catchments subject to a range of climatic and landscape conditions.
Eshrat Fatima, Rohini Kumar, Sabine Attinger, Maren Kaluza, Oldrich Rakovec, Corinna Rebmann, Rafael Rosolem, Sascha Oswald, Luis Samaniego, Steffen Zacharias, and Martin Schrön
EGUsphere, https://doi.org/10.5194/egusphere-2023-1548, https://doi.org/10.5194/egusphere-2023-1548, 2023
Short summary
Short summary
This study establishes a framework to incorporate cosmic-ray neutron measurements into the mesoscale Hydrological Model (mHM). We evaluate different approaches to estimate neutron counts within mHM, using the Desilets equation with uniformly and with non-uniformly weighted average soil moisture, and the physically-based code COSMIC. The data not only improved soil moisture simulations, but also the parameterization of evapotranspiration in the model.
Søren J. Kragh, Rasmus Fensholt, Simon Stisen, and Julian Koch
Hydrol. Earth Syst. Sci., 27, 2463–2478, https://doi.org/10.5194/hess-27-2463-2023, https://doi.org/10.5194/hess-27-2463-2023, 2023
Short summary
Short summary
This study investigates the precision of irrigation estimates from a global hotspot of unsustainable irrigation practice, the Indus and Ganges basins. We show that irrigation water use can be estimated with high precision by comparing satellite and rainfed hydrological model estimates of evapotranspiration. We believe that our work can support sustainable water resource management, as it addresses the uncertainty of a key component of the water balance that remains challenging to quantify.
Julian Koch, Lars Elsgaard, Mogens H. Greve, Steen Gyldenkærne, Cecilie Hermansen, Gregor Levin, Shubiao Wu, and Simon Stisen
Biogeosciences, 20, 2387–2403, https://doi.org/10.5194/bg-20-2387-2023, https://doi.org/10.5194/bg-20-2387-2023, 2023
Short summary
Short summary
Utilizing peatlands for agriculture leads to large emissions of greenhouse gases worldwide. The emissions are triggered by lowering the water table, which is a necessary step in order to make peatlands arable. Many countries aim at reducing their emissions by restoring peatlands, which can be achieved by stopping agricultural activities and thereby raising the water table. We estimate a total emission of 2.6 Mt CO2-eq for organic-rich peatlands in Denmark and a potential reduction of 77 %.
Søren Julsgaard Kragh, Jacopo Dari, Sara Modanesi, Christian Massari, Luca Brocca, Rasmus Fensholt, Simon Stisen, and Julian Koch
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2023-142, https://doi.org/10.5194/hess-2023-142, 2023
Revised manuscript under review for HESS
Short summary
Short summary
This study provides a comparison of methodologies to quantify irrigation to enhance regional irrigation estimates. To evaluate the methodologies, we compared various approaches to quantify irrigation using either soil moisture, evapotranspiration, or both within a novel baseline framework, together with irrigation estimates from other studies. We show, that the synergy from using two equally important components in joint approach within a baseline framework, yield better irrigation estimates.
Kristian Svennevig, Julian Koch, Marie Keiding, and Gregor Luetzenburg
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2023-68, https://doi.org/10.5194/nhess-2023-68, 2023
Preprint under review for NHESS
Short summary
Short summary
In this study, we examine how future climate change may affect activity in landslides in Denmark using publicly available data. Our findings show that climate change will increase groundwater table depth, which will lead to increased landslide activity. During past events of extremely wet winters in this region, landslides caused damage to buildings and infrastructure.
Robert Chlumsky, Juliane Mai, James R. Craig, and Bryan A. Tolson
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2023-69, https://doi.org/10.5194/hess-2023-69, 2023
Revised manuscript not accepted
Short summary
Short summary
A blended model allows multiple hydrologic processes to be represented in a single model, which allows for a model to achieve high performance without the need to modify its structure for different catchments. Here, we improve upon the initial blended version by testing more than 30 blended models in twelve catchments to improve the overall model performance. We validate our proposed, updated blended model version with independent catchments, and make this version available for open use.
Richard Arsenault, Jean-Luc Martel, Frédéric Brunet, François Brissette, and Juliane Mai
Hydrol. Earth Syst. Sci., 27, 139–157, https://doi.org/10.5194/hess-27-139-2023, https://doi.org/10.5194/hess-27-139-2023, 2023
Short summary
Short summary
Predicting flow in rivers where no observation records are available is a daunting task. For decades, hydrological models were set up on these gauges, and their parameters were estimated based on the hydrological response of similar or nearby catchments where records exist. New developments in machine learning have now made it possible to estimate flows at ungauged locations more precisely than with hydrological models. This study confirms the performance superiority of machine learning models.
Raphael Schneider, Julian Koch, Lars Troldborg, Hans Jørgen Henriksen, and Simon Stisen
Hydrol. Earth Syst. Sci., 26, 5859–5877, https://doi.org/10.5194/hess-26-5859-2022, https://doi.org/10.5194/hess-26-5859-2022, 2022
Short summary
Short summary
Hydrological models at high spatial resolution are computationally expensive. However, outputs from such models, such as the depth of the groundwater table, are often desired in high resolution. We developed a downscaling algorithm based on machine learning that allows us to increase spatial resolution of hydrological model outputs, alleviating computational burden. We successfully applied the downscaling algorithm to the climate-change-induced impacts on the groundwater table across Denmark.
Eva Sebok, Hans Jørgen Henriksen, Ernesto Pastén-Zapata, Peter Berg, Guillaume Thirel, Anthony Lemoine, Andrea Lira-Loarca, Christiana Photiadou, Rafael Pimentel, Paul Royer-Gaspard, Erik Kjellström, Jens Hesselbjerg Christensen, Jean Philippe Vidal, Philippe Lucas-Picher, Markus G. Donat, Giovanni Besio, María José Polo, Simon Stisen, Yvan Caballero, Ilias G. Pechlivanidis, Lars Troldborg, and Jens Christian Refsgaard
Hydrol. Earth Syst. Sci., 26, 5605–5625, https://doi.org/10.5194/hess-26-5605-2022, https://doi.org/10.5194/hess-26-5605-2022, 2022
Short summary
Short summary
Hydrological models projecting the impact of changing climate carry a lot of uncertainty. Thus, these models usually have a multitude of simulations using different future climate data. This study used the subjective opinion of experts to assess which climate and hydrological models are the most likely to correctly predict climate impacts, thereby easing the computational burden. The experts could select more likely hydrological models, while the climate models were deemed equally probable.
Friedrich Boeing, Oldrich Rakovec, Rohini Kumar, Luis Samaniego, Martin Schrön, Anke Hildebrandt, Corinna Rebmann, Stephan Thober, Sebastian Müller, Steffen Zacharias, Heye Bogena, Katrin Schneider, Ralf Kiese, Sabine Attinger, and Andreas Marx
Hydrol. Earth Syst. Sci., 26, 5137–5161, https://doi.org/10.5194/hess-26-5137-2022, https://doi.org/10.5194/hess-26-5137-2022, 2022
Short summary
Short summary
In this paper, we deliver an evaluation of the second generation operational German drought monitor (https://www.ufz.de/duerremonitor) with a state-of-the-art compilation of observed soil moisture data from 40 locations and four different measurement methods in Germany. We show that the expressed stakeholder needs for higher resolution drought information at the one-kilometer scale can be met and that the agreement of simulated and observed soil moisture dynamics can be moderately improved.
Bahar Bahrami, Anke Hildebrandt, Stephan Thober, Corinna Rebmann, Rico Fischer, Luis Samaniego, Oldrich Rakovec, and Rohini Kumar
Geosci. Model Dev., 15, 6957–6984, https://doi.org/10.5194/gmd-15-6957-2022, https://doi.org/10.5194/gmd-15-6957-2022, 2022
Short summary
Short summary
Leaf area index (LAI) and gross primary productivity (GPP) are crucial components to carbon cycle, and are closely linked to water cycle in many ways. We develop a Parsimonious Canopy Model (PCM) to simulate GPP and LAI at stand scale, and show its applicability over a diverse range of deciduous broad-leaved forest biomes. With its modular structure, the PCM is able to adapt with existing data requirements, and run in either a stand-alone mode or as an interface linked to hydrologic models.
Juliane Mai, Hongren Shen, Bryan A. Tolson, Étienne Gaborit, Richard Arsenault, James R. Craig, Vincent Fortin, Lauren M. Fry, Martin Gauch, Daniel Klotz, Frederik Kratzert, Nicole O'Brien, Daniel G. Princz, Sinan Rasiya Koya, Tirthankar Roy, Frank Seglenieks, Narayan K. Shrestha, André G. T. Temgoua, Vincent Vionnet, and Jonathan W. Waddell
Hydrol. Earth Syst. Sci., 26, 3537–3572, https://doi.org/10.5194/hess-26-3537-2022, https://doi.org/10.5194/hess-26-3537-2022, 2022
Short summary
Short summary
Model intercomparison studies are carried out to test various models and compare the quality of their outputs over the same domain. In this study, 13 diverse model setups using the same input data are evaluated over the Great Lakes region. Various model outputs – such as streamflow, evaporation, soil moisture, and amount of snow on the ground – are compared using standardized methods and metrics. The basin-wise model outputs and observations are made available through an interactive website.
Rena Meyer, Wenmin Zhang, Søren Julsgaard Kragh, Mie Andreasen, Karsten Høgh Jensen, Rasmus Fensholt, Simon Stisen, and Majken C. Looms
Hydrol. Earth Syst. Sci., 26, 3337–3357, https://doi.org/10.5194/hess-26-3337-2022, https://doi.org/10.5194/hess-26-3337-2022, 2022
Short summary
Short summary
The amount and spatio-temporal distribution of soil moisture, the water in the upper soil, is of great relevance for agriculture and water management. Here, we investigate whether the established downscaling algorithm combining different satellite products to estimate medium-scale soil moisture is applicable to higher resolutions and whether results can be improved by accounting for land cover types. Original satellite data and downscaled soil moisture are compared with ground observations.
Michelle Viswanathan, Tobias K. D. Weber, Sebastian Gayler, Juliane Mai, and Thilo Streck
Biogeosciences, 19, 2187–2209, https://doi.org/10.5194/bg-19-2187-2022, https://doi.org/10.5194/bg-19-2187-2022, 2022
Short summary
Short summary
We analysed the evolution of model parameter uncertainty and prediction error as we updated parameters of a maize phenology model based on yearly observations, by sequentially applying Bayesian calibration. Although parameter uncertainty was reduced, prediction quality deteriorated when calibration and prediction data were from different maize ripening groups or temperature conditions. The study highlights that Bayesian methods should account for model limitations and inherent data structures.
Robert Schweppe, Stephan Thober, Sebastian Müller, Matthias Kelbling, Rohini Kumar, Sabine Attinger, and Luis Samaniego
Geosci. Model Dev., 15, 859–882, https://doi.org/10.5194/gmd-15-859-2022, https://doi.org/10.5194/gmd-15-859-2022, 2022
Short summary
Short summary
The recently released multiscale parameter regionalization (MPR) tool enables
environmental modelers to efficiently use extensive datasets for model setups.
It flexibly ingests the datasets using user-defined data–parameter relationships
and rescales parameter fields to given model resolutions. Modern
land surface models especially benefit from MPR through increased transparency and
flexibility in modeling decisions. Thus, MPR empowers more sound and robust
simulations of the Earth system.
Michael Peichl, Stephan Thober, Luis Samaniego, Bernd Hansjürgens, and Andreas Marx
Hydrol. Earth Syst. Sci., 25, 6523–6545, https://doi.org/10.5194/hess-25-6523-2021, https://doi.org/10.5194/hess-25-6523-2021, 2021
Short summary
Short summary
Using a statistical model that can also take complex systems into account, the most important factors affecting wheat yield in Germany are determined. Different spatial damage potentials are taken into account. In many parts of Germany, yield losses are caused by too much soil water in spring. Negative heat effects as well as damaging soil drought are identified especially for north-eastern Germany. The model is able to explain years with exceptionally high yields (2014) and losses (2003, 2018).
Nicolas Gasset, Vincent Fortin, Milena Dimitrijevic, Marco Carrera, Bernard Bilodeau, Ryan Muncaster, Étienne Gaborit, Guy Roy, Nedka Pentcheva, Maxim Bulat, Xihong Wang, Radenko Pavlovic, Franck Lespinas, Dikra Khedhaouiria, and Juliane Mai
Hydrol. Earth Syst. Sci., 25, 4917–4945, https://doi.org/10.5194/hess-25-4917-2021, https://doi.org/10.5194/hess-25-4917-2021, 2021
Short summary
Short summary
In this paper, we highlight the importance of including land-data assimilation as well as offline precipitation analysis components in a regional reanalysis system. We also document the performance of the first multidecadal 10 km reanalysis performed with the GEM atmospheric model that can be used for seamless land-surface and hydrological modelling in North America. It is of particular interest for transboundary basins, as existing datasets often show discontinuities at the border.
Camelia-Eliza Telteu, Hannes Müller Schmied, Wim Thiery, Guoyong Leng, Peter Burek, Xingcai Liu, Julien Eric Stanislas Boulange, Lauren Seaby Andersen, Manolis Grillakis, Simon Newland Gosling, Yusuke Satoh, Oldrich Rakovec, Tobias Stacke, Jinfeng Chang, Niko Wanders, Harsh Lovekumar Shah, Tim Trautmann, Ganquan Mao, Naota Hanasaki, Aristeidis Koutroulis, Yadu Pokhrel, Luis Samaniego, Yoshihide Wada, Vimal Mishra, Junguo Liu, Petra Döll, Fang Zhao, Anne Gädeke, Sam S. Rabin, and Florian Herz
Geosci. Model Dev., 14, 3843–3878, https://doi.org/10.5194/gmd-14-3843-2021, https://doi.org/10.5194/gmd-14-3843-2021, 2021
Short summary
Short summary
We analyse water storage compartments, water flows, and human water use sectors included in 16 global water models that provide simulations for the Inter-Sectoral Impact Model Intercomparison Project phase 2b. We develop a standard writing style for the model equations. We conclude that even though hydrologic processes are often based on similar equations, in the end these equations have been adjusted, or the models have used different values for specific parameters or specific variables.
Juliane Mai, James R. Craig, and Bryan A. Tolson
Hydrol. Earth Syst. Sci., 24, 5835–5858, https://doi.org/10.5194/hess-24-5835-2020, https://doi.org/10.5194/hess-24-5835-2020, 2020
E. Bontempo, M. C. Demirel, C. Corsini, F. Martins, and D. Valeriano
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-3-W12-2020, 201–206, https://doi.org/10.5194/isprs-archives-XLII-3-W12-2020-201-2020, https://doi.org/10.5194/isprs-archives-XLII-3-W12-2020-201-2020, 2020
Miao Jing, Rohini Kumar, Falk Heße, Stephan Thober, Oldrich Rakovec, Luis Samaniego, and Sabine Attinger
Hydrol. Earth Syst. Sci., 24, 1511–1526, https://doi.org/10.5194/hess-24-1511-2020, https://doi.org/10.5194/hess-24-1511-2020, 2020
Short summary
Short summary
This study investigates the response of regional groundwater system to the climate change under three global warming levels (1.5, 2, and 3 °C) in a central German basin. A comprehensive uncertainty analysis is also presented. This study indicates that the variability of responses increases with the amount of global warming, which might affect the cost of managing the groundwater system.
Raphael Schneider, Hans Jørgen Henriksen, and Simon Stisen
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2019-685, https://doi.org/10.5194/hess-2019-685, 2020
Revised manuscript not accepted
Short summary
Short summary
For groundwater models to deliver reliable results, their parameters often have to be estimated in an optimization process guided by some measure of model performance. In this context, we suggest the use of a novel performance metric, which is less prone to a fit to inadequate observations than the most frequently used metrics based on squared errors. Hence, calibration is more robust to deficiencies in model and observational data, which are common especially in larger scale models.
Kamal Ahmed, Dhanapala A. Sachindra, Shamsuddin Shahid, Mehmet C. Demirel, and Eun-Sung Chung
Hydrol. Earth Syst. Sci., 23, 4803–4824, https://doi.org/10.5194/hess-23-4803-2019, https://doi.org/10.5194/hess-23-4803-2019, 2019
Short summary
Short summary
This study evaluated the performance of 36 CMIP5 GCMs in simulating seasonal precipitation and maximum and minimum temperature over Pakistan using spatial metrics (SPAtial EFficiency, fractions skill score, Goodman–Kruskal's lambda, Cramer's V, Mapcurves, and Kling–Gupta efficiency) for the period 1961–2005. NorESM1-M, MIROC5, BCC-CSM1-1, and ACCESS1-3 were identified as the most suitable GCMs for simulating all three climate variables over Pakistan.
Julian Koch, Helen Berger, Hans Jørgen Henriksen, and Torben Obel Sonnenborg
Hydrol. Earth Syst. Sci., 23, 4603–4619, https://doi.org/10.5194/hess-23-4603-2019, https://doi.org/10.5194/hess-23-4603-2019, 2019
Short summary
Short summary
This study explores novel modelling avenues using machine learning in combination with process-based models to predict the shallow water table at high spatial resolution. Due to climate change and anthropogenic impacts, the shallow groundwater is rising in many parts of the world. In order to adapt to risks induced by groundwater flooding, new modelling tools need to emerge. In this study, we found that machine learning is capable of reaching the required accuracy and resolution.
Stephan Thober, Matthias Cuntz, Matthias Kelbling, Rohini Kumar, Juliane Mai, and Luis Samaniego
Geosci. Model Dev., 12, 2501–2521, https://doi.org/10.5194/gmd-12-2501-2019, https://doi.org/10.5194/gmd-12-2501-2019, 2019
Short summary
Short summary
We present a model that aggregates simulated runoff along a river
(i.e. a routing model). The unique feature of the model is that it
can be run at multiple resolutions without any modifications to the
input data. The model internally (dis-)aggregates all input data to
the resolution given by the user. The model performance does not
depend on the chosen resolution. This allows efficient model
calibration at coarse resolution and subsequent model application at
fine resolution.
Miao Jing, Falk Heße, Rohini Kumar, Wenqing Wang, Thomas Fischer, Marc Walther, Matthias Zink, Alraune Zech, Luis Samaniego, Olaf Kolditz, and Sabine Attinger
Geosci. Model Dev., 11, 1989–2007, https://doi.org/10.5194/gmd-11-1989-2018, https://doi.org/10.5194/gmd-11-1989-2018, 2018
Julian Koch, Mehmet Cüneyd Demirel, and Simon Stisen
Geosci. Model Dev., 11, 1873–1886, https://doi.org/10.5194/gmd-11-1873-2018, https://doi.org/10.5194/gmd-11-1873-2018, 2018
Short summary
Short summary
Our work addresses a key challenge in earth system modelling: how to optimally exploit the information contained in satellite remote sensing observations in the calibration of such models. For this we thoroughly test a number of measures that quantify the fit between an observed and a simulated spatial pattern. We acknowledge the difficulties associated with such a comparison and suggest using measures that regard multiple aspects of spatial information, i.e. magnitude and variability.
Michael Peichl, Stephan Thober, Volker Meyer, and Luis Samaniego
Nat. Hazards Earth Syst. Sci., 18, 889–906, https://doi.org/10.5194/nhess-18-889-2018, https://doi.org/10.5194/nhess-18-889-2018, 2018
Short summary
Short summary
Crop yields are routinely derived from meteorological variables, especially temperature. However, the primary water source for plant growth (soil moisture) is neglected. In this study, the predictability of maize yield is investigated using soil moisture or meteorological variables in Germany. The effects of soil moisture dominate those of temperature and are time-dependent. For example, comparatively moist soil conditions in June reduce crop yields, while in August they increase yields.
Raneem Madi, Gerrit Huibert de Rooij, Henrike Mielenz, and Juliane Mai
Hydrol. Earth Syst. Sci., 22, 1193–1219, https://doi.org/10.5194/hess-22-1193-2018, https://doi.org/10.5194/hess-22-1193-2018, 2018
Short summary
Short summary
Water flows through soils with more difficulty when the soil is dried out. Scant rainfall in deserts may therefore result in a seemingly wet soil, but the water will often not penetrate deeply enough to replenish the groundwater. We compared the mathematical functions that describe how well different soils hold their water and found that only a few of them are realistic. The function one chooses to model the soil can have a large impact on the estimate of groundwater recharge.
Andreas Marx, Rohini Kumar, Stephan Thober, Oldrich Rakovec, Niko Wanders, Matthias Zink, Eric F. Wood, Ming Pan, Justin Sheffield, and Luis Samaniego
Hydrol. Earth Syst. Sci., 22, 1017–1032, https://doi.org/10.5194/hess-22-1017-2018, https://doi.org/10.5194/hess-22-1017-2018, 2018
Short summary
Short summary
Hydrological low flows are affected under different levels of future global warming (i.e. 1.5, 2, and 3 K). The multi-model ensemble results show that the change signal amplifies with increasing warming levels. Low flows decrease in the Mediterranean, while they increase in the Alpine and Northern regions. The changes in low flows are significant for regions with relatively large change signals and under higher levels of warming. Adaptation should make use of change and uncertainty information.
Simon Höllering, Jan Wienhöfer, Jürgen Ihringer, Luis Samaniego, and Erwin Zehe
Hydrol. Earth Syst. Sci., 22, 203–220, https://doi.org/10.5194/hess-22-203-2018, https://doi.org/10.5194/hess-22-203-2018, 2018
Short summary
Short summary
Hydrological fingerprints are introduced as response targets for sensitivity analysis and combined with a conventional approach using streamflow data for a temporally resolved sensitivity analysis. The joint benefit of both approaches is presented for several headwater catchments. The approach allows discerning a clarified pattern for parameter influences pinpointed to diverse response characteristics and detecting even slight regional differences.
Guiomar Ruiz-Pérez, Julian Koch, Salvatore Manfreda, Kelly Caylor, and Félix Francés
Hydrol. Earth Syst. Sci., 21, 6235–6251, https://doi.org/10.5194/hess-21-6235-2017, https://doi.org/10.5194/hess-21-6235-2017, 2017
Short summary
Short summary
Plants are shaping the landscape and controlling the hydrological cycle, particularly in arid and semi-arid ecosystems. Remote sensing data appears as an appealing source of information for vegetation monitoring, in particular in areas with a limited amount of available field data. Here, we present an example of how remote sensing data can be exploited in a data-scarce basin. We propose a mathematical methodology that can be used as a springboard for future applications.
Gorka Mendiguren, Julian Koch, and Simon Stisen
Hydrol. Earth Syst. Sci., 21, 5987–6005, https://doi.org/10.5194/hess-21-5987-2017, https://doi.org/10.5194/hess-21-5987-2017, 2017
Short summary
Short summary
The present study is focused on the spatial pattern evaluation of two models and describes the similarities and dissimilarities. It also discusses the factors that generate these patterns and proposes similar new approaches to minimize the differences. The study points towards a new approach in which the spatial component of the hydrological model is also calibrated and taken into account.
Martin Schrön, Markus Köhli, Lena Scheiffele, Joost Iwema, Heye R. Bogena, Ling Lv, Edoardo Martini, Gabriele Baroni, Rafael Rosolem, Jannis Weimar, Juliane Mai, Matthias Cuntz, Corinna Rebmann, Sascha E. Oswald, Peter Dietrich, Ulrich Schmidt, and Steffen Zacharias
Hydrol. Earth Syst. Sci., 21, 5009–5030, https://doi.org/10.5194/hess-21-5009-2017, https://doi.org/10.5194/hess-21-5009-2017, 2017
Short summary
Short summary
A field-scale average of near-surface water content can be sensed by cosmic-ray neutron detectors. To interpret, calibrate, and validate the integral signal, it is important to account for its sensitivity to heterogeneous patterns like dry or wet spots. We show how point samples contribute to the neutron signal based on their depth and distance from the detector. This approach robustly improves the sensor performance and data consistency, and even reveals otherwise hidden hydrological features.
Luis Samaniego, Rohini Kumar, Stephan Thober, Oldrich Rakovec, Matthias Zink, Niko Wanders, Stephanie Eisner, Hannes Müller Schmied, Edwin H. Sutanudjaja, Kirsten Warrach-Sagi, and Sabine Attinger
Hydrol. Earth Syst. Sci., 21, 4323–4346, https://doi.org/10.5194/hess-21-4323-2017, https://doi.org/10.5194/hess-21-4323-2017, 2017
Short summary
Short summary
We inspect the state-of-the-art of several land surface (LSMs) and hydrologic models (HMs) and show that most do not have consistent and realistic parameter fields for land surface geophysical properties. We propose to use the multiscale parameter regionalization (MPR) technique to solve, at least partly, the scaling problem in LSMs/HMs. A general model protocol is presented to describe how MPR can be applied to a specific model.
Christa D. Peters-Lidard, Martyn Clark, Luis Samaniego, Niko E. C. Verhoest, Tim van Emmerik, Remko Uijlenhoet, Kevin Achieng, Trenton E. Franz, and Ross Woods
Hydrol. Earth Syst. Sci., 21, 3701–3713, https://doi.org/10.5194/hess-21-3701-2017, https://doi.org/10.5194/hess-21-3701-2017, 2017
Short summary
Short summary
In this synthesis of hydrologic scaling and similarity, we assert that it is time for hydrology to embrace a fourth paradigm of data-intensive science. Advances in information-based hydrologic science, coupled with an explosion of hydrologic data and advances in parameter estimation and modeling, have laid the foundation for a data-driven framework for scrutinizing hydrological hypotheses. We call upon the community to develop a focused effort towards a fourth paradigm for hydrology.
Martyn P. Clark, Marc F. P. Bierkens, Luis Samaniego, Ross A. Woods, Remko Uijlenhoet, Katrina E. Bennett, Valentijn R. N. Pauwels, Xitian Cai, Andrew W. Wood, and Christa D. Peters-Lidard
Hydrol. Earth Syst. Sci., 21, 3427–3440, https://doi.org/10.5194/hess-21-3427-2017, https://doi.org/10.5194/hess-21-3427-2017, 2017
Short summary
Short summary
The diversity in hydrologic models has led to controversy surrounding the “correct” approach to hydrologic modeling. In this paper we revisit key modeling challenges on requirements to (1) define suitable model equations, (2) define adequate model parameters, and (3) cope with limitations in computing power. We outline the historical modeling challenges, summarize modeling advances that address these challenges, and define outstanding research needs.
Gabriele Baroni, Matthias Zink, Rohini Kumar, Luis Samaniego, and Sabine Attinger
Hydrol. Earth Syst. Sci., 21, 2301–2320, https://doi.org/10.5194/hess-21-2301-2017, https://doi.org/10.5194/hess-21-2301-2017, 2017
Short summary
Short summary
Three methods are used to characterize the uncertainty in soil properties. The effect on simulated states and fluxes is quantified using a distributed hydrological model. Different impacts are identified as function of the perturbation method, of the model outputs and of the spatio-temporal resolution. The study underlines the importance of a proper characterization of the uncertainty in soil properties for a correct assessment of their role and further improvements in the model application.
Matthias Zink, Rohini Kumar, Matthias Cuntz, and Luis Samaniego
Hydrol. Earth Syst. Sci., 21, 1769–1790, https://doi.org/10.5194/hess-21-1769-2017, https://doi.org/10.5194/hess-21-1769-2017, 2017
Short summary
Short summary
We discuss the estimation of a long-term, high-resolution, continuous and consistent dataset of hydro-meteorological variables for Germany. Here we describe the derivation of national-scale parameter sets and analyze the uncertainty of the estimated hydrologic variables (focusing on the parametric uncertainty). Our study highlights the role of accounting for the parametric uncertainty in model-derived hydrological datasets.
Falk Heße, Matthias Zink, Rohini Kumar, Luis Samaniego, and Sabine Attinger
Hydrol. Earth Syst. Sci., 21, 549–570, https://doi.org/10.5194/hess-21-549-2017, https://doi.org/10.5194/hess-21-549-2017, 2017
Short summary
Short summary
Travel-time distributions are a comprehensive tool for the characterization of hydrological systems. In our study, we used data that were simulated by virtue of a well-established hydrological model. This gave us a very large yet realistic dataset, both in time and space, from which we could infer the relative impact of different factors on travel-time behavior. These were, in particular, meteorological (precipitation), land surface (land cover, leaf-area index) and subsurface (soil) properties.
Simon Höllering, Jürgen Ihringer, Luis Samaniego, and Erwin Zehe
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2016-249, https://doi.org/10.5194/hess-2016-249, 2016
Preprint withdrawn
Remko C. Nijzink, Luis Samaniego, Juliane Mai, Rohini Kumar, Stephan Thober, Matthias Zink, David Schäfer, Hubert H. G. Savenije, and Markus Hrachowitz
Hydrol. Earth Syst. Sci., 20, 1151–1176, https://doi.org/10.5194/hess-20-1151-2016, https://doi.org/10.5194/hess-20-1151-2016, 2016
Short summary
Short summary
The heterogeneity of landscapes in river basins strongly affects the hydrological response. In this study, the distributed mesoscale Hydrologic Model (mHM) was equipped with additional processes identified by landscapes within one modelling cell. Seven study catchments across Europe were selected to test the value of this additional sub-grid heterogeneity. In addition, the models were constrained based on expert knowledge. Generally, the modifications improved the representation of low flows.
Rohini Kumar, Jude L. Musuuza, Anne F. Van Loon, Adriaan J. Teuling, Roland Barthel, Jurriaan Ten Broek, Juliane Mai, Luis Samaniego, and Sabine Attinger
Hydrol. Earth Syst. Sci., 20, 1117–1131, https://doi.org/10.5194/hess-20-1117-2016, https://doi.org/10.5194/hess-20-1117-2016, 2016
Short summary
Short summary
In a maiden attempt, we performed a multiscale evaluation of the widely used SPI to characterize local- and regional-scale groundwater (GW) droughts using observations at 2040 groundwater wells in Germany and the Netherlands. From this data-based exploratory analysis, we provide sufficient evidence regarding the inability of the SPI to characterize GW drought events, and stress the need for more GW observations and accounting for regional hydrogeological characteristics in GW drought monitoring.
G. Mendiguren, M. Pilar Martín, H. Nieto, J. Pacheco-Labrador, and S. Jurdao
Biogeosciences, 12, 5523–5535, https://doi.org/10.5194/bg-12-5523-2015, https://doi.org/10.5194/bg-12-5523-2015, 2015
R. Guzinski, H. Nieto, S. Stisen, and R. Fensholt
Hydrol. Earth Syst. Sci., 19, 2017–2036, https://doi.org/10.5194/hess-19-2017-2015, https://doi.org/10.5194/hess-19-2017-2015, 2015
Short summary
Short summary
The study compared evapotranspiration (ET) modelled by two remote sensing models and one hydrological model in a river catchment in Denmark. The results show that the spatial patterns of ET produced by the remote sensing models are more similar to each other than to the fluxes produced by the hydrological model. This indicates potential benefits to the hydrological modelling community from integrating spatial information derived through remote sensing methodology into the hydrological models.
M. C. Demirel, M. J. Booij, and A. Y. Hoekstra
Hydrol. Earth Syst. Sci., 19, 275–291, https://doi.org/10.5194/hess-19-275-2015, https://doi.org/10.5194/hess-19-275-2015, 2015
Short summary
Short summary
This paper investigates the skill of 90-day low-flow forecasts using three models. From the results, it appears that all models are prone to over-predict runoff during low-flow periods using ensemble seasonal meteorological forcing. The largest range for 90-day low-flow forecasts is found for the GR4J model. Overall, the uncertainty from ensemble P forecasts has a larger effect on seasonal low-flow forecasts than the uncertainty from ensemble PET forecasts and initial model conditions.
H. Ajami, J. P. Evans, M. F. McCabe, and S. Stisen
Hydrol. Earth Syst. Sci., 18, 5169–5179, https://doi.org/10.5194/hess-18-5169-2014, https://doi.org/10.5194/hess-18-5169-2014, 2014
Short summary
Short summary
A new hybrid approach was developed to reduce the computational burden of the spin-up procedure by using a combination of model simulations and an empirical depth-to-water table function. Results illustrate that the hybrid approach reduced the spin-up period required for an integrated groundwater--surface water--land surface model (ParFlow.CLM) by up to 50%. The methodology is applicable to other coupled or integrated modeling frameworks when initialization from an equilibrium state is required.
J. Koch, X. He, K. H. Jensen, and J. C. Refsgaard
Hydrol. Earth Syst. Sci., 18, 2907–2923, https://doi.org/10.5194/hess-18-2907-2014, https://doi.org/10.5194/hess-18-2907-2014, 2014
Related subject area
Subject: Catchment hydrology | Techniques and Approaches: Modelling approaches
Modelling flood frequency and magnitude in a glacially conditioned, heterogeneous landscape: testing the importance of land cover and land use
Direct integration of reservoirs' operations in a hydrological model for streamflow estimation: coupling a CLSTM model with MOHID-Land
Modelling the regional sensitivity of snowmelt, soil moisture, and streamflow generation to climate over the Canadian Prairies using a basin classification approach
To what extent does river routing matter in hydrological modeling?
Calibrating macroscale hydrological models in poorly gauged and heavily regulated basins
An advanced tool integrating failure and sensitivity analysis into novel modeling of the stormwater flood volume
airGRteaching: an open-source tool for teaching hydrological modeling with R
Stable water isotopes and tritium tracers tell the same tale: no evidence for underestimation of catchment transit times inferred by stable isotopes in StorAge Selection (SAS)-function models
Uncertainty in water transit time estimation with StorAge Selection functions and tracer data interpolation
Changes in Mediterranean flood processes and seasonality
Can the combining of wetlands with reservoir operation reduce the risk of future floods and droughts?
Knowledge-informed deep learning for hydrological model calibration: an application to Coal Creek Watershed in Colorado
When best is the enemy of good – critical evaluation of performance criteria in hydrological models
The suitability of differentiable, physics-informed machine learning hydrologic models for ungauged regions and climate change impact assessment
Producing reliable hydrologic scenarios from raw climate model outputs without resorting to meteorological observations
Projecting sediment export from two highly glacierized alpine catchments under climate change: Exploring non-parametric regression as an analysis tool
Using normalised difference infrared index patterns to constrain semi-distributed rainfall–runoff models in tropical nested catchments
Towards robust seasonal streamflow forecasts in mountainous catchments: impact of calibration metric selection in hydrological modeling
Revisiting the hydrological basis of the Budyko framework with the principle of hydrologically similar groups
Reconstructing five decades of sediment export from two glacierized high-alpine catchments in Tyrol, Austria, using nonparametric regression
Water and energy budgets over hydrological basins on short and long timescales
Hydrological response to climate change and human activities in the Three-River Source Region
Incorporating experimentally derived streamflow contributions into model parameterization to improve discharge prediction
Machine-learning- and deep-learning-based streamflow prediction in a hilly catchment for future scenarios using CMIP6 GCM data
River hydraulic modeling with ICESat-2 land and water surface elevation
Hydrological modeling using the Soil and Water Assessment Tool in urban and peri-urban environments: the case of Kifisos experimental subbasin (Athens, Greece)
Monetizing the role of water in sustaining watershed ecosystem services using a fully integrated subsurface–surface water model
Technical note: How physically based is hydrograph separation by recursive digital filtering?
A comprehensive open-source course for teaching applied hydrological modelling in Central Asia
Impact of distributed meteorological forcing on simulated snow cover and hydrological fluxes over a mid-elevation alpine micro-scale catchment
Technical note: Extending the SWAT model to transport chemicals through tile and groundwater flow
Long-term reconstruction of satellite-based precipitation, soil moisture, and snow water equivalent in China
Disentangling scatter in long-term concentration–discharge relationships: the role of event types
Simulating the hydrological impacts of land use conversion from annual crop to perennial forage in the Canadian Prairies using the Cold Regions Hydrological Modelling platform
Comparing machine learning and deep learning models for probabilistic post-processing of satellite precipitation-driven streamflow simulation
How can we benefit from regime information to make more effective use of long short-term memory (LSTM) runoff models?
On the value of satellite remote sensing to reduce uncertainties of regional simulations of the Colorado River
Assessing runoff sensitivity of North American Prairie Pothole Region basins to wetland drainage using a basin classification-based virtual modelling approach
A large-sample investigation into uncertain climate change impacts on high flows across Great Britain
Effects of passive-storage conceptualization on modeling hydrological function and isotope dynamics in the flow system of a cockpit karst landscape
Technical note: Data assimilation and autoregression for using near-real-time streamflow observations in long short-term memory networks
Attribution of climate change and human activities to streamflow variations with a posterior distribution of hydrological simulations
A time-varying distributed unit hydrograph method considering soil moisture
Flood patterns in a catchment with mixed bedrock geology and a hilly landscape: identification of flashy runoff contributions during storm events
A graph neural network (GNN) approach to basin-scale river network learning: the role of physics-based connectivity and data fusion
Improving hydrologic models for predictions and process understanding using neural ODEs
Response of active catchment water storage capacity to a prolonged meteorological drought and asymptotic climate variation
HESS Opinions: Participatory Digital eARth Twin Hydrology systems (DARTHs) for everyone – a blueprint for hydrologists
Development of a national 7-day ensemble streamflow forecasting service for Australia
Future snow changes and their impact on the upstream runoff in Salween
Pamela E. Tetford and Joseph R. Desloges
Hydrol. Earth Syst. Sci., 27, 3977–3998, https://doi.org/10.5194/hess-27-3977-2023, https://doi.org/10.5194/hess-27-3977-2023, 2023
Short summary
Short summary
An efficient regional flood frequency model relates drainage area to discharge, with a major assumption of similar basin conditions. In a landscape with variable glacial deposits and land use, we characterize varying hydrological function using 28 explanatory variables. We demonstrate that (1) a heterogeneous landscape requires objective model selection criteria to optimize the fit of flow data, and (2) incorporating land use as a predictor variable improves the drainage area to discharge model.
Ana Ramos Oliveira, Tiago Brito Ramos, Lígia Pinto, and Ramiro Neves
Hydrol. Earth Syst. Sci., 27, 3875–3893, https://doi.org/10.5194/hess-27-3875-2023, https://doi.org/10.5194/hess-27-3875-2023, 2023
Short summary
Short summary
This paper intends to demonstrate the adequacy of a hybrid solution to overcome the difficulties related to the incorporation of human behavior when modeling hydrological processes. Two models were implemented, one to estimate the outflow of a reservoir and the other to simulate the hydrological processes of the watershed. With both models feeding each other, results show that the proposed approach significantly improved the streamflow estimation downstream of the reservoir.
Zhihua He, Kevin Shook, Christopher Spence, John W. Pomeroy, and Colin Whitfield
Hydrol. Earth Syst. Sci., 27, 3525–3546, https://doi.org/10.5194/hess-27-3525-2023, https://doi.org/10.5194/hess-27-3525-2023, 2023
Short summary
Short summary
This study evaluated the impacts of climate change on snowmelt, soil moisture, and streamflow over the Canadian Prairies. The entire prairie region was divided into seven basin types. We found strong variations of hydrological sensitivity to precipitation and temperature changes in different land covers and basins, which suggests that different water management and adaptation methods are needed to address enhanced water stress due to expected climate change in different regions of the prairies.
Nicolás Cortés-Salazar, Nicolás Vásquez, Naoki Mizukami, Pablo A. Mendoza, and Ximena Vargas
Hydrol. Earth Syst. Sci., 27, 3505–3524, https://doi.org/10.5194/hess-27-3505-2023, https://doi.org/10.5194/hess-27-3505-2023, 2023
Short summary
Short summary
This paper shows how important river models can be for water resource applications that involve hydrological models and, in particular, parameter calibration. To this end, we conduct numerical experiments in a pilot basin using a combination of hydrologic model simulations obtained from a large sample of parameter sets and different routing methods. We find that routing can affect streamflow simulations, even at monthly time steps; the choice of parameters; and relevant streamflow metrics.
Dung Trung Vu, Thanh Duc Dang, Francesca Pianosi, and Stefano Galelli
Hydrol. Earth Syst. Sci., 27, 3485–3504, https://doi.org/10.5194/hess-27-3485-2023, https://doi.org/10.5194/hess-27-3485-2023, 2023
Short summary
Short summary
The calibration of hydrological models over extensive spatial domains is often challenged by the lack of data on river discharge and the operations of hydraulic infrastructures. Here, we use satellite data to address the lack of data that could unintentionally bias the calibration process. Our study is underpinned by a computational framework that quantifies this bias and provides a safe approach to the calibration of models in poorly gauged and heavily regulated basins.
Francesco Fatone, Bartosz Szeląg, Przemysław Kowal, Arthur McGarity, Adam Kiczko, Grzegorz Wałek, Ewa Wojciechowska, Michał Stachura, and Nicolas Caradot
Hydrol. Earth Syst. Sci., 27, 3329–3349, https://doi.org/10.5194/hess-27-3329-2023, https://doi.org/10.5194/hess-27-3329-2023, 2023
Short summary
Short summary
A novel methodology for the development of a stormwater network performance simulator including advanced risk assessment was proposed. The applied tool enables the analysis of the influence of spatial variability in catchment and stormwater network characteristics on the relation between (SWMM) model parameters and specific flood volume, as an alternative approach to mechanistic models. The proposed method can be used at the stage of catchment model development and spatial planning management.
Olivier Delaigue, Pierre Brigode, Guillaume Thirel, and Laurent Coron
Hydrol. Earth Syst. Sci., 27, 3293–3327, https://doi.org/10.5194/hess-27-3293-2023, https://doi.org/10.5194/hess-27-3293-2023, 2023
Short summary
Short summary
Teaching hydrological modeling is an important, but difficult, matter. It requires appropriate tools and teaching material. In this article, we present the airGRteaching package, which is an open-source software tool relying on widely used hydrological models. This tool proposes an interface and numerous hydrological modeling exercises representing a wide range of hydrological applications. We show how this tool can be applied to simple but real-life cases.
Siyuan Wang, Markus Hrachowitz, Gerrit Schoups, and Christine Stumpp
Hydrol. Earth Syst. Sci., 27, 3083–3114, https://doi.org/10.5194/hess-27-3083-2023, https://doi.org/10.5194/hess-27-3083-2023, 2023
Short summary
Short summary
This study shows that previously reported underestimations of water ages are most likely not due to the use of seasonally variable tracers. Rather, these underestimations can be largely attributed to the choices of model approaches which rely on assumptions not frequently met in catchment hydrology. We therefore strongly advocate avoiding the use of this model type in combination with seasonally variable tracers and instead adopting StorAge Selection (SAS)-based or comparable model formulations.
Arianna Borriero, Rohini Kumar, Tam V. Nguyen, Jan H. Fleckenstein, and Stefanie R. Lutz
Hydrol. Earth Syst. Sci., 27, 2989–3004, https://doi.org/10.5194/hess-27-2989-2023, https://doi.org/10.5194/hess-27-2989-2023, 2023
Short summary
Short summary
We analyzed the uncertainty of the water transit time distribution (TTD) arising from model input (interpolated tracer data) and structure (StorAge Selection, SAS, functions). We found that uncertainty was mainly associated with temporal interpolation, choice of SAS function, nonspatial interpolation, and low-flow conditions. It is important to characterize the specific uncertainty sources and their combined effects on TTD, as this has relevant implications for both water quantity and quality.
Yves Tramblay, Patrick Arnaud, Guillaume Artigue, Michel Lang, Emmanuel Paquet, Luc Neppel, and Eric Sauquet
Hydrol. Earth Syst. Sci., 27, 2973–2987, https://doi.org/10.5194/hess-27-2973-2023, https://doi.org/10.5194/hess-27-2973-2023, 2023
Short summary
Short summary
Mediterranean floods are causing major damage, and recent studies have shown that, despite the increase in intense rainfall, there has been no increase in river floods. This study reveals that the seasonality of floods changed in the Mediterranean Basin during 1959–2021. There was also an increased frequency of floods linked to short episodes of intense rain, associated with a decrease in soil moisture. These changes need to be taken into consideration to adapt flood warning systems.
Yanfeng Wu, Jingxuan Sun, Boting Hu, Y. Jun Xu, Alain N. Rousseau, and Guangxin Zhang
Hydrol. Earth Syst. Sci., 27, 2725–2745, https://doi.org/10.5194/hess-27-2725-2023, https://doi.org/10.5194/hess-27-2725-2023, 2023
Short summary
Short summary
Reservoirs and wetlands are important regulators of watershed hydrology, which should be considered when projecting floods and droughts. We first coupled wetlands and reservoir operations into a semi-spatially-explicit hydrological model and then applied it in a case study involving a large river basin in northeast China. We found that, overall, the risk of future floods and droughts will increase further even under the combined influence of reservoirs and wetlands.
Peishi Jiang, Pin Shuai, Alexander Sun, Maruti K. Mudunuru, and Xingyuan Chen
Hydrol. Earth Syst. Sci., 27, 2621–2644, https://doi.org/10.5194/hess-27-2621-2023, https://doi.org/10.5194/hess-27-2621-2023, 2023
Short summary
Short summary
We developed a novel deep learning approach to estimate the parameters of a computationally expensive hydrological model on only a few hundred realizations. Our approach leverages the knowledge obtained by data-driven analysis to guide the design of the deep learning model used for parameter estimation. We demonstrate this approach by calibrating a state-of-the-art hydrological model against streamflow and evapotranspiration observations at a snow-dominated watershed in Colorado.
Guillaume Cinkus, Naomi Mazzilli, Hervé Jourde, Andreas Wunsch, Tanja Liesch, Nataša Ravbar, Zhao Chen, and Nico Goldscheider
Hydrol. Earth Syst. Sci., 27, 2397–2411, https://doi.org/10.5194/hess-27-2397-2023, https://doi.org/10.5194/hess-27-2397-2023, 2023
Short summary
Short summary
The Kling–Gupta Efficiency (KGE) is a performance criterion extensively used to evaluate hydrological models. We conduct a critical study on the KGE and its variant to examine counterbalancing errors. Results show that, when assessing a simulation, concurrent over- and underestimation of discharge can lead to an overall higher criterion score without an associated increase in model relevance. We suggest that one carefully choose performance criteria and use scaling factors.
Dapeng Feng, Hylke Beck, Kathryn Lawson, and Chaopeng Shen
Hydrol. Earth Syst. Sci., 27, 2357–2373, https://doi.org/10.5194/hess-27-2357-2023, https://doi.org/10.5194/hess-27-2357-2023, 2023
Short summary
Short summary
Powerful hybrid models (called δ or delta models) embrace the fundamental learning capability of AI and can also explain the physical processes. Here we test their performance when applied to regions not in the training data. δ models rivaled the accuracy of state-of-the-art AI models under the data-dense scenario and even surpassed them for the data-sparse one. They generalize well due to the physical structure included. δ models could be ideal candidates for global hydrologic assessment.
Simon Ricard, Philippe Lucas-Picher, Antoine Thiboult, and François Anctil
Hydrol. Earth Syst. Sci., 27, 2375–2395, https://doi.org/10.5194/hess-27-2375-2023, https://doi.org/10.5194/hess-27-2375-2023, 2023
Short summary
Short summary
A simplified hydroclimatic modelling workflow is proposed to quantify the impact of climate change on water discharge without resorting to meteorological observations. Results confirm that the proposed workflow produces equivalent projections of the seasonal mean flows in comparison to a conventional hydroclimatic modelling approach. The proposed approach supports the participation of end-users in interpreting the impact of climate change on water resources.
Lena Katharina Schmidt, Till Francke, Peter Martin Grosse, and Axel Bronstert
EGUsphere, https://doi.org/10.5194/egusphere-2023-1063, https://doi.org/10.5194/egusphere-2023-1063, 2023
Short summary
Short summary
How suspended sediment export from glacierized high-alpine areas responds to future climate change is hardly assessable, as many interacting processes are involved and appropriate physical models are lacking. We present the first study to our knowledge exploring machine learning to project sediment export until 2100 in two high-alpine catchments. We find that uncertainties due to methodological limitations are small until 2070. Negative trends imply that ‘peak sediment’ may have already passed.
Nutchanart Sriwongsitanon, Wasana Jandang, James Williams, Thienchart Suwawong, Ekkarin Maekan, and Hubert H. G. Savenije
Hydrol. Earth Syst. Sci., 27, 2149–2171, https://doi.org/10.5194/hess-27-2149-2023, https://doi.org/10.5194/hess-27-2149-2023, 2023
Short summary
Short summary
We developed predictive semi-distributed rainfall–runoff models for nested sub-catchments in the upper Ping basin, which yielded better or similar performance compared to calibrated lumped models. The normalised difference infrared index proves to be an effective proxy for distributed root zone moisture capacity over sub-catchments and is well correlated with the percentage of evergreen forest. In validation, soil moisture simulations appeared to be highly correlated with the soil wetness index.
Diego Araya, Pablo A. Mendoza, Eduardo Muñoz-Castro, and James McPhee
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2023-116, https://doi.org/10.5194/hess-2023-116, 2023
Revised manuscript accepted for HESS
Short summary
Short summary
Dynamical systems are used by many agencies worldwide to produce seasonal streamflow forecasts, which are critical for decision-making. Such systems rely on hydrology models, which contain parameters that are typically estimated using a target performance metric (i.e., objective function). This study explores the effects of this decision across mountainous basins in Chile, illustrating tradeoffs between seasonal forecast quality and the models' capability to simulate streamflow characteristics.
Yuchan Chen, Xiuzhi Chen, Meimei Xue, Chuanxun Yang, Wei Zheng, Jun Cao, Wenting Yan, and Wenping Yuan
Hydrol. Earth Syst. Sci., 27, 1929–1943, https://doi.org/10.5194/hess-27-1929-2023, https://doi.org/10.5194/hess-27-1929-2023, 2023
Short summary
Short summary
This study addresses the quantification and estimation of the watershed-characteristic-related parameter (Pw) in the Budyko framework with the principle of hydrologically similar groups. The results show that Pw is closely related to soil moisture and fractional vegetation cover, and the relationship varies across specific hydrologic similarity groups. The overall satisfactory performance of the Pw estimation model improves the applicability of the Budyko framework for global runoff estimation.
Lena Katharina Schmidt, Till Francke, Peter Martin Grosse, Christoph Mayer, and Axel Bronstert
Hydrol. Earth Syst. Sci., 27, 1841–1863, https://doi.org/10.5194/hess-27-1841-2023, https://doi.org/10.5194/hess-27-1841-2023, 2023
Short summary
Short summary
We present a suitable method to reconstruct sediment export from decadal records of hydroclimatic predictors (discharge, precipitation, temperature) and shorter suspended sediment measurements. This lets us fill the knowledge gap on how sediment export from glacierized high-alpine areas has responded to climate change. We find positive trends in sediment export from the two investigated nested catchments with step-like increases around 1981 which are linked to crucial changes in glacier melt.
Samantha Petch, Bo Dong, Tristan Quaife, Robert P. King, and Keith Haines
Hydrol. Earth Syst. Sci., 27, 1723–1744, https://doi.org/10.5194/hess-27-1723-2023, https://doi.org/10.5194/hess-27-1723-2023, 2023
Short summary
Short summary
Gravitational measurements of water storage from GRACE (Gravity Recovery and Climate Experiment) can improve understanding of the water budget. We produce flux estimates over large river catchments based on observations that close the monthly water budget and ensure consistency with GRACE on short and long timescales. We use energy data to provide additional constraints and balance the long-term energy budget. These flux estimates are important for evaluating climate models.
Ting Su, Chiyuan Miao, Qingyun Duan, Jiaojiao Gou, Xiaoying Guo, and Xi Zhao
Hydrol. Earth Syst. Sci., 27, 1477–1492, https://doi.org/10.5194/hess-27-1477-2023, https://doi.org/10.5194/hess-27-1477-2023, 2023
Short summary
Short summary
The Three-River Source Region (TRSR) plays an extremely important role in water resources security and ecological and environmental protection in China and even all of Southeast Asia. This study used the variable infiltration capacity (VIC) land surface hydrologic model linked with the degree-day factor algorithm to simulate the runoff change in the TRSR. These results will help to guide current and future regulation and management of water resources in the TRSR.
Andreas Hartmann, Jean-Lionel Payeur-Poirier, and Luisa Hopp
Hydrol. Earth Syst. Sci., 27, 1325–1341, https://doi.org/10.5194/hess-27-1325-2023, https://doi.org/10.5194/hess-27-1325-2023, 2023
Short summary
Short summary
We advance our understanding of including information derived from environmental tracers into hydrological modeling. We present a simple approach that integrates streamflow observations and tracer-derived streamflow contributions for model parameter estimation. We consider multiple observed streamflow components and their variation over time to quantify the impact of their inclusion for streamflow prediction at the catchment scale.
Dharmaveer Singh, Manu Vardhan, Rakesh Sahu, Debrupa Chatterjee, Pankaj Chauhan, and Shiyin Liu
Hydrol. Earth Syst. Sci., 27, 1047–1075, https://doi.org/10.5194/hess-27-1047-2023, https://doi.org/10.5194/hess-27-1047-2023, 2023
Short summary
Short summary
This study examines, for the first time, the potential of various machine learning models in streamflow prediction over the Sutlej River basin (rainfall-dominated zone) in western Himalaya during the period 2041–2070 (2050s) and 2071–2100 (2080s) and its relationship to climate variability. The mean ensemble of the model results shows that the mean annual streamflow of the Sutlej River is expected to rise between the 2050s and 2080s by 0.79 to 1.43 % for SSP585 and by 0.87 to 1.10 % for SSP245.
Monica Coppo Frias, Suxia Liu, Xingguo Mo, Karina Nielsen, Heidi Ranndal, Liguang Jiang, Jun Ma, and Peter Bauer-Gottwein
Hydrol. Earth Syst. Sci., 27, 1011–1032, https://doi.org/10.5194/hess-27-1011-2023, https://doi.org/10.5194/hess-27-1011-2023, 2023
Short summary
Short summary
This paper uses remote sensing data from ICESat-2 to calibrate a 1D hydraulic model. With the model, we can make estimations of discharge and water surface elevation, which are important indicators in flooding risk assessment. ICESat-2 data give an added value, thanks to the 0.7 m resolution, which allows the measurement of narrow river streams. In addition, ICESat-2 provides measurements on the river dry portion geometry that can be included in the model.
Evgenia Koltsida, Nikos Mamassis, and Andreas Kallioras
Hydrol. Earth Syst. Sci., 27, 917–931, https://doi.org/10.5194/hess-27-917-2023, https://doi.org/10.5194/hess-27-917-2023, 2023
Short summary
Short summary
Daily and hourly rainfall observations were inputted to a Soil and Water Assessment Tool (SWAT) hydrological model to investigate the impacts of rainfall temporal resolution on a discharge simulation. Results indicated that groundwater flow parameters were more sensitive to daily time intervals, and channel routing parameters were more influential for hourly time intervals. This study suggests that the SWAT model appears to be a reliable tool to predict discharge in a mixed-land-use basin.
Tariq Aziz, Steven K. Frey, David R. Lapen, Susan Preston, Hazen A. J. Russell, Omar Khader, Andre R. Erler, and Edward A. Sudicky
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2023-25, https://doi.org/10.5194/hess-2023-25, 2023
Revised manuscript accepted for HESS
Short summary
Short summary
The study determines the value of water towards ecosystem services production in an agricultural watershed in Ontario, Canada. It uses a computer model and an economic valuation approach to determine how subsurface and surface water affect ecosystem services supply. The results show that subsurface water plays a critical role in maintaining ecosystem services. The study informs on the sustainable use of subsurface water and introduces a new method for managing watershed ecosystem services.
Klaus Eckhardt
Hydrol. Earth Syst. Sci., 27, 495–499, https://doi.org/10.5194/hess-27-495-2023, https://doi.org/10.5194/hess-27-495-2023, 2023
Short summary
Short summary
An important hydrological issue is to identify components of streamflow that react to precipitation with different degrees of attenuation and delay. From the multitude of methods that have been developed for this so-called hydrograph separation, a specific, frequently used one is singled out here. It is shown to be derived from plausible physical principles. This increases confidence in its results.
Beatrice Sabine Marti, Aidar Zhumabaev, and Tobias Siegfried
Hydrol. Earth Syst. Sci., 27, 319–330, https://doi.org/10.5194/hess-27-319-2023, https://doi.org/10.5194/hess-27-319-2023, 2023
Short summary
Short summary
Numerical modelling is often used for climate impact studies in water resources management. It is, however, not yet highly accessible to many students of hydrology in Central Asia. One big hurdle for new learners is the preparation of relevant data prior to the actual modelling. We present a robust, open-source workflow and comprehensive teaching material that can be used by teachers and by students for self study.
Aniket Gupta, Alix Reverdy, Jean-Martial Cohard, Basile Hector, Marc Descloitres, Jean-Pierre Vandervaere, Catherine Coulaud, Romain Biron, Lucie Liger, Reed Maxwell, Jean-Gabriel Valay, and Didier Voisin
Hydrol. Earth Syst. Sci., 27, 191–212, https://doi.org/10.5194/hess-27-191-2023, https://doi.org/10.5194/hess-27-191-2023, 2023
Short summary
Short summary
Patchy snow cover during spring impacts mountainous ecosystems on a large range of spatio-temporal scales. A hydrological model simulated such snow patchiness at 10 m resolution. Slope and orientation controls precipitation, radiation, and wind generate differences in snowmelt, subsurface storage, streamflow, and evapotranspiration. The snow patchiness increases the duration of the snowmelt to stream and subsurface storage, which sustains the plants and streamflow later in the summer.
Hendrik Rathjens, Jens Kiesel, Michael Winchell, Jeffrey Arnold, and Robin Sur
Hydrol. Earth Syst. Sci., 27, 159–167, https://doi.org/10.5194/hess-27-159-2023, https://doi.org/10.5194/hess-27-159-2023, 2023
Short summary
Short summary
The SWAT model can simulate the transport of water-soluble chemicals through the landscape but neglects the transport through groundwater or agricultural tile drains. These transport pathways are, however, important to assess the amount of chemicals in streams. We added this capability to the model, which significantly improved the simulation. The representation of all transport pathways in the model enables watershed managers to develop robust strategies for reducing chemicals in streams.
Wencong Yang, Hanbo Yang, Changming Li, Taihua Wang, Ziwei Liu, Qingfang Hu, and Dawen Yang
Hydrol. Earth Syst. Sci., 26, 6427–6441, https://doi.org/10.5194/hess-26-6427-2022, https://doi.org/10.5194/hess-26-6427-2022, 2022
Short summary
Short summary
We produced a daily 0.1° dataset of precipitation, soil moisture, and snow water equivalent in 1981–2017 across China via reconstructions. The dataset used global background data and local on-site data as forcing input and satellite-based data as reconstruction benchmarks. This long-term high-resolution national hydrological dataset is valuable for national investigations of hydrological processes.
Felipe A. Saavedra, Andreas Musolff, Jana von Freyberg, Ralf Merz, Stefano Basso, and Larisa Tarasova
Hydrol. Earth Syst. Sci., 26, 6227–6245, https://doi.org/10.5194/hess-26-6227-2022, https://doi.org/10.5194/hess-26-6227-2022, 2022
Short summary
Short summary
Nitrate contamination of rivers from agricultural sources is a challenge for water quality management. During runoff events, different transport paths within the catchment might be activated, generating a variety of responses in nitrate concentration in stream water. Using nitrate samples from 184 German catchments and a runoff event classification, we show that hydrologic connectivity during runoff events is a key control of nitrate transport from catchments to streams in our study domain.
Marcos R. C. Cordeiro, Kang Liang, Henry F. Wilson, Jason Vanrobaeys, David A. Lobb, Xing Fang, and John W. Pomeroy
Hydrol. Earth Syst. Sci., 26, 5917–5931, https://doi.org/10.5194/hess-26-5917-2022, https://doi.org/10.5194/hess-26-5917-2022, 2022
Short summary
Short summary
This study addresses the issue of increasing interest in the hydrological impacts of converting cropland to perennial forage cover in the Canadian Prairies. By developing customized models using the Cold Regions Hydrological Modelling (CRHM) platform, this long-term (1992–2013) modelling study is expected to provide stakeholders with science-based information regarding the hydrological impacts of land use conversion from annual crop to perennial forage cover in the Canadian Prairies.
Yuhang Zhang, Aizhong Ye, Phu Nguyen, Bita Analui, Soroosh Sorooshian, Kuolin Hsu, and Yuxuan Wang
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2022-377, https://doi.org/10.5194/hess-2022-377, 2022
Revised manuscript accepted for HESS
Short summary
Short summary
We compared probabilistic long short-term memory (PLSTM) model and quantile regression forest model (QRF). The results show the QRF model is more efficient, taking only half the time of the PLSTM model to do all the experiments in terms of model efficiency, the QRF model and the PLSTM model are comparable in terms of probabilistic (multi-point) prediction, the QRF model performs better in small watersheds and the PLSTM model performs better in large watersheds.
Reyhaneh Hashemi, Pierre Brigode, Pierre-André Garambois, and Pierre Javelle
Hydrol. Earth Syst. Sci., 26, 5793–5816, https://doi.org/10.5194/hess-26-5793-2022, https://doi.org/10.5194/hess-26-5793-2022, 2022
Short summary
Short summary
Hydrologists have long dreamed of a tool that could adequately predict runoff in catchments. Data-driven long short-term memory (LSTM) models appear very promising to the hydrology community in this respect. Here, we have sought to benefit from traditional practices in hydrology to improve the effectiveness of LSTM models. We discovered that one LSTM parameter has a hydrologic interpretation and that there is a need to increase the data and to tune two parameters, thereby improving predictions.
Mu Xiao, Giuseppe Mascaro, Zhaocheng Wang, Kristen M. Whitney, and Enrique R. Vivoni
Hydrol. Earth Syst. Sci., 26, 5627–5646, https://doi.org/10.5194/hess-26-5627-2022, https://doi.org/10.5194/hess-26-5627-2022, 2022
Short summary
Short summary
As the major water resource in the southwestern United States, the Colorado River is experiencing decreases in naturalized streamflow and is predicted to face severe challenges under future climate scenarios. Here, we demonstrate the value of Earth observing satellites to improve and build confidence in the spatiotemporal simulations from regional hydrologic models for assessing the sensitivity of the Colorado River to climate change and supporting regional water managers.
Christopher Spence, Zhihua He, Kevin R. Shook, John W. Pomeroy, Colin J. Whitfield, and Jared D. Wolfe
Hydrol. Earth Syst. Sci., 26, 5555–5575, https://doi.org/10.5194/hess-26-5555-2022, https://doi.org/10.5194/hess-26-5555-2022, 2022
Short summary
Short summary
We learnt how streamflow from small creeks could be altered by wetland removal in the Canadian Prairies, where this practice is pervasive. Every creek basin in the region was placed into one of seven groups. We selected one of these groups and used its traits to simulate streamflow. The model worked well enough so that we could trust the results even if we removed the wetlands. Wetland removal did not change low flow amounts very much, but it doubled high flow and tripled average flow.
Rosanna A. Lane, Gemma Coxon, Jim Freer, Jan Seibert, and Thorsten Wagener
Hydrol. Earth Syst. Sci., 26, 5535–5554, https://doi.org/10.5194/hess-26-5535-2022, https://doi.org/10.5194/hess-26-5535-2022, 2022
Short summary
Short summary
This study modelled the impact of climate change on river high flows across Great Britain (GB). Generally, results indicated an increase in the magnitude and frequency of high flows along the west coast of GB by 2050–2075. In contrast, average flows decreased across GB. All flow projections contained large uncertainties; the climate projections were the largest source of uncertainty overall but hydrological modelling uncertainties were considerable in some regions.
Guangxuan Li, Xi Chen, Zhicai Zhang, Lichun Wang, and Chris Soulsby
Hydrol. Earth Syst. Sci., 26, 5515–5534, https://doi.org/10.5194/hess-26-5515-2022, https://doi.org/10.5194/hess-26-5515-2022, 2022
Short summary
Short summary
We developed a coupled flow–tracer model to understand the effects of passive storage on modeling hydrological function and isotope dynamics in a karst flow system. Models with passive storages show improvement in matching isotope dynamics performance, and the improved performance also strongly depends on the number and location of passive storages. Our results also suggested that the solute transport is primarily controlled by advection and hydrodynamic dispersion in the steep hillslope unit.
Grey S. Nearing, Daniel Klotz, Jonathan M. Frame, Martin Gauch, Oren Gilon, Frederik Kratzert, Alden Keefe Sampson, Guy Shalev, and Sella Nevo
Hydrol. Earth Syst. Sci., 26, 5493–5513, https://doi.org/10.5194/hess-26-5493-2022, https://doi.org/10.5194/hess-26-5493-2022, 2022
Short summary
Short summary
When designing flood forecasting models, it is necessary to use all available data to achieve the most accurate predictions possible. This manuscript explores two basic ways of ingesting near-real-time streamflow data into machine learning streamflow models. The point we want to make is that when working in the context of machine learning (instead of traditional hydrology models that are based on
bio-geophysics), it is not necessary to use complex statistical methods for injecting sparse data.
Xiongpeng Tang, Guobin Fu, Silong Zhang, Chao Gao, Guoqing Wang, Zhenxin Bao, Yanli Liu, Cuishan Liu, and Junliang Jin
Hydrol. Earth Syst. Sci., 26, 5315–5339, https://doi.org/10.5194/hess-26-5315-2022, https://doi.org/10.5194/hess-26-5315-2022, 2022
Short summary
Short summary
In this study, we proposed a new framework that considered the uncertainties of model simulations in quantifying the contribution rate of climate change and human activities to streamflow changes. Then, the Lancang River basin was selected for the case study. The results of quantitative analysis using the new framework showed that the reason for the decrease in the streamflow at Yunjinghong station was mainly human activities.
Bin Yi, Lu Chen, Hansong Zhang, Vijay P. Singh, Ping Jiang, Yizhuo Liu, Hexiang Guo, and Hongya Qiu
Hydrol. Earth Syst. Sci., 26, 5269–5289, https://doi.org/10.5194/hess-26-5269-2022, https://doi.org/10.5194/hess-26-5269-2022, 2022
Short summary
Short summary
An improved GIS-derived distributed unit hydrograph routing method considering time-varying soil moisture was proposed for flow routing. The method considered the changes of time-varying soil moisture and rainfall intensity. The response of underlying surface to the soil moisture content was considered an important factor in this study. The SUH, DUH, TDUH and proposed routing methods (TDUH-MC) were used for flood forecasts, and the simulated results were compared and discussed.
Audrey Douinot, Jean François Iffly, Cyrille Tailliez, Claude Meisch, and Laurent Pfister
Hydrol. Earth Syst. Sci., 26, 5185–5206, https://doi.org/10.5194/hess-26-5185-2022, https://doi.org/10.5194/hess-26-5185-2022, 2022
Short summary
Short summary
The objective of the paper is to highlight the seasonal and singular shift of the transfer time distributions of two catchments (≅10 km2).
Based on 2 years of rainfall and discharge observations, we compare variations in the properties of TTDs with the physiographic characteristics of catchment areas and the eco-hydrological cycle. The paper eventually aims to deduce several factors conducive to particularly rapid and concentrated water transfers, which leads to flash floods.
Alexander Y. Sun, Peishi Jiang, Zong-Liang Yang, Yangxinyu Xie, and Xingyuan Chen
Hydrol. Earth Syst. Sci., 26, 5163–5184, https://doi.org/10.5194/hess-26-5163-2022, https://doi.org/10.5194/hess-26-5163-2022, 2022
Short summary
Short summary
High-resolution river modeling is of great interest to local governments and stakeholders for flood-hazard mitigation. This work presents a physics-guided, machine learning (ML) framework for combining the strengths of high-resolution process-based river network models with a graph-based ML model capable of modeling spatiotemporal processes. Results show that the ML model can approximate the dynamics of the process model with high fidelity, and data fusion further improves the forecasting skill.
Marvin Höge, Andreas Scheidegger, Marco Baity-Jesi, Carlo Albert, and Fabrizio Fenicia
Hydrol. Earth Syst. Sci., 26, 5085–5102, https://doi.org/10.5194/hess-26-5085-2022, https://doi.org/10.5194/hess-26-5085-2022, 2022
Short summary
Short summary
Neural ODEs fuse physics-based models with deep learning: neural networks substitute terms in differential equations that represent the mechanistic structure of the system. The approach combines the flexibility of machine learning with physical constraints for inter- and extrapolation. We demonstrate that neural ODE models achieve state-of-the-art predictive performance while keeping full interpretability of model states and processes in hydrologic modelling over multiple catchments.
Jing Tian, Zhengke Pan, Shenglian Guo, Jiabo Yin, Yanlai Zhou, and Jun Wang
Hydrol. Earth Syst. Sci., 26, 4853–4874, https://doi.org/10.5194/hess-26-4853-2022, https://doi.org/10.5194/hess-26-4853-2022, 2022
Short summary
Short summary
Most of the literature has focused on the runoff response to climate change, while neglecting the impacts of the potential variation in the active catchment water storage capacity (ACWSC) that plays an essential role in the transfer of climate inputs to the catchment runoff. This study aims to systematically identify the response of the ACWSC to a long-term meteorological drought and asymptotic climate change.
Riccardo Rigon, Giuseppe Formetta, Marialaura Bancheri, Niccolò Tubini, Concetta D'Amato, Olaf David, and Christian Massari
Hydrol. Earth Syst. Sci., 26, 4773–4800, https://doi.org/10.5194/hess-26-4773-2022, https://doi.org/10.5194/hess-26-4773-2022, 2022
Short summary
Short summary
The
Digital Earth(DE) metaphor is very useful for both end users and hydrological modelers. We analyse different categories of models, with the view of making them part of a Digital eARth Twin Hydrology system (called DARTH). We also stress the idea that DARTHs are not models in and of themselves, rather they need to be built on an appropriate information technology infrastructure. It is remarked that DARTHs have to, by construction, support the open-science movement and its ideas.
Hapu Arachchige Prasantha Hapuarachchi, Mohammed Abdul Bari, Aynul Kabir, Mohammad Mahadi Hasan, Fitsum Markos Woldemeskel, Nilantha Gamage, Patrick Daniel Sunter, Xiaoyong Sophie Zhang, David Ewen Robertson, James Clement Bennett, and Paul Martinus Feikema
Hydrol. Earth Syst. Sci., 26, 4801–4821, https://doi.org/10.5194/hess-26-4801-2022, https://doi.org/10.5194/hess-26-4801-2022, 2022
Short summary
Short summary
Methodology for developing an operational 7-day ensemble streamflow forecasting service for Australia is presented. The methodology is tested for 100 catchments to learn the characteristics of different NWP rainfall forecasts, the effect of post-processing, and the optimal ensemble size and bootstrapping parameters. Forecasts are generated using NWP rainfall products post-processed by the CHyPP model, the GR4H hydrologic model, and the ERRIS streamflow post-processor inbuilt in the SWIFT package
Chenhao Chai, Lei Wang, Deliang Chen, Jing Zhou, Hu Liu, Jingtian Zhang, Yuanwei Wang, Tao Chen, and Ruishun Liu
Hydrol. Earth Syst. Sci., 26, 4657–4683, https://doi.org/10.5194/hess-26-4657-2022, https://doi.org/10.5194/hess-26-4657-2022, 2022
Short summary
Short summary
This work quantifies future snow changes and their impacts on hydrology in the upper Salween River (USR) under SSP126 and SSP585 using a cryosphere–hydrology model. Future warm–wet climate is not conducive to the development of snow. The rain–snow-dominated pattern of runoff will shift to a rain-dominated pattern after the 2040s under SSP585 but is unchanged under SSP126. The findings improve our understanding of cryosphere–hydrology processes and can assist water resource management in the USR.
Cited articles
Allen, R. G., Pereira, L. S., Raes, D., and Smith, M.: Crop Evapotranspiration – Guidelines for Computing Crop Water Requirements, FAO Irrigation and drainage paper 56, http://www.fao.org/docrep/x0490e/x0490e00.htm (last access: 16 February 2018), 1998.
Berezowski, T., Nossent, J., Chormański, J., and Batelaan, O.: Spatial sensitivity analysis of snow cover data in a distributed rainfall-runoff model, Hydrol. Earth Syst. Sci., 19, 1887–1904, https://doi.org/10.5194/hess-19-1887-2015, 2015.
Beven, K. and Freer, J.: Equifinality, data assimilation, and uncertainty estimation in mechanistic modelling of complex environmental systems using the GLUE methodology, J. Hydrol., 249, 11–29, https://doi.org/10.1016/S0022-1694(01)00421-8, 2001.
Campolongo, F., Cariboni, J., and Saltelli, A.: An effective screening design for sensitivity analysis of large models, Environ. Model. Softw., 22, 1509–1518, https://doi.org/10.1016/j.envsoft.2006.10.004, 2007.
Chen, J. M., Chen, X., Ju, W., and Geng, X.: Distributed hydrological model for mapping evapotranspiration using remote sensing inputs, J. Hydrol., 305, 15–39, https://doi.org/10.1016/j.jhydrol.2004.08.029, 2005.
Conradt, T., Wechsung, F., and Bronstert, A.: Three perceptions of the evapotranspiration landscape: comparing spatial patterns from a distributed hydrological model, remotely sensed surface temperatures, and sub-basin water balances, Hydrol. Earth Syst. Sci., 17, 2947–2966, https://doi.org/10.5194/hess-17-2947-2013, 2013.
Corbari, C., Ravazzani, G., Ceppi, A., and Mancini, M.: Multi-pixel Calibration of a Distributed Energy Water Balance Model Using Satellite Data of Land Surface Temperature and Eddy Covariance Data, Proced. Environ. Sci., 19, 285–292, https://doi.org/10.1016/j.proenv.2013.06.033, 2013.
Cornelissen, T., Diekkrüger, B., and Bogena, H.: Using High-Resolution Data to Test Parameter Sensitivity of the Distributed Hydrological Model HydroGeoSphere, Water, 8, 202, https://doi.org/10.3390/w8050202, 2016.
Cramér, H.: Mathematical Methods of Statistics, Princeton University Press, Princeton, 1946.
Crow, W. T., Wood, E. F., Pan, M., de Wit, M., Stankiewicz, J., Crow, W. T., Coe, M. T., and Birkett, C. M.: Multiobjective calibration of land surface model evapotranspiration predictions using streamflow observations and spaceborne surface radiometric temperature retrievals, J. Geophys. Res., 311, 1917–1921, https://doi.org/10.1029/2003WR002543, 2003.
Cuntz, M., Mai, J., Zink, M., Thober, S., Kumar, R., Schäfer, D., Schrön, M., Craven, J., Rakovec, O., Spieler, D., Prykhodko, V., Dalmasso, G., Musuuza, J., Langenberg, B., Attinger, S., and Samaniego, L.: Computationally inexpensive identification of noninformative model parameters by sequential screening, Water Resour. Res., 51, 6417–6441, https://doi.org/10.1002/2015WR016907, 2015.
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B., Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P., Köhler, M., Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J.-J., Park, B.-K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J.-N., and Vitart, F.: The ERA-Interim reanalysis: configuration and performance of the data assimilation system, Q. J. Roy. Meteorol. Soc., 137, 553–597, https://doi.org/10.1002/qj.828, 2011.
Demirel, M. C., Booij, M. J., and Hoekstra, A. Y.: Effect of different uncertainty sources on the skill of 10 day ensemble low flow forecasts for two hydrological models, Water Resour. Res., 49, 4035–4053, https://doi.org/10.1002/wrcr.20294, 2013.
Demirel, M. C., Koch, J., and Stisen, S.: SPAEF: SPAtial EFficiency, Researchgate, https://doi.org/10.13140/RG.2.2.18400.58884, 2017.
Duan, Q.-Y. Y., Sorooshian, S., and Gupta, V.: Effective and efficient global optimization for conceptual rainfall-runoff models, Water Resour. Res., 28, 1015–1031, https://doi.org/10.1029/91WR02985, 1992.
Githui, F., Thayalakumaran, T., and Selle, B.: Estimating irrigation inputs for distributed hydrological modelling: a case study from an irrigated catchment in southeast Australia, Hydrol. Process., 30, 1824–1835, https://doi.org/10.1002/hyp.10757, 2016.
Goodman, L. A. and Kruskal, W. H.: Measures of Association for Cross Classifications, J. Am. Stat. Assoc., 49, 732–764, https://doi.org/10.1080/01621459.1954.10501231, 1954.
Greve, M. H., Greve, M. B., Bøcher, P. K., Balstrøm, T., Breuning-Madsen, H., and Krogh, L.: Generating a Danish raster-based topsoil property map combining choropleth maps and point information, Geogr. Tidsskr. J. Geogr., 107, 1–12, https://doi.org/10.1080/00167223.2007.10649565, 2007.
Gupta, H. V, Kling, H., Yilmaz, K. K., and Martinez, G. F.: Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling, J. Hydrol., 377, 80–91, https://doi.org/10.1016/j.jhydrol.2009.08.003, 2009.
Guzinski, R., Anderson, M. C., Kustas, W. P., Nieto, H., and Sandholt, I.: Using a thermal-based two source energy balance model with time-differencing to estimate surface energy fluxes with day–night MODIS observations, Hydrol. Earth Syst. Sci., 17, 2809–2825, https://doi.org/10.5194/hess-17-2809-2013, 2013.
Hargrove, W. W., Hoffman, F. M., and Hessburg, P. F.: Mapcurves: a quantitative method for comparing categorical maps, J. Geogr. Syst., 8, 187–208, https://doi.org/10.1007/s10109-006-0025-x, 2006.
Hendricks Franssen, H. J., Brunner, P., Makobo, P., and Kinzelbach, W.: Equally likely inverse solutions to a groundwater flow problem including pattern information from remote sensing images, Water Resour. Res., 44, 224–240, https://doi.org/10.1029/2007WR006097, 2008.
Hunink, J. E., Eekhout, J. P. C., de Vente, J., Contreras, S., Droogers, P., and Baille, A.: Hydrological Modelling using Satellite-based Crop Coefficients: a Comparison of Methods at the Basin Scale, Remote Sens., 9, 174, https://doi.org/10.3390/rs9020174, 2017.
Immerzeel, W. W. and Droogers, P.: Calibration of a distributed hydrological model based on satellite evapotranspiration, J. Hydrol., 349, 411–424, https://doi.org/10.1016/j.jhydrol.2007.11.017, 2008.
Jackson, R. B., Canadell, J., Ehleringer, J. R., Mooney, H. A., Sala, O. E., and Schulze, E. D.: A global analysis of root distributions for terrestrial biomes, Oecologia, 108, 389–411, https://doi.org/10.1007/BF00333714, 1996.
Jensen, H. E., Jensen, S. E., Jensen, C. R., Mogensen, V. O. and Hansen, S.: Jordfysik og jordbrugsmeteorologi, Jordbrugsforlaget., 2001.
Jensen, K. H. and Illangasekare, T. H.: HOBE: A Hydrological Observatory, Vadose Zone J., 10, 1–7, https://doi.org/10.2136/vzj2011.0006, 2011.
Ji, L. and Gallo, K.: An agreement coefficient for image comparison, Photogramm. Eng. Remote Sens., 72, 823–833, 2006.
Kalma, J. D., McVicar, T. R., and McCabe, M. F.: Estimating Land Surface Evaporation: A Review of Methods Using Remotely Sensed Surface Temperature Data, Surv. Geophys., 29, 421–469, https://doi.org/10.1007/s10712-008-9037-z, 2008.
Kling, H. and Gupta, H.: On the development of regionalization relationships for lumped watershed models: The impact of ignoring sub-basin scale variability, J. Hydrol., 373, 337–351, https://doi.org/10.1016/j.jhydrol.2009.04.031, 2009.
Koch, J., Jensen, K. H., and Stisen, S.: Toward a true spatial model evaluation in distributed hydrological modeling: Kappa statistics, Fuzzy theory, and EOF-analysis benchmarked by the human perception and evaluated against a modeling case study, Water Resour. Res., 51, 1225–1246, https://doi.org/10.1002/2014WR016607, 2015.
Koch, J., Mendiguren, G., Mariethoz, G., and Stisen, S.: Spatial Sensitivity Analysis of Simulated Land Surface Patterns in a Catchment Model Using a Set of Innovative Spatial Performance Metrics, J. Hydrometeorol., 18, 1121–1142, https://doi.org/10.1175/JHM-D-16-0148.1, 2017.
Kumar, R., Samaniego, L., and Attinger, S.: Implications of distributed hydrologic model parameterization on water fluxes at multiple scales and locations, Water Resour. Res., 49, 360–379, https://doi.org/10.1029/2012WR012195, 2013.
Larsen, M. A. D., Refsgaard, J. C., Jensen, K. H., Butts, M. B., Stisen, S., and Mollerup, M.: Calibration of a distributed hydrology and land surface model using energy flux measurements, Agr. Forest Meteorol., 217, 74–88, https://doi.org/10.1016/j.agrformet.2015.11.012, 2016.
Li, H. T., Brunner, P., Kinzelbach, W., Li, W. P., and Dong, X. G.: Calibration of a groundwater model using pattern information from remote sensing data, J. Hydrol., 377, 120–130, https://doi.org/10.1016/j.jhydrol.2009.08.012, 2009.
Liu, C., Sun, G., McNulty, S. G., Noormets, A., and Fang, Y.: Environmental controls on seasonal ecosystem evapotranspiration ∕ potential evapotranspiration ratio as determined by the global eddy flux measurements, Hydrol. Earth Syst. Sci., 21, 311–322, https://doi.org/10.5194/hess-21-311-2017, 2017.
Loosvelt, L., Vernieuwe, H., Pauwels, V. R. N., De Baets, B., and Verhoest, N. E. C.: Local sensitivity analysis for compositional data with application to soil texture in hydrologic modelling, Hydrol. Earth Syst. Sci., 17, 461–478, https://doi.org/10.5194/hess-17-461-2013, 2013.
Madsen, H. B.: Distribution of spring barley roots in Danish soils, of different texture and under different climatic conditions, Plant Soil, 88, 31–43, https://doi.org/10.1007/BF02140664, 1985.
Madsen, H. B.: Computerized soil data used in agricultural water planning, Denmark, Soil Use Manage., 2, 134–139, https://doi.org/10.1111/j.1475-2743.1986.tb00697.x, 1986.
Madsen, H. B. and Platou, S. W.: Land use planning in Denmark: the use of soil physical data in irrigation planning, Hydrol. Res., 14, 267–276, 1983.
Melsen, L., Teuling, A., Torfs, P., Zappa, M., Mizukami, N., Clark, M., and Uijlenhoet, R.: Representation of spatial and temporal variability in large-domain hydrological models: case study for a mesoscale pre-Alpine basin, Hydrol. Earth Syst. Sci., 20, 2207–2226, https://doi.org/10.5194/hess-20-2207-2016, 2016.
Mendiguren, G., Koch, J., and Stisen, S.: Spatial pattern evaluation of a calibrated national hydrological model – a remote-sensing-based diagnostic approach, Hydrol. Earth Syst. Sci., 21, 5987–6005, https://doi.org/10.5194/hess-21-5987-2017, 2017.
Mizukami, N., Clark, M., Newman, A. J., Wood, A. W., Gutmann, E., Nijssen, B., Rakovec, O., and Samaniego, L.: Toward seamless large domain parameter estimation for hydrologic models, Water Resour. Res., 53, 8020–8040, https://doi.org/10.1002/2017WR020401, 2017.
Morris, M. D.: Factorial Sampling Plans for Preliminary Computational Experiments, Technometrics, 33, 161–174, https://doi.org/10.2307/1269043, 1991.
Norman, J. M., Kustas, W. P., and Humes, K. S.: Source approach for estimating soil and vegetation energy fluxes in observations of directional radiometric surface temperature, Agr. Forest Meteorol., 7, 263–293, https://doi.org/10.1016/0168-1923(95)02265-Y, 1995.
Priestley, C. H. B. and Taylor, R. J.: On the Assessment of Surface Heat Flux and Evaporation Using Large-Scale Parameters, Mon. Weather Rev., 100, 81–92, https://doi.org/10.1175/1520-0493(1972)100<0081:OTAOSH>2.3.CO;2, 1972.
Rakovec, O., Kumar, R., Attinger, S., and Samaniego, L.: Improving the realism of hydrologic model functioning through multivariate parameter estimation, Water Resour. Res., 52, 7779–7792, https://doi.org/10.1002/2016WR019430, 2016.
Rees, W. G.: Comparing the spatial content of thematic maps, Int. J. Remote Sens., 29, 3833–3844, https://doi.org/10.1080/01431160701852088, 2008.
Samaniego, L., Kumar, R., and Attinger, S.: Multiscale parameter regionalization of a grid-based hydrologic model at the mesoscale, Water Resour. Res., 46, W05523, https://doi.org/10.1029/2008WR007327, 2010.
Samaniego, L., Kumar, R., Mai, J., Zink, M., Thober, S., Cuntz, M., Rakovec, O., Schäfer, D., Schrön, M., Brenner, J., Demirel, M. C., Kaluza, M., Langenberg, B., Stisen, S., and Attinger, S.: Mesoscale Hydrologic Model, https://doi.org/10.5281/zenodo.1069203, 2017.
Schumann, G. J. P., Neal, J. C., Voisin, N., Andreadis, K. M., Pappenberger, F., Phanthuwongpakdee, N., Hall, A. C., and Bates, P. D.: A first large scale flood inundation forecasting model, Water Resour. Res., 49, 6248–6257, https://doi.org/10.1002/wrcr.20521, 2013.
Schuurmans, J. M., van Geer, F. C., and Bierkens, M. F. P.: Remotely sensed latent heat fluxes for model error diagnosis: a case study, Hydrol. Earth Syst. Sci., 15, 759–769, https://doi.org/10.5194/hess-15-759-2011, 2011.
Shin, M.-J., Guillaume, J. H. A., Croke, B. F. W., and Jakeman, A. J.: Addressing ten questions about conceptual rainfall–runoff models with global sensitivity analyses in R, J. Hydrol., 503, 135–152, https://doi.org/10.1016/j.jhydrol.2013.08.047, 2013.
Stisen, S., Jensen, K. H., Sandholt, I., and Grimes, D. I. F. F.: A remote sensing driven distributed hydrological model of the Senegal River basin, J. Hydrol., 354, 131–148, https://doi.org/10.1016/j.jhydrol.2008.03.006, 2008.
Stisen, S., Sonnenborg, T. O., Højberg, A. L., Troldborg, L., and Refsgaard, J. C.: Evaluation of Climate Input Biases and Water Balance Issues Using a Coupled Surface–Subsurface Model, Vadose Zone J., 10, 37–53, https://doi.org/10.2136/vzj2010.0001, 2011a.
Stisen, S., McCabe, M. F., Refsgaard, J. C., Lerer, S., and Butts, M. B.: Model parameter analysis using remotely sensed pattern information in a multi-constraint framework, J. Hydrol., 409, 337–349, https://doi.org/10.1016/j.jhydrol.2011.08.030, 2011b.
Stisen, S., Koch, J., Sonnenborg, T. O., Refsgaard, J. C., Bircher, S., Ringgaard, R., and Jensen, K. H.: Moving beyond runoff calibration – Multi-constraint optimization of a surface-subsurface-atmosphere model, Hydrol. Process., submitted, 2017.
Su, Z.: The Surface Energy Balance System (SEBS) for estimation of turbulent heat fluxes, Hydrol. Earth Syst. Sci., 6, 85–100, https://doi.org/10.5194/hess-6-85-2002, 2002.
Swain, M. J. and Ballard, D. H.: Color indexing, Int. J. Comput. Vis., 7, 11–32, https://doi.org/10.1007/BF00130487, 1991.
Vazquez, J. A., Anctil, F., Ramos, M. H., Perrin, C., and Velázquez, J. A.: Can a multi-model approach improve hydrological ensemble forecasting? A study on 29 French catchments using 16 hydrological model structures, Adv. Geosci., 29, 33–42, https://doi.org/10.5194/adgeo-29-33-2011, 2011.
Velázquez, J. A., Anctil, F., Perrin, C., and Vazquez, J. A.: Performance and reliability of multimodel hydrological ensemble simulations based on seventeen lumped models and a thousand catchments, Hydrol. Earth Syst. Sci., 14, 2303–2317, https://doi.org/10.5194/hess-14-2303-2010, 2010.
Wei, Z., Yoshimura, K., Wang, L., Miralles, D. G., Jasechko, S., and Lee, X.: Revisiting the contribution of transpiration to global terrestrial evapotranspiration, Geophys. Res. Lett., 44, 2792–2801, https://doi.org/10.1002/2016GL072235, 2017.
White, J., Stengel, V., Rendon, S., and Banta, J.: The importance of parameterization when simulating the hydrologic response of vegetative land-cover change, Hydrol. Earth Syst. Sci., 21, 3975–3989, https://doi.org/10.5194/hess-21-3975-2017, 2017.
Zhang, Y., Chiew, F. H. S., Zhang, L., and Li, H.: Use of Remotely Sensed Actual Evapotranspiration to Improve Rainfall–Runoff Modeling in Southeast Australia, J. Hydrometeorol., 10, 969–980, https://doi.org/10.1175/2009JHM1061.1, 2009.
Download
The requested paper has a corresponding corrigendum published. Please read the corrigendum first before downloading the article.
- Article
(3979 KB) - Full-text XML
Short summary
Satellite data offer great opportunities to improve spatial model predictions by means of spatially oriented model evaluations. In this study, satellite images are used to observe spatial patterns of evapotranspiration at the land surface. These spatial patterns are utilized in combination with streamflow observations in a model calibration framework including a novel spatial performance metric tailored to target the spatial pattern performance of a catchment-scale hydrological model.
Satellite data offer great opportunities to improve spatial model predictions by means of...