Articles | Volume 21, issue 11
https://doi.org/10.5194/hess-21-5531-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Special issue:
https://doi.org/10.5194/hess-21-5531-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Evaluating climate change impacts on streamflow variability based on a multisite multivariate GCM downscaling method in the Jing River of China
College of Natural Resources and Environment, Northwest A&F
University, Yangling, Shaanxi, 712100, China
Jiming Jin
CORRESPONDING AUTHOR
College of Water Resources and Architectural Engineering, Northwest
A&F University, Yangling, Shaanxi, 712100, China
Departments of Watershed Sciences, Utah State University, Logan, UT
84322, USA
Related authors
Tingting Ning, Zhi Li, Qi Feng, Zongxing Li, and Yanyan Qin
Hydrol. Earth Syst. Sci., 25, 3455–3469, https://doi.org/10.5194/hess-25-3455-2021, https://doi.org/10.5194/hess-25-3455-2021, 2021
Short summary
Short summary
Previous studies decomposed ET variance in precipitation, potential ET, and total water storage changes based on Budyko equations. However, the effects of snowmelt and vegetation changes have not been incorporated in snow-dependent basins. We thus extended this method in arid alpine basins of northwest China and found that ET variance is primarily controlled by rainfall, followed by coupled rainfall and vegetation. The out-of-phase seasonality between rainfall and snowmelt weaken ET variance.
Shouzhang Peng, Yongxia Ding, Wenzhao Liu, and Zhi Li
Earth Syst. Sci. Data, 11, 1931–1946, https://doi.org/10.5194/essd-11-1931-2019, https://doi.org/10.5194/essd-11-1931-2019, 2019
Short summary
Short summary
This study describes a 1 km monthly minimum, maximum, and mean temperatures and precipitation dataset for the mainland area of China during 1901–2017. It is the first dataset developed with such a high spatiotemporal resolution over such a long time period for China. The dataset is well evaluated by the observations using 496 national weather stations, and the evaluation indicated the dataset is sufficiently reliable for use in investigation of climate change across China.
Shouzhang Peng, Yongxia Ding, and Zhi Li
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2019-83, https://doi.org/10.5194/essd-2019-83, 2019
Preprint withdrawn
Short summary
Short summary
This study describes a 1-km monthly minimum, maximum, and mean temperatures and precipitation dataset for the main land area of China during 1901–2017. It is the first dataset developed with such a high spatiotemporal resolution over such a long time period for China. The dataset was evaluated by the observations during 1951–2016 using 745 national weather stations, and the evaluation indicated the dataset is sufficiently reliable for use in investigation of climate change across China.
Tingting Ning, Zhi Li, and Wenzhao Liu
Hydrol. Earth Syst. Sci., 21, 1515–1526, https://doi.org/10.5194/hess-21-1515-2017, https://doi.org/10.5194/hess-21-1515-2017, 2017
Short summary
Short summary
The relationship between controlling parameters of annual catchment water balance and climate seasonality (S) and vegetation coverage (M) was discussed under the Budyko framework and an empirical equation was further developed so that the contributions from M to actual evapotranspiration (ET) could be determined more accurately. The results showed that the effects of landscape condition changes to ET variation will be estimated with a large error if the impacts of S are ignored.
Jiming Jin, Lei Wang, Jie Yang, Bingcheng Si, and Guo-Yue Niu
Geosci. Model Dev., 15, 3405–3416, https://doi.org/10.5194/gmd-15-3405-2022, https://doi.org/10.5194/gmd-15-3405-2022, 2022
Short summary
Short summary
This study aimed to improve runoff simulations and explore deep soil hydrological processes for a highly varying soil depth and complex terrain watershed in the Loess Plateau, China. The actual soil depths and river channels were incorporated into the model to better simulate the runoff in this watershed. The soil evaporation scheme was modified to better describe the evaporation processes. Our results showed that the model significantly improved the runoff simulations.
Tingting Ning, Zhi Li, Qi Feng, Zongxing Li, and Yanyan Qin
Hydrol. Earth Syst. Sci., 25, 3455–3469, https://doi.org/10.5194/hess-25-3455-2021, https://doi.org/10.5194/hess-25-3455-2021, 2021
Short summary
Short summary
Previous studies decomposed ET variance in precipitation, potential ET, and total water storage changes based on Budyko equations. However, the effects of snowmelt and vegetation changes have not been incorporated in snow-dependent basins. We thus extended this method in arid alpine basins of northwest China and found that ET variance is primarily controlled by rainfall, followed by coupled rainfall and vegetation. The out-of-phase seasonality between rainfall and snowmelt weaken ET variance.
Shouzhang Peng, Yongxia Ding, Wenzhao Liu, and Zhi Li
Earth Syst. Sci. Data, 11, 1931–1946, https://doi.org/10.5194/essd-11-1931-2019, https://doi.org/10.5194/essd-11-1931-2019, 2019
Short summary
Short summary
This study describes a 1 km monthly minimum, maximum, and mean temperatures and precipitation dataset for the mainland area of China during 1901–2017. It is the first dataset developed with such a high spatiotemporal resolution over such a long time period for China. The dataset is well evaluated by the observations using 496 national weather stations, and the evaluation indicated the dataset is sufficiently reliable for use in investigation of climate change across China.
Qunhui Zhang, Jiming Jin, Xiaochun Wang, Phaedra Budy, Nick Barrett, and Sarah E. Null
Hydrol. Earth Syst. Sci., 23, 4969–4982, https://doi.org/10.5194/hess-23-4969-2019, https://doi.org/10.5194/hess-23-4969-2019, 2019
Short summary
Short summary
We improved lake mixing process simulations by applying a vertical mixing scheme, K profile parameterization (KPP), in the Community Land Model (CLM) version 4.5, developed by the National Center for Atmospheric Research. The current vertical mixing scheme in CLM requires an arbitrarily enlarged eddy diffusivity to enhance water mixing. The coupled CLM-KPP considers a boundary layer for eddy development. The improved lake model provides an important tool for lake hydrology and ecosystem studies.
Shouzhang Peng, Yongxia Ding, and Zhi Li
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2019-83, https://doi.org/10.5194/essd-2019-83, 2019
Preprint withdrawn
Short summary
Short summary
This study describes a 1-km monthly minimum, maximum, and mean temperatures and precipitation dataset for the main land area of China during 1901–2017. It is the first dataset developed with such a high spatiotemporal resolution over such a long time period for China. The dataset was evaluated by the observations during 1951–2016 using 745 national weather stations, and the evaluation indicated the dataset is sufficiently reliable for use in investigation of climate change across China.
Tingting Ning, Zhi Li, and Wenzhao Liu
Hydrol. Earth Syst. Sci., 21, 1515–1526, https://doi.org/10.5194/hess-21-1515-2017, https://doi.org/10.5194/hess-21-1515-2017, 2017
Short summary
Short summary
The relationship between controlling parameters of annual catchment water balance and climate seasonality (S) and vegetation coverage (M) was discussed under the Budyko framework and an empirical equation was further developed so that the contributions from M to actual evapotranspiration (ET) could be determined more accurately. The results showed that the effects of landscape condition changes to ET variation will be estimated with a large error if the impacts of S are ignored.
Related subject area
Subject: Catchment hydrology | Techniques and Approaches: Stochastic approaches
Monthly new water fractions and their relationships with climate and catchment properties across Alpine rivers
Technical note: Two-component electrical-conductivity-based hydrograph separation employing an exponential mixing model (EXPECT) provides reliable high-temporal-resolution young water fraction estimates in three small Swiss catchments
Flood frequency analysis using mean daily flows vs. instantaneous peak flows
On the regional-scale variability in flow duration curves in Peninsular India
Towards a conceptualization of the hydrological processes behind changes of young water fraction with elevation: a focus on mountainous alpine catchments
A mixed distribution approach for low-flow frequency analysis – Part 2: Comparative assessment of a mixed probability vs. copula-based dependence framework
A mixed distribution approach for low-flow frequency analysis – Part 1: Concept, performance, and effect of seasonality
Significant regime shifts in historical water yield in the Upper Brahmaputra River basin
A geostatistical spatially varying coefficient model for mean annual runoff that incorporates process-based simulations and short records
Low-flow estimation beyond the mean – expectile loss and extreme gradient boosting for spatiotemporal low-flow prediction in Austria
Impact of bias nonstationarity on the performance of uni- and multivariate bias-adjusting methods: a case study on data from Uccle, Belgium
A space–time Bayesian hierarchical modeling framework for projection of seasonal maximum streamflow
Parsimonious statistical learning models for low-flow estimation
Development of a Wilks feature importance method with improved variable rankings for supporting hydrological inference and modelling
Technical Note: Improved partial wavelet coherency for understanding scale-specific and localized bivariate relationships in geosciences
Effects of climate anomalies on warm-season low flows in Switzerland
Histogram via entropy reduction (HER): an information-theoretic alternative for geostatistics
Estimation of annual runoff by exploiting long-term spatial patterns and short records within a geostatistical framework
A methodology to estimate flow duration curves at partially ungauged basins
The role of flood wave superposition in the severity of large floods
Contribution of low-frequency climatic–oceanic oscillations to streamflow variability in small, coastal rivers of the Sierra Nevada de Santa Marta (Colombia)
Stochastic reconstruction of spatio-temporal rainfall patterns by inverse hydrologic modelling
An assessment of trends and potential future changes in groundwater-baseflow drought based on catchment response times
More frequent flooding? Changes in flood frequency in the Pearl River basin, China, since 1951 and over the past 1000 years
Topography significantly influencing low flows in snow-dominated watersheds
A discrete wavelet spectrum approach for identifying non-monotonic trends in hydroclimate data
Estimating unconsolidated sediment cover thickness by using the horizontal distance to a bedrock outcrop as secondary information
On the probability distribution of daily streamflow in the United States
The European 2015 drought from a hydrological perspective
Heterogeneity measures in hydrological frequency analysis: review and new developments
ENSO-conditioned weather resampling method for seasonal ensemble streamflow prediction
Ordinary kriging as a tool to estimate historical daily streamflow records
Trends in floods in West Africa: analysis based on 11 catchments in the region
Implementation and validation of a Wilks-type multi-site daily precipitation generator over a typical Alpine river catchment
Spatial controls on groundwater response dynamics in a snowmelt-dominated montane catchment
Is bias correction of regional climate model (RCM) simulations possible for non-stationary conditions?
Data compression to define information content of hydrological time series
Topological and canonical kriging for design flood prediction in ungauged catchments: an improvement over a traditional regional regression approach?
Regionalised spatiotemporal rainfall and temperature models for flood studies in the Basque Country, Spain
Exploring the physical controls of regional patterns of flow duration curves – Part 1: Insights from statistical analyses
Land cover and water yield: inference problems when comparing catchments with mixed land cover
An elusive search for regional flood frequency estimates in the River Nile basin
Interannual hydroclimatic variability and its influence on winter nutrient loadings over the Southeast United States
Variational assimilation of streamflow into operational distributed hydrologic models: effect of spatiotemporal scale of adjustment
Contrasting trends in floods for two sub-arctic catchments in northern Sweden – does glacier presence matter?
Long-range forecasting of intermittent streamflow
Applying sequential Monte Carlo methods into a distributed hydrologic model: lagged particle filtering approach with regularization
Low-frequency variability of European runoff
Comparison of catchment grouping methods for flow duration curve estimation at ungauged sites in France
Regional flow duration curves for ungauged sites in Sicily
Marius G. Floriancic, Michael P. Stockinger, James W. Kirchner, and Christine Stumpp
Hydrol. Earth Syst. Sci., 28, 3675–3694, https://doi.org/10.5194/hess-28-3675-2024, https://doi.org/10.5194/hess-28-3675-2024, 2024
Short summary
Short summary
The Alps are a key water resource for central Europe, providing water for drinking, agriculture, and hydropower production. To assess water availability in streams, we need to understand how much streamflow is derived from old water stored in the subsurface versus more recent precipitation. We use tracer data from 32 Alpine streams and statistical tools to assess how much recent precipitation can be found in Alpine rivers and how this amount is related to catchment properties and climate.
Alessio Gentile, Jana von Freyberg, Davide Gisolo, Davide Canone, and Stefano Ferraris
Hydrol. Earth Syst. Sci., 28, 1915–1934, https://doi.org/10.5194/hess-28-1915-2024, https://doi.org/10.5194/hess-28-1915-2024, 2024
Short summary
Short summary
Can we leverage high-resolution and low-cost EC measurements and biweekly δ18O data to estimate the young water fraction at higher temporal resolution? Here, we present the EXPECT method that combines two widespread techniques: EC-based hydrograph separation and sine-wave models of the seasonal isotope cycles. The method is not without its limitations, but its application in three small Swiss catchments is promising for future applications in catchments with different characteristics.
Anne Bartens, Bora Shehu, and Uwe Haberlandt
Hydrol. Earth Syst. Sci., 28, 1687–1709, https://doi.org/10.5194/hess-28-1687-2024, https://doi.org/10.5194/hess-28-1687-2024, 2024
Short summary
Short summary
River flow data are often provided as mean daily flows (MDF), in which a lot of information is lost about the actual maximum flow or instantaneous peak flows (IPF) within a day. We investigate the error of using MDF instead of IPF and identify means to predict IPF when only MDF data are available. We find that the average ratio of daily flood peaks and volumes is a good predictor, which is easily and universally applicable and requires a minimum amount of data.
Pankaj Dey, Jeenu Mathai, Murugesu Sivapalan, and Pradeep P. Mujumdar
Hydrol. Earth Syst. Sci., 28, 1493–1514, https://doi.org/10.5194/hess-28-1493-2024, https://doi.org/10.5194/hess-28-1493-2024, 2024
Short summary
Short summary
This study explores the regional streamflow variability in Peninsular India. This variability is governed by monsoons, mountainous systems, and geologic gradients. A linkage between these influencing factors and streamflow variability is established using a Wegenerian approach and flow duration curves.
Alessio Gentile, Davide Canone, Natalie Ceperley, Davide Gisolo, Maurizio Previati, Giulia Zuecco, Bettina Schaefli, and Stefano Ferraris
Hydrol. Earth Syst. Sci., 27, 2301–2323, https://doi.org/10.5194/hess-27-2301-2023, https://doi.org/10.5194/hess-27-2301-2023, 2023
Short summary
Short summary
What drives young water fraction, F*yw (i.e., the fraction of water in streamflow younger than 2–3 months), variations with elevation? Why is F*yw counterintuitively low in high-elevation catchments, in spite of steeper topography? In this paper, we present a perceptual model explaining how the longer low-flow duration at high elevations, driven by the persistence of winter snowpacks, increases the proportion of stored (old) water contributing to the stream, thus reducing F*yw.
Gregor Laaha
Hydrol. Earth Syst. Sci., 27, 2019–2034, https://doi.org/10.5194/hess-27-2019-2023, https://doi.org/10.5194/hess-27-2019-2023, 2023
Short summary
Short summary
In seasonal climates with a warm and a cold season, low flows are generated by different processes so that return periods used as a measure of event severity will be inaccurate. We propose a novel mixed copula estimator that is shown to outperform previous calculation methods. The new method is highly relevant for a wide range of European river flow regimes and should be used by default.
Gregor Laaha
Hydrol. Earth Syst. Sci., 27, 689–701, https://doi.org/10.5194/hess-27-689-2023, https://doi.org/10.5194/hess-27-689-2023, 2023
Short summary
Short summary
Knowing the severity of an extreme event is of particular importance to hydrology and water policies. In this paper we propose a mixed distribution approach for low flows. It provides one consistent approach to quantify the severity of summer, winter, and annual low flows based on their respective annualities (or return periods). We show that the new method is much more accurate than existing methods and should therefore be used by engineers and water agencies.
Hao Li, Baoying Shan, Liu Liu, Lei Wang, Akash Koppa, Feng Zhong, Dongfeng Li, Xuanxuan Wang, Wenfeng Liu, Xiuping Li, and Zongxue Xu
Hydrol. Earth Syst. Sci., 26, 6399–6412, https://doi.org/10.5194/hess-26-6399-2022, https://doi.org/10.5194/hess-26-6399-2022, 2022
Short summary
Short summary
This study examines changes in water yield by determining turning points in the direction of yield changes and highlights that regime shifts in historical water yield occurred in the Upper Brahmaputra River basin, both the climate and cryosphere affect the magnitude of water yield increases, climate determined the declining trends in water yield, and meltwater has the potential to alleviate the water shortage. A repository for all source files is made available.
Thea Roksvåg, Ingelin Steinsland, and Kolbjørn Engeland
Hydrol. Earth Syst. Sci., 26, 5391–5410, https://doi.org/10.5194/hess-26-5391-2022, https://doi.org/10.5194/hess-26-5391-2022, 2022
Short summary
Short summary
The goal of this work was to make a map of the mean annual runoff for Norway for a 30-year period. We first simulated runoff by using a process-based model that models the relationship between runoff, precipitation, temperature, and land use. Next, we corrected the map based on runoff observations from streams by using a statistical method. We were also able to use data from rivers that only had a few annual observations. We find that the statistical correction improves the runoff estimates.
Johannes Laimighofer, Michael Melcher, and Gregor Laaha
Hydrol. Earth Syst. Sci., 26, 4553–4574, https://doi.org/10.5194/hess-26-4553-2022, https://doi.org/10.5194/hess-26-4553-2022, 2022
Short summary
Short summary
Our study uses a statistical boosting model for estimating low flows on a monthly basis, which can be applied to estimate low flows at sites without measurements. We use an extensive dataset of 260 stream gauges in Austria for model development. As we are specifically interested in low-flow events, our method gives specific weight to such events. We found that our method can considerably improve the predictions of low-flow events and yields accurate estimates of the seasonal low-flow variation.
Jorn Van de Velde, Matthias Demuzere, Bernard De Baets, and Niko E. C. Verhoest
Hydrol. Earth Syst. Sci., 26, 2319–2344, https://doi.org/10.5194/hess-26-2319-2022, https://doi.org/10.5194/hess-26-2319-2022, 2022
Short summary
Short summary
An important step in projecting future climate is the bias adjustment of the climatological and hydrological variables. In this paper, we illustrate how bias adjustment can be impaired by bias nonstationarity. Two univariate and four multivariate methods are compared, and for both types bias nonstationarity can be linked with less robust adjustment.
Álvaro Ossandón, Manuela I. Brunner, Balaji Rajagopalan, and William Kleiber
Hydrol. Earth Syst. Sci., 26, 149–166, https://doi.org/10.5194/hess-26-149-2022, https://doi.org/10.5194/hess-26-149-2022, 2022
Short summary
Short summary
Timely projections of seasonal streamflow extremes on a river network can be useful for flood risk mitigation, but this is challenging, particularly under space–time nonstationarity. We develop a space–time Bayesian hierarchical model (BHM) using temporal climate covariates and copulas to project seasonal streamflow extremes and the attendant uncertainties. We demonstrate this on the Upper Colorado River basin to project spring flow extremes using the preceding winter’s climate teleconnections.
Johannes Laimighofer, Michael Melcher, and Gregor Laaha
Hydrol. Earth Syst. Sci., 26, 129–148, https://doi.org/10.5194/hess-26-129-2022, https://doi.org/10.5194/hess-26-129-2022, 2022
Short summary
Short summary
This study aims to predict long-term averages of low flow on a hydrologically diverse dataset in Austria. We compared seven statistical learning methods and included a backward variable selection approach. We found that separating the low-flow processes into winter and summer low flows leads to good performance for all the models. Variable selection results in more parsimonious and more interpretable models. Linear approaches for prediction and variable selection are sufficient for our dataset.
Kailong Li, Guohe Huang, and Brian Baetz
Hydrol. Earth Syst. Sci., 25, 4947–4966, https://doi.org/10.5194/hess-25-4947-2021, https://doi.org/10.5194/hess-25-4947-2021, 2021
Short summary
Short summary
We proposed a test statistic feature importance method to quantify the importance of predictor variables for random-forest-like models. The proposed method does not rely on any performance measures to evaluate variable rankings, which can thus result in unbiased variable rankings. The resulting variable rankings based on the proposed method could help random forest achieve its optimum predictive accuracy.
Wei Hu and Bing Si
Hydrol. Earth Syst. Sci., 25, 321–331, https://doi.org/10.5194/hess-25-321-2021, https://doi.org/10.5194/hess-25-321-2021, 2021
Short summary
Short summary
Partial wavelet coherency method is improved to explore the bivariate relationships at different scales and locations after excluding the effects of other variables. The method was tested with artificial datasets and applied to a measured dataset. Compared with others, this method has the advantages of capturing phase information, dealing with multiple excluding variables, and producing more accurate results. This method can be used in different areas with spatial or temporal datasets.
Marius G. Floriancic, Wouter R. Berghuijs, Tobias Jonas, James W. Kirchner, and Peter Molnar
Hydrol. Earth Syst. Sci., 24, 5423–5438, https://doi.org/10.5194/hess-24-5423-2020, https://doi.org/10.5194/hess-24-5423-2020, 2020
Short summary
Short summary
Low river flows affect societies and ecosystems. Here we study how precipitation and potential evapotranspiration shape low flows across a network of 380 Swiss catchments. Low flows in these rivers typically result from below-average precipitation and above-average potential evapotranspiration. Extreme low flows result from long periods of the combined effects of both drivers.
Stephanie Thiesen, Diego M. Vieira, Mirko Mälicke, Ralf Loritz, J. Florian Wellmann, and Uwe Ehret
Hydrol. Earth Syst. Sci., 24, 4523–4540, https://doi.org/10.5194/hess-24-4523-2020, https://doi.org/10.5194/hess-24-4523-2020, 2020
Short summary
Short summary
A spatial interpolator has been proposed for exploring the information content of the data in the light of geostatistics and information theory. It showed comparable results to traditional interpolators, with the advantage of presenting generalization properties. We discussed three different ways of combining distributions and their implications for the probabilistic results. By its construction, the method provides a suitable and flexible framework for uncertainty analysis and decision-making.
Thea Roksvåg, Ingelin Steinsland, and Kolbjørn Engeland
Hydrol. Earth Syst. Sci., 24, 4109–4133, https://doi.org/10.5194/hess-24-4109-2020, https://doi.org/10.5194/hess-24-4109-2020, 2020
Short summary
Short summary
Annual runoff is a measure of how much water flows through a river during a year and is an important quantity, e.g. when planning infrastructure. In this paper, we suggest a new statistical model for annual runoff estimation. The model exploits correlation between rivers and is able to detect whether the annual runoff in the target river follows repeated patterns over time relative to neighbouring rivers. In our work we show for what cases the latter represents a benefit over comparable methods.
Elena Ridolfi, Hemendra Kumar, and András Bárdossy
Hydrol. Earth Syst. Sci., 24, 2043–2060, https://doi.org/10.5194/hess-24-2043-2020, https://doi.org/10.5194/hess-24-2043-2020, 2020
Short summary
Short summary
The paper presents a new, simple and model-free methodology to estimate the streamflow at partially gauged basins, given the precipitation gauged at another basin. We show that the FDC is not a characteristic of the basin only, but of both the basin and the weather. Because of the dependence on the climate, discharge data at the target site are here retrieved using the Antecedent Precipitation Index (API) of the donor site as it represents in a streamflow-like way the precipitation of the basin.
Björn Guse, Bruno Merz, Luzie Wietzke, Sophie Ullrich, Alberto Viglione, and Sergiy Vorogushyn
Hydrol. Earth Syst. Sci., 24, 1633–1648, https://doi.org/10.5194/hess-24-1633-2020, https://doi.org/10.5194/hess-24-1633-2020, 2020
Short summary
Short summary
Floods are influenced by river network processes, among others. Flood characteristics of tributaries may affect flood severity downstream of confluences. The impact of flood wave superposition is investigated with regard to magnitude and temporal matching of flood peaks. Our study in Germany and Austria shows that flood wave superposition is not the major driver of flood severity. However, there is the potential for large floods at some confluences in cases of temporal matching of flood peaks.
Juan Camilo Restrepo, Aldemar Higgins, Jaime Escobar, Silvio Ospino, and Natalia Hoyos
Hydrol. Earth Syst. Sci., 23, 2379–2400, https://doi.org/10.5194/hess-23-2379-2019, https://doi.org/10.5194/hess-23-2379-2019, 2019
Short summary
Short summary
This study evaluated the influence of low-frequency oscillations that are linked to large-scale oceanographic–atmospheric processes, on streamflow variability in small mountain rivers of the Sierra Nevada de Santa Marta, Colombia, aiming to explore streamflow variability, estimate the net contribution to the energy of low-frequency oscillations to streamflow anomalies, and analyze the linkages between streamflow anomalies and large-scale, low-frequency oceanographic–atmospheric processes.
Jens Grundmann, Sebastian Hörning, and András Bárdossy
Hydrol. Earth Syst. Sci., 23, 225–237, https://doi.org/10.5194/hess-23-225-2019, https://doi.org/10.5194/hess-23-225-2019, 2019
Jost Hellwig and Kerstin Stahl
Hydrol. Earth Syst. Sci., 22, 6209–6224, https://doi.org/10.5194/hess-22-6209-2018, https://doi.org/10.5194/hess-22-6209-2018, 2018
Short summary
Short summary
Due to the lack of long-term observations, insights into changes of groundwater resources are obscured. In this paper we assess past and potential future changes in groundwater drought in headwater catchments using a baseflow approach. There are a few past trends which are highly dependent on the period of analysis. Catchments with short response times are found to have a higher sensitivity to projected seasonal precipitation shifts, urging for a local management based on response times.
Qiang Zhang, Xihui Gu, Vijay P. Singh, Peijun Shi, and Peng Sun
Hydrol. Earth Syst. Sci., 22, 2637–2653, https://doi.org/10.5194/hess-22-2637-2018, https://doi.org/10.5194/hess-22-2637-2018, 2018
Qiang Li, Xiaohua Wei, Xin Yang, Krysta Giles-Hansen, Mingfang Zhang, and Wenfei Liu
Hydrol. Earth Syst. Sci., 22, 1947–1956, https://doi.org/10.5194/hess-22-1947-2018, https://doi.org/10.5194/hess-22-1947-2018, 2018
Short summary
Short summary
Topography plays an important role in determining the spatial heterogeneity of ecological, geomorphological, and hydrological processes. Topography plays a more dominant role in low flows than high flows. Our analysis also identified five significant TIs: perimeter, slope length factor, surface area, openness, and terrain characterization index. These can be used to compare watersheds when low flow assessments are conducted, specifically in snow-dominated regions.
Yan-Fang Sang, Fubao Sun, Vijay P. Singh, Ping Xie, and Jian Sun
Hydrol. Earth Syst. Sci., 22, 757–766, https://doi.org/10.5194/hess-22-757-2018, https://doi.org/10.5194/hess-22-757-2018, 2018
Nils-Otto Kitterød
Hydrol. Earth Syst. Sci., 21, 4195–4211, https://doi.org/10.5194/hess-21-4195-2017, https://doi.org/10.5194/hess-21-4195-2017, 2017
Short summary
Short summary
The GRANADA open-access database (NGU, 2016a) was used to derive point recordings of thickness of sediment above the bedrock D(u). For each D(u) the horizontal distance to nearest outcrop L(u) was derived from geological maps. The purpose was to utilize L(u) as a secondary function for estimation of D(u). Two estimation methods were employed: ordinary kriging (OK) and co-kriging (CK). A cross-validation analysis was performed to evaluate the additional information in the secondary function L(u).
Annalise G. Blum, Stacey A. Archfield, and Richard M. Vogel
Hydrol. Earth Syst. Sci., 21, 3093–3103, https://doi.org/10.5194/hess-21-3093-2017, https://doi.org/10.5194/hess-21-3093-2017, 2017
Short summary
Short summary
Flow duration curves are ubiquitous in surface water hydrology for applications including water allocation and protection of ecosystem health. We identify three probability distributions that can provide a reasonable fit to daily streamflows across much of United States. These results help us understand of the behavior of daily streamflows and enhance our ability to predict streamflows at ungaged river locations.
Gregor Laaha, Tobias Gauster, Lena M. Tallaksen, Jean-Philippe Vidal, Kerstin Stahl, Christel Prudhomme, Benedikt Heudorfer, Radek Vlnas, Monica Ionita, Henny A. J. Van Lanen, Mary-Jeanne Adler, Laurie Caillouet, Claire Delus, Miriam Fendekova, Sebastien Gailliez, Jamie Hannaford, Daniel Kingston, Anne F. Van Loon, Luis Mediero, Marzena Osuch, Renata Romanowicz, Eric Sauquet, James H. Stagge, and Wai K. Wong
Hydrol. Earth Syst. Sci., 21, 3001–3024, https://doi.org/10.5194/hess-21-3001-2017, https://doi.org/10.5194/hess-21-3001-2017, 2017
Short summary
Short summary
In 2015 large parts of Europe were affected by a drought. In terms of low flow magnitude, a region around the Czech Republic was most affected, with return periods > 100 yr. In terms of deficit volumes, the drought was particularly severe around S. Germany where the event lasted notably long. Meteorological and hydrological events developed differently in space and time. For an assessment of drought impacts on water resources, hydrological data are required in addition to meteorological indices.
Ana I. Requena, Fateh Chebana, and Taha B. M. J. Ouarda
Hydrol. Earth Syst. Sci., 21, 1651–1668, https://doi.org/10.5194/hess-21-1651-2017, https://doi.org/10.5194/hess-21-1651-2017, 2017
Short summary
Short summary
The notion of a measure to quantify the degree of heterogeneity of a region from which information is required to estimate the magnitude of events at ungauged sites is introduced. These heterogeneity measures are needed to compare regions, evaluate the impact of particular sites, and rank the performance of delineating methods. A framework to define and assess their desirable properties is proposed. Several heterogeneity measures are presented and/or developed to be assessed, giving guidelines.
Joost V. L. Beckers, Albrecht H. Weerts, Erik Tijdeman, and Edwin Welles
Hydrol. Earth Syst. Sci., 20, 3277–3287, https://doi.org/10.5194/hess-20-3277-2016, https://doi.org/10.5194/hess-20-3277-2016, 2016
Short summary
Short summary
Oceanic–atmospheric climate modes, such as El Niño–Southern Oscillation (ENSO), are known to affect the streamflow regime in many rivers around the world. A new method is presented for ENSO conditioning of the ensemble streamflow prediction (ESP) method, which is often used for seasonal streamflow forecasting. The method was tested on three tributaries of the Columbia River, OR. Results show an improvement in forecast skill compared to the standard ESP.
William H. Farmer
Hydrol. Earth Syst. Sci., 20, 2721–2735, https://doi.org/10.5194/hess-20-2721-2016, https://doi.org/10.5194/hess-20-2721-2016, 2016
Short summary
Short summary
The potential of geostatistical tools, leveraging the spatial structure and dependency of correlated time series, for the prediction of daily streamflow time series at unmonitored locations is explored. Simple geostatistical tools improve on traditional estimates of daily streamflow. The temporal evolution of spatial structure, including seasonal fluctuations, is also explored. The proposed method is contrasted with more advanced geostatistical methods and shown to be comparable.
B. N. Nka, L. Oudin, H. Karambiri, J. E. Paturel, and P. Ribstein
Hydrol. Earth Syst. Sci., 19, 4707–4719, https://doi.org/10.5194/hess-19-4707-2015, https://doi.org/10.5194/hess-19-4707-2015, 2015
Short summary
Short summary
The region of West Africa is undergoing important climate and environmental changes affecting the magnitude and occurrence of floods. This study aims to analyze the evolution of flood hazard in the region and to find links between flood hazards pattern and rainfall or vegetation index patterns.
D. E. Keller, A. M. Fischer, C. Frei, M. A. Liniger, C. Appenzeller, and R. Knutti
Hydrol. Earth Syst. Sci., 19, 2163–2177, https://doi.org/10.5194/hess-19-2163-2015, https://doi.org/10.5194/hess-19-2163-2015, 2015
R. S. Smith, R. D. Moore, M. Weiler, and G. Jost
Hydrol. Earth Syst. Sci., 18, 1835–1856, https://doi.org/10.5194/hess-18-1835-2014, https://doi.org/10.5194/hess-18-1835-2014, 2014
C. Teutschbein and J. Seibert
Hydrol. Earth Syst. Sci., 17, 5061–5077, https://doi.org/10.5194/hess-17-5061-2013, https://doi.org/10.5194/hess-17-5061-2013, 2013
S. V. Weijs, N. van de Giesen, and M. B. Parlange
Hydrol. Earth Syst. Sci., 17, 3171–3187, https://doi.org/10.5194/hess-17-3171-2013, https://doi.org/10.5194/hess-17-3171-2013, 2013
S. A. Archfield, A. Pugliese, A. Castellarin, J. O. Skøien, and J. E. Kiang
Hydrol. Earth Syst. Sci., 17, 1575–1588, https://doi.org/10.5194/hess-17-1575-2013, https://doi.org/10.5194/hess-17-1575-2013, 2013
P. Cowpertwait, D. Ocio, G. Collazos, O. de Cos, and C. Stocker
Hydrol. Earth Syst. Sci., 17, 479–494, https://doi.org/10.5194/hess-17-479-2013, https://doi.org/10.5194/hess-17-479-2013, 2013
L. Cheng, M. Yaeger, A. Viglione, E. Coopersmith, S. Ye, and M. Sivapalan
Hydrol. Earth Syst. Sci., 16, 4435–4446, https://doi.org/10.5194/hess-16-4435-2012, https://doi.org/10.5194/hess-16-4435-2012, 2012
A. I. J. M. van Dijk, J. L. Peña-Arancibia, and L. A. (Sampurno) Bruijnzeel
Hydrol. Earth Syst. Sci., 16, 3461–3473, https://doi.org/10.5194/hess-16-3461-2012, https://doi.org/10.5194/hess-16-3461-2012, 2012
P. Nyeko-Ogiramoi, P. Willems, F. M. Mutua, and S. A. Moges
Hydrol. Earth Syst. Sci., 16, 3149–3163, https://doi.org/10.5194/hess-16-3149-2012, https://doi.org/10.5194/hess-16-3149-2012, 2012
J. Oh and A. Sankarasubramanian
Hydrol. Earth Syst. Sci., 16, 2285–2298, https://doi.org/10.5194/hess-16-2285-2012, https://doi.org/10.5194/hess-16-2285-2012, 2012
H. Lee, D.-J. Seo, Y. Liu, V. Koren, P. McKee, and R. Corby
Hydrol. Earth Syst. Sci., 16, 2233–2251, https://doi.org/10.5194/hess-16-2233-2012, https://doi.org/10.5194/hess-16-2233-2012, 2012
H. E. Dahlke, S. W. Lyon, J. R. Stedinger, G. Rosqvist, and P. Jansson
Hydrol. Earth Syst. Sci., 16, 2123–2141, https://doi.org/10.5194/hess-16-2123-2012, https://doi.org/10.5194/hess-16-2123-2012, 2012
F. F. van Ogtrop, R. W. Vervoort, G. Z. Heller, D. M. Stasinopoulos, and R. A. Rigby
Hydrol. Earth Syst. Sci., 15, 3343–3354, https://doi.org/10.5194/hess-15-3343-2011, https://doi.org/10.5194/hess-15-3343-2011, 2011
S. J. Noh, Y. Tachikawa, M. Shiiba, and S. Kim
Hydrol. Earth Syst. Sci., 15, 3237–3251, https://doi.org/10.5194/hess-15-3237-2011, https://doi.org/10.5194/hess-15-3237-2011, 2011
L. Gudmundsson, L. M. Tallaksen, K. Stahl, and A. K. Fleig
Hydrol. Earth Syst. Sci., 15, 2853–2869, https://doi.org/10.5194/hess-15-2853-2011, https://doi.org/10.5194/hess-15-2853-2011, 2011
E. Sauquet and C. Catalogne
Hydrol. Earth Syst. Sci., 15, 2421–2435, https://doi.org/10.5194/hess-15-2421-2011, https://doi.org/10.5194/hess-15-2421-2011, 2011
F. Viola, L. V. Noto, M. Cannarozzo, and G. La Loggia
Hydrol. Earth Syst. Sci., 15, 323–331, https://doi.org/10.5194/hess-15-323-2011, https://doi.org/10.5194/hess-15-323-2011, 2011
Cited articles
Abbaspour, K. C., Vejdani, M., and Haghighat, S.: SWAT-CUP calibration and uncertainty programs for SWAT, MODSIM 2007 International Congress on Modelling and Simulation, Melbourne, Austrilia, 1603–1609, 2007.
Allerup, P.: Rainfall generator with spatial and temporal characteristics, Atmos. Res., 42, 89–97, https://doi.org/10.1016/0169-8095(95)00055-0, 1996.
Andrés-Doménech, I., García-Bartual, R., Montanari, A., and Marco, J. B.: Climate and hydrological variability: the catchment filtering role, Hydrol. Earth Syst. Sci., 19, 379–387, https://doi.org/10.5194/hess-19-379-2015, 2015.
Arnell, N. W.: Uncertainty in the relationship between climate forcing and hydrological response in UK catchments, Hydrol. Earth Syst. Sci., 15, 897–912, https://doi.org/10.5194/hess-15-897-2011, 2011.
Arnell, N. W. and Gosling, S. N.: The impacts of climate change on river flood risk at the global scale, Climatic Change, 134, 387–401, https://doi.org/10.1007/s10584-014-1084-5, 2014.
Arnold, J. G., Srinivasan, R., Muttiah, R. S., and Williams, J. R.: Large area hydrologic modeling and assessment – Part 1: Model development, J. Am. Water Resour. As., 34, 73–89, https://doi.org/10.1111/j.1752-1688.1998.tb05961.x, 1998.
Asong, Z. E., Khaliq, M. N., and Wheater, H. S.: Projected changes in precipitation and temperature over the Canadian Prairie Provinces using the Generalized Linear Model statistical downscaling approach, J. Hydrol., 539, 429–446, https://doi.org/10.1016/j.jhydrol.2016.05.044, 2016.
Bárdossy, A. and Pegram, G.: Multiscale spatial recorrelation of RCM precipitation to produce unbiased climate change scenarios over large areas and small, Water Resour. Res., 48, W09502, https://doi.org/10.1029/2011WR011524, 2012.
Bawden, A. J., Linton, H. C., Burn, D. H., and Prowse, T. D.: A spatiotemporal analysis of hydrological trends and variability in the Athabasca River region, Canada, J. Hydrol., 509, 333–342, https://doi.org/10.1016/j.jhydrol.2013.11.051, 2014.
Bellone, E., Hughes, J. P., and Guttorp, P.: A hidden Markov model for downscaling synoptic atmospheric patterns to precipitation amounts, Clim. Res., 15, 1–12, https://doi.org/10.3354/cr015001, 2000.
Bürger, G. and Chen, Y.: Regression-based downscaling of spatial variability for hydrologic applications, J. Hydrol., 311, 299–317 2005.
Bürger, G., Schulla, J., and Werner, A. T.: Estimates of future flow, including extremes, of the Columbia River headwaters, Water Resour. Res., 47, W10520, https://doi.org/10.1029/2010WR009716, 2011.
Cannon, A. J.: Probabilistic multisite precipitation downscaling by an wxpanded Bernoulli–Gamma density network, J. Hydrometeorol., 9, 1284–1300, https://doi.org/10.1175/2008JHM960.1, 2008.
Charles, S. P., Bates, B. C., and Hughes, J. P.: A spatiotemporal model for downscaling precipitation occurrence and amounts, J. Geophys. Res.-Atmos., 104, 31657–31669, https://doi.org/10.1029/1999JD900119, 1999.
Chen, J., Brissette, F. P., Poulin, A., and Leconte, R.: Overall uncertainty study of the hydrological impacts of climate change for a Canadian watershed, Water Resour. Res., 47, W12509, https://doi.org/10.1029/2011WR010602, 2011.
Chen, J., Wu, X., Finlayson, B. L., Webber, M., Wei, T., Li, M., and Chen, Z.: Variability and trend in the hydrology of the Yangtze River, China: Annual precipitation and runoff, J. Hydrol., 513, 403–412, https://doi.org/10.1016/j.jhydrol.2014.03.044, 2014.
Chen, J., Brissette, F. P., and Zhang, X. J.: Hydrological Modeling Using a Multisite Stochastic Weather Generator, Journal of Hydrologic Engineering, 21, 04015060, https://doi.org/10.1061/(asce)he.1943-5584.0001288, 2016.
Chen, L. and Frauenfeld, O. W.: A comprehensive evaluation of precipitation simulations over China based on CMIP5 multimodel ensemble projections, J. Geophys. Res.-Atmos., 119, 2013JD021190, https://doi.org/10.1002/2013JD021190, 2014.
Clark, M., Gangopadhyay, S., Hay, L., Rajagopalan, B., and Wilby, R.: The Schaake Shuffle: A Method for Reconstructing Space–Time Variability in Forecasted Precipitation and Temperature Fields, J. Hydrometeorol., 5, 243–262, https://doi.org/10.1175/1525-7541(2004)005<0243:TSSAMF>2.0.CO;2, 2004.
Cooley, D. and Sain, S.: Spatial hierarchical modeling of precipitation extremes from a regional climate model, J. Agr. Biol. Envir. St., 15, 381–402, https://doi.org/10.1007/s13253-010-0023-9, 2010.
Dankers, R., Arnell, N. W., Clark, D. B., Falloon, P. D., Fekete, B. M., Gosling, S. N., Heinke, J., Kim, H., Masaki, Y., Satoh, Y., Stacke, T., Wada, Y., and Wisser, D.: First look at changes in flood hazard in the Inter-Sectoral Impact Model Intercomparison Project ensemble, P. Natl. Acad. Sci. USA, 111, 3257–3261, https://doi.org/10.1073/pnas.1302078110, 2014.
Data Sharing Infrastructure of Loess Plateau: Daily mean discharge in main gauge stations of the Yellow River catchment, available at: http://loess.geodata.cn/ (last access: 7 January 2014), 2004.
Feng, X., Fu, B., Piao, S., Wang, S., Ciais, P., Zeng, Z., Lü, Y., Zeng, Y., Li, Y., Jiang, X., and Wu, B.: Revegetation in China's Loess Plateau is approaching sustainable water resource limits, Nature Climate Change, 6, 1019–1022, https://doi.org/10.1038/nclimate3092, 2016.
Fu, G., Charles, S. P., and Kirshner, S.: Daily rainfall projections from general circulation models with a downscaling nonhomogeneous hidden Markov model (NHMM) for south-eastern Australia, Hydrol. Process., 27, 3663–3673, https://doi.org/10.1002/hyp.9483, 2013.
Gosling, S. N., Taylor, R. G., Arnell, N. W., and Todd, M. C.: A comparative analysis of projected impacts of climate change on river runoff from global and catchment-scale hydrological models, Hydrol. Earth Syst. Sci., 15, 279–294, https://doi.org/10.5194/hess-15-279-2011, 2011.
Guo, Y., Dong, W. J., Ren, F. M., Zhao, Z. C., and Huang, J. B.: Surface Air Temp erature Simulations over China with CMIP5 and CMIP3, Advances in Climate Change Research, 4, 145–152, https://doi.org/10.3724/SP.J.1248.2013.145, 2013.
Hargreaves, G. L., Hargreaves, G. H., and Riley, J. P.: Irrigation Water Requirements for Senegal River Basin, J. Irrig. Drain. E., 111, 265–275, https://doi.org/10.1061/(ASCE)0733-9437(1985)111:3(265), 1985.
Harpham, C. and Wilby, R. L.: Multi-site downscaling of heavy daily precipitation occurrence and amounts, J. Hydrol., 312, 235–255, https://doi.org/10.1016/j.jhydrol.2005.02.020, 2005.
Hirabayashi, Y., Mahendran, R., Koirala, S., Konoshima, L., Yamazaki, D., Watanabe, S., Kim, H., and Kanae, S.: Global flood risk under climate change, Nat Clim Change, 3, 816–821, https://doi.org/10.1038/Nclimate1911, 2013.
Iman, R. L. and Conover, W. J.: A distribution-free approach to inducing rank correlation among input variables, Commun. Stat.-Simul. C., 11, 311–334, 1982.
IPCC: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M., Cambridge, United Kingdom and New York, NY, USA, 1535 pp., 2013.
Katz, R. W. and Parlange, M. B.: Mixtures of stochastic processes: application to statistical downscaling, Clim. Res., 7, 185–193, 1996.
Khalili, M., Brissette, F., and Leconte, R.: Effectiveness of Multi-Site Weather Generator for Hydrological Modeling, J. Am. Water Resour. As., 47, 303–314, https://doi.org/10.1111/j.1752-1688.2010.00514.x, 2011.
Khalili, M., Van Nguyen, V. T., and Gachon, P.: A statistical approach to multi-site multivariate downscaling of daily extreme temperature series, Int. J. Climatol., 33, 15–32, https://doi.org/10.1002/joc.3402, 2013.
Kingston, D. G. and Taylor, R. G.: Sources of uncertainty in climate change impacts on river discharge and groundwater in a headwater catchment of the Upper Nile Basin, Uganda, Hydrol. Earth Syst. Sci., 14, 1297–1308, https://doi.org/10.5194/hess-14-1297-2010, 2010.
Kleiber, W., Katz, R. W., and Rajagopalan, B.: Daily spatiotemporal precipitation simulation using latent and transformed Gaussian processes, Water Resour. Res., 48, W01523, https://doi.org/10.1029/2011WR011105, 2012.
Kottegoda, N. T., Natale, L., and Raiteri, E.: A parsimonious approach to stochastic multisite modelling and disaggregation of daily rainfall, J. Hydrol., 274, 47–61, 2003.
Leng, G., Tang, Q., Huang, M., Hong, Y., and Ruby, L. L.: Projected changes in mean and interannual variability of surface water over continental China, Science China Earth Sciences, 58, 739–754, https://doi.org/10.1007/s11430-014-4987-0, 2014.
Leng, G., Tang, Q., Huang, S., Zhang, X., and Cao, J.: Assessments of joint hydrological extreme risks in a warming climate in China, Int. J. Climatol., 36, 1632–1642, https://doi.org/10.1002/joc.4447, 2016.
Li, J., Li, Z., and Lü, Z.: Analysis of spatiotemporal variations in land use on the Loess Plateau of China during 1986–2010, Environ. Earth Sci., 75, 1–12, https://doi.org/10.1007/s12665-016-5807-y, 2016.
Li, Z., Liu, W., Zhang, X., and Zheng, F.: Assessing and regulating the impacts of climate change on water resources in the Heihe watershed on the Loess Plateau of China, Science China Earth Sciences, 53, 710–720, https://doi.org/10.1007/s11430-009-0186-9, 2010.
Li, Z., Liu, W. Z., Zhang, X. C., and Zheng, F. L.: Assessing the site-specific impacts of climate change on hydrology, soil erosion and crop yields in the Loess Plateau of China, Climatic Change, 105, 223–242, https://doi.org/10.1007/s10584-010-9875-9, 2011.
Li, Z.: A new framework for multi-site weather generator: a two-stage model combining a parametric method with a distribution-free shuffle procedure, Clim. Dynam., 43, 657–669, https://doi.org/10.1007/s00382-013-1979-2, 2014.
Li, Z., Brissette, F., and Chen, J.: Assessing the applicability of six precipitation probability distribution models on the Loess Plateau of China, Int. J. Climatol., 34, 462–471, https://doi.org/10.1002/joc.3699, 2014.
Li, Z., Lü, Z., Li, J., and Shi, X.: Links between the spatial structure of weather generator and hydrological modeling, Theor. Appl. Climatol., 128, 103–111, https://doi.org/10.1007/s00704-015-1691-8, 2017.
Lu, Y. and Qin, X. S.: Multisite rainfall downscaling and disaggregation in a tropical urban area, J. Hydrol., 509, 55–65, https://doi.org/10.1016/j.jhydrol.2013.11.027, 2014.
Mehrotra, R. and Sharma, A.: Development and application of a multisite rainfall stochastic downscaling framework for climate change impact assessment, Water Resour. Res., 46, W07526, https://doi.org/10.1029/2009WR008423, 2010.
Meza, F. J., Wilks, D. S., Gurovich, L., and Bambach, N.: Impacts of Climate Change on Irrigated Agriculture in the Maipo Basin, Chile: Reliability of Water Rights and Changes in the Demand for Irrigation, J. Water Res. Plan. Man., 138, 421–430, https://doi.org/10.1061/(ASCE)WR.1943-5452.0000216, 2012.
Pegram, G. and Bárdossy, A.: Downscaling Regional Circulation Model rainfall to gauge sites using recorrelation and circulation pattern dependent quantile–quantile transforms for quantifying climate change, J. Hydrol., 504, 142–159, https://doi.org/10.1016/j.jhydrol.2013.09.014, 2013.
Prudhomme, C., Giuntoli, I., Robinson, E. L., Clark, D. B., Arnell, N. W., Dankers, R., Fekete, B. M., Franssen, W., Gerten, D., Gosling, S. N., Hagemann, S., Hannah, D. M., Kim, H., Masaki, Y., Satoh, Y., Stacke, T., Wada, Y., and Wisser, D.: Hydrological droughts in the 21st century, hotspots and uncertainties from a global multimodel ensemble experiment, P. Natl. Acad. Sci. USA, 111, 3262–3267, https://doi.org/10.1073/pnas.1222473110, 2014.
Qian, B. D., Corte-Real, J., and Xu, H.: Multisite stochastic weather models for impact studies, Int. J. Climatol., 22, 1377–1397, https://doi.org/10.1002/joc.808, 2002.
Qiao, L., Pan, Z., Herrmann, R. B., and Hong, Y.: Hydrological Variability and Uncertainty of Lower Missouri River Basin Under Changing Climate, J. Am. Water Resour. As., 50, 246–260, https://doi.org/10.1111/jawr.12126, 2014.
Rebonato, R. and Jäckel, P.: The most general methodology to create valid correlation matrix for risk management and option pricing purposes, J. Risk, 2, 17–28, 2000.
Scheuerer, M., Hamill, T. M., Whitin, B., He, M., and Henkel, A.: A method for preferential selection of dates in the Schaake shuffle approach to constructing spatiotemporal forecast fields of temperature and precipitation, Water Resour. Res., 53, 3029–3046, https://doi.org/10.1002/2016wr020133, 2017.
Schewe, J., Heinke, J., Gerten, D., Haddeland, I., Arnell, N. W., Clark, D. B., Dankers, R., Eisner, S., Fekete, B. M., Colon-Gonzalez, F. J., Gosling, S. N., Kim, H., Liu, X., Masaki, Y., Portmann, F. T., Satoh, Y., Stacke, T., Tang, Q., Wada, Y., Wisser, D., Albrecht, T., Frieler, K., Piontek, F., Warszawski, L., and Kabat, P.: Multimodel assessment of water scarcity under climate change, P. Natl. Acad. Sci. USA, 111, 3245–3250, https://doi.org/10.1073/pnas.1222460110, 2014.
Semenov, M. A. and Barrow, E. M.: Use of a stochastic weather generator in the development of climate change scenarios, Climatic Change, 35, 397–414, https://doi.org/10.1023/a:1005342632279, 1997.
Srivastav, R. and Simonovic, S.: Multi-site, multivariate weather generator using maximum entropy bootstrap, Clim. Dynam., 44, 3431–3448, https://doi.org/10.1007/s00382-014-2157-x, 2015.
Tarpanelli, A., Franchini, M., Brocca, L., Camici, S., Melone, F., and Moramarco, T.: A simple approach for stochastic generation of spatial rainfall patterns, J. Hydrol., 472–473, 63–76, https://doi.org/10.1016/j.jhydrol.2012.09.010, 2012.
Thyer, M. and Kuczera, G.: A hidden Markov model for modelling long-term persistence in multi-site rainfall time series. 2. Real data analysis, J. Hydrol., 275, 27–48, https://doi.org/10.1016/S0022-1694(02)00411-0, 2003.
USDA-SCS: National engineering handbook, Section 4: Hydrology, Chapters 4–10, Washington, DC, 1972.
Watson, B. M., Srikanthan, R., Selvalingam, S., and Ghafouri, M.: Hydrologic response of SWAT to single site and multi-site daily rainfall generation models, Proceedings of MODSIM05 International Congress on Modelling and Simulation, Melbourne, Australia, 2981–2987, 2005.
Wheater, H. S., Chandler, R. E., Onof, C. J., Isham, V. S., Bellone, E., Yang, C., Lekkas, D., Lourmas, G., and Segond, M.-L.: Spatial-temporal rainfall modelling for flood risk estimation, Stoch. Env. Res. Risk A., 19, 403–416, https://doi.org/10.1007/s00477-005-0011-8, 2005.
Wilby, R. L., Dawson, C. W., and Barrow, E. M.: SDSM – a decision support tool for the assessment of regional climate change impacts, Environ. Modell. Softw., 17, 145–157, https://doi.org/10.1016/S1364-8152(01)00060-3, 2002.
Wilby, R. L. and Harris, I.: A framework for assessing uncertainties in climate change impacts: Low-flow scenarios for the River Thames, UK, Water Resour. Res., 42, W02419, https://doi.org/10.1029/2005wr004065, 2006.
Wilks, D. S.: Multisite generalization of a daily stochastic precipitation generation model, J. Hydrol., 210, 178–191, https://doi.org/10.1016/S0022-1694(98)00186-3, 1998.
Wilks, D. S.: Multisite downscaling of daily precipitation with a stochastic weather generator, Clim. Res., 11, 125–136, https://doi.org/10.3354/cr011125, 1999a.
Wilks, D. S.: Simultaneous stochastic simulation of daily precipitation, temperature and solar radiation at multiple sites in complex terrain, Agr. Forest Meteorol., 96, 85–101, https://doi.org/10.1016/S0168-1923(99)00037-4, 1999b.
World Climate Research Programme's Working Group on Coupled Modelling: CMIP data, https://pcmdi.llnl.gov/?cmip5/ (last access: 2 May 2014), 1989.
Yang, C., Chandler, R. E., Isham, V. S., and Wheater, H. S.: Spatial-temporal rainfall simulation using generalized linear models, Water Resour. Res., 41, W11415, https://doi.org/10.1029/2004WR003739, 2005.
Zhang, X. C. and Liu, W. Z.: Simulating potential response of hydrology, soil erosion, and crop productivity to climate change in Changwu tableland region on the Loess Plateau of China, Agr. Forest Meteorol., 131, 127–142, https://doi.org/10.1016/j.agrformet.2005.05.005, 2005.
Short summary
We developed an efficient multisite and multivariate GCM downscaling method and generated climate change scenarios for SWAT to evaluate the streamflow variability within a watershed in China. The application of the ensemble techniques enables us to better quantify the model uncertainties. The peak values of precipitation and streamflow have a tendency to shift from the summer to spring season over the next 30 years. The number of extreme flooding and drought events will increase.
We developed an efficient multisite and multivariate GCM downscaling method and generated...