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Abstract. Projected hydrological variability is important
for future resource and hazard management of water sup-
plies because changes in hydrological variability can cause
more disasters than changes in the mean state. However, cli-
mate change scenarios downscaled from Earth System Mod-
els (ESMs) at single sites cannot meet the requirements of
distributed hydrologic models for simulating hydrological
variability. This study developed multisite multivariate cli-
mate change scenarios via three steps: (i) spatial downscal-
ing of ESMs using a transfer function method, (ii) tempo-
ral downscaling of ESMs using a single-site weather gener-
ator, and (iii) reconstruction of spatiotemporal correlations
using a distribution-free shuffle procedure. Multisite precipi-
tation and temperature change scenarios for 2011–2040 were
generated from five ESMs under four representative concen-
tration pathways to project changes in streamflow variabil-
ity using the Soil and Water Assessment Tool (SWAT) for
the Jing River, China. The correlation reconstruction method
performed realistically for intersite and intervariable corre-
lation reproduction and hydrological modeling. The SWAT
model was found to be well calibrated with monthly stream-
flow with a model efficiency coefficient of 0.78. It was pro-
jected that the annual mean precipitation would not change,
while the mean maximum and minimum temperatures would
increase significantly by 1.6± 0.3 and 1.3± 0.2 ◦C; the vari-
ance ratios of 2011–2040 to 1961–2005 were 1.15± 0.13
for precipitation, 1.15± 0.14 for mean maximum temper-
ature, and 1.04± 0.10 for mean minimum temperature. A

warmer climate was predicted for the flood season, while
the dry season was projected to become wetter and warmer;
the findings indicated that the intra-annual and interannual
variations in the future climate would be greater than in the
current climate. The total annual streamflow was found to
change insignificantly but its variance ratios of 2011–2040
to 1961–2005 increased by 1.25± 0.55. Streamflow variabil-
ity was predicted to become greater over most months on
the seasonal scale because of the increased monthly maxi-
mum streamflow and decreased monthly minimum stream-
flow. The increase in streamflow variability was attributed
mainly to larger positive contributions from increased pre-
cipitation variances rather than negative contributions from
increased mean temperatures.

1 Introduction

In comparison with changes in the mean state, hydrologi-
cal variability can cause more disasters such as flooding or
drought and seriously threaten natural and social systems.
Under the background of global warming, the expectation
is that hydrological extremes would occur more frequently
with greater severity because of changes in climate extremes.
However, this has not been proven conclusively because of
limited surface observations (IPCC, 2013), complex water-
shed properties (Andrés-Doménech et al., 2015), and lim-

Published by Copernicus Publications on behalf of the European Geosciences Union.



5532 Z. Li and J. Jin: Evaluating climate change impacts on streamflow variability

itations both in hydrological modeling and in the develop-
ment of climate change scenarios (Wilby and Harris, 2006).
Therefore, the extent to which hydrological variability is in-
fluenced by climate variability should be investigated thor-
oughly.

According to global-scale projections, hydrological vari-
ability will not change uniformly across the globe. For ex-
ample, it is predicted that 30-year floods will occur more fre-
quently over 50 % of the globe (Dankers et al., 2014) and that
increased hydrological droughts will occur over 40 % of the
analyzed land area (Prudhomme et al., 2014). In addition to
the effects of catchment properties, the spatial variations of
hydrological variability changes are due to those of climate-
related changes. For example, drought increase is generally
located where precipitation decreases; however, drought can
still increase in some areas with increased precipitation if
stronger evaporation is driven by temperature increase (Prud-
homme et al., 2014). Thus, the mechanisms by which climate
variability influences hydrological variability should be ana-
lyzed.

The greatest uncertainties in impact assessments of cli-
mate change on hydrology originate from climate change
scenario development, including general circulation mod-
els (GCMs), emission scenarios, and downscaling methods
(Wilby and Harris, 2006; Kingston and Taylor, 2010; Chen et
al., 2011). These uncertainties, to some extent, can be inter-
preted by introducing multiple climate models, emission sce-
narios, and downscaling methods. However, although the re-
construction of the spatial structure of climate has been con-
sidered widely in downscaling techniques, it has been incor-
porated rarely in hydrological modeling. When hydrological
models are applied to large-scale catchments with multisite
climate without consideration of the spatial structure, high
flow in one subbasin could be offset by low flow in a neigh-
boring subbasin (Wilks, 1998; Thyer and Kuczera, 2003;
Clark et al., 2004; Wheater et al., 2005). Therefore, failure
to feed hydrological models with appropriate spatiotempo-
rally correlated climate could reduce hydrological variability
and potentially misrepresent climate risks.

Numerous multisite downscaling methods have been de-
veloped, e.g., dynamic methods based on regional climate
models (Cooley and Sain, 2010; Bárdossy and Pegram, 2012;
Pegram and Bárdossy, 2013), empirical scaling methods
(Allerup, 1996; Bürger and Chen, 2005), generalized lin-
ear models (Wheater et al., 2005; Yang et al., 2005; Lu and
Qin, 2014; Asong et al., 2016), artificial neural networks
(Harpham and Wilby, 2005; Cannon, 2008), nonhomoge-
neous hidden Markov models (Charles et al., 1999; Bellone
et al., 2000; Fu et al., 2013), and weather generators (Wilks,
1999a; Qian et al., 2002; Mehrotra and Sharma, 2010; Khalili
et al., 2013; Srivastav and Simonovic, 2015). Thus far, the ap-
plication to hydrological modeling of most of these methods
has been limited, except for the stochastic weather generator.
For example, parametric weather generators have been used
both to investigate the response of hydrological variability to

the spatial structure of climate (Watson et al., 2005; Khalili
et al., 2011; Chen et al., 2016; Li et al., 2017) and to gener-
ate climate change scenarios to assess the related changes in
irrigated agricultural regions in Chile (Meza et al., 2012).

Parametric weather generators, including the Richardson-
type model and the circulation-based model (Katz and Par-
lange, 1996), are used widely for hydrological modeling be-
cause of their simple implementation. The Richardson-type
model directly perturbs the daily weather generator parame-
ters based on changes in the corresponding monthly statistics
(Wilks, 1999a), and the circulation-based model specifies the
daily variation of parameters using regressions between local
predictands and large-scale predictors (Wilby et al., 2002).
After parametric adjustment, the two models are driven with
correlated random numbers to capture the spatial structure
exhibited in the daily weather data. With its direct parametric
adjustments, the Richardson-type model in particular could
be used more fruitfully for either impact assessments or sen-
sitivity analyses. Specifically, it could be used either within
a “top–down” framework of an impact study by downscal-
ing GCM outputs to assess the potential impacts, or with
“bottom–up” or stress-testing adaptation options to explore
the sensitivity of hydrology to changed climate conditions
by direct adjustments of daily weather generator parameters.

For Richardson-type weather generators, the generation of
correlated random numbers is computationally intensive. In-
stead, an improvement of the Richardson-type model, which
involves replacing the preprocessing steps of random number
generation with a postprocessing procedure for recorrelating
the generated data, has been elaborated in recent years be-
cause of its high efficiency and good performance. Currently,
the algorithm improvement is only performed for multisite
simulation of precipitation without consideration of multi-
variate correlation (Tarpanelli et al., 2012; Li, 2014). Further
extension of this method to multisite multivariate downscal-
ing would promote the application of weather generators for
impact assessments of climate change.

Considering the importance of the evaluation of potential
changes in hydrological variability, and the difficulty in ap-
plying the Richardson-type weather generator to multisite
multivariate downscaling, the objective of this study was to
extend an efficient multisite precipitation generator, i.e., a
two-stage weather generator (TSWG; Li, 2014), to a mul-
tisite multivariate GCM downscaling method. The impacts
of climate change on streamflow variability in a river basin
on China’s Loess Plateau were assessed by combining the
generated climate change scenarios with a distributed hydro-
logical model. Thus, this study developed a framework for
maximizing the application of a parametric weather gener-
ator to multisite multivariate simulations, which was shown
to be capable of producing information useful for water re-
source management.
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2 Data and methodology

2.1 Data description

To project the impact of climate change on hydrology, two
datasets are essential: one for climate change scenario de-
velopment and the other for hydrological simulation. For
climate change scenario development, the climate forcing
data used here included historical daily precipitation (P ) and
maximum and minimum temperatures (Tmax and Tmin) from
18 meteorological stations for the period 1961–2005, and
simulated and projected monthly P , Tmax, and Tmin for the
periods 1961–2005 and 2011–2040, respectively, from five
Earth System Models (ESMs). The period 2011–2040 was
chosen for the impact study for two reasons: (i) the results
from the near-term horizon can be used directly for adap-
tion, and (ii) the uncertainties are minimized, because they
increase over time as a reflection of the inherent uncertain-
ties of the ESMs and emission scenarios (IPCC, 2013).

Five ESMs (CanESM2, CSIRO-Mk3.6.0, GFDL-CM3,
HadGEM2-ES, and MPI-ESM-LR) were run under a histor-
ical emission scenario and four representative concentration
pathways (RCPs 2.6, 4.5, 6.0, and 8.5) based on the Fifth
Assessment Report of the Intergovernmental Panel on Cli-
mate Change. The selection of the five ESMs was based on
recommendations following an evaluation of climate model
skill (Guo et al., 2013; Chen and Frauenfeld, 2014), and these
ESMs are considered to represent the latest accomplishments
in climate modeling science and technology. The selected
ESMs can provide data for almost all emission scenarios,
except CanESM2 and MPI-ESM-LR that have no data for
RCP6.0 (Table 1). The four RCPs are named for the radia-
tive forcing values for the year 2100 (i.e., 2.6, 4.5, 6.0, and
8.5 W m−2, respectively). These RCPs cover most possible
future greenhouse emission scenarios, and the ESMs associ-
ated with these RCPs have projected significant temperature
rises (IPCC, 2013).

The dataset for the hydrological simulation was from the
Jing River catchment on China’s Loess Plateau (Fig. 1).
As the SWAT (Soil and Water Assessment Tool; Arnold et
al., 1998) was used to simulate the hydrological cycle, data
and/or maps related to climate, soil, vegetation, and hydrol-
ogy were essential. These datasets were collected from the
Data Sharing Infrastructure of the Loess Plateau, and they
comprised daily weather data from 18 stations, maps of soil
types and properties, a land use map for 1986, and monthly
streamflow at the catchment outlet (the Zhangjiashan sta-
tion).

The Jing River catchment was selected as the study area
because it is a typical catchment with high intra- and in-
terannual variability of climate and runoff. This variability
has been threatening the management of water resources and
soil erosion. The catchment has an area of 45 421 km2 and
it is located within a transition zone between subhumid and
semiarid climates. Although the area-averaged annual pre-

Figure 1. Location of the Jing River catchment with superimposed
digital elevation model (DEM).

cipitation was only 542.1 mm, 55 % of the precipitation fell
during the flood season between July and September (1961–
2005). Several extreme rainfall events during 1961–2000
generated severe soil erosion with an estimated soil loss of
5015 t km−2 year−1. In addition, because of its dry climate
and a runoff ratio of 7 %, the catchment is often subject to se-
vere water shortages. Obviously, the water-related problems
within the Jing River catchment are correlated strongly with
climatic and hydrological variability. Therefore, the potential
impacts of climate change on the hydrological variability of
this catchment should be evaluated further.

2.2 Multisite and multivariate downscaling

The multisite multivariate ESM downscaling was performed
via three steps. In the first step, the ESM outputs were down-
scaled spatially from a grid scale to a station scale. The
second step disaggregated the monthly data further to daily
weather series, and the third step reconstructed the multisite
and the multivariate correlations. A schematic of the method-
ology is presented in Fig. 2, and a brief introduction of the
methods is given below.

The first and second steps performed spatial and tempo-
ral ESM downscaling for single sites. A popular technique
for accomplishing this is to use the transfer function method
for the spatial downscaling, and then to employ a weather
generator for the temporal downscaling. Here, we used the
parametric quantile mapping method and a Richardson-type
weather generator, respectively, for these two steps (Zhang
and Liu, 2005; Li et al., 2011). For the first step, linear and
nonlinear transfer functions were fitted to the rank-ordered
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Table 1. Data used for future climate change scenario construction (his; historical).

ESM Institute Resolution Emission scenarios

CanESM2 Canadian Centre for Climate Modelling and Analy-
sis (Canada)

2.8◦× 2.8◦ his, RCP2.6, RCP4.5, RCP8.5

CSIRO-Mk3.6.0 Commonwealth Scientific and Industrial Research Or-
ganization in collaboration with Queensland Climate
Change Centre of Excellence (Australia)

1.875◦× 1.875◦ his, RCP2.6, RCP4.5, RCP6.0, RCP8.5

GFDL-CM3 Geophysical Fluid Dynamics Laboratory (USA) 2.5◦× 2.0◦ his, RCP2.6, RCP4.5, RCP6.0, RCP8.5
HadGEM2-ES Met Office Hadley Centre (UK) 1.875◦× 1.25◦ his, RCP2.6, RCP4.5, RCP6.0, RCP8.5
MPI-ESM-LR Max Planck Institute for Meteorology (Germany) 1.875◦× 1.875◦ his, RCP2.6, RCP4.5, RCP8.5

Figure 2. Schematic of the multisite multivariate GCM downscaling and the structure of this study.

monthly observations and the ESM data for each calendar
month for the period 1961–2005, and then these were ap-
plied to the period 2011–2040 to calculate the monthly mean
and variance. The nonlinear function was used to transform
the ESM monthly precipitation values that were within the
range in which the nonlinear function was fitted, while the
linear function was used for those values that were outside of
the range. Temporal downscaling was then implemented by
adjusting the precipitation- and temperature-related param-
eters of a single-site weather generator (SSWG) calculated
from the baseline period. In the SSWG, both the occurrence

and the amount of precipitation were simulated using a first-
order two-state Markov chain and a skewed normal distribu-
tion based on our previous evaluation (Li et al., 2014), while
the temperature was generated using a normal distribution.
Thus, the precipitation- and temperature-related parameters
for adjustment included the transitional probabilities of a wet
day following a wet day (Pw/w) and of a wet day following a
dry day (Pw/d), together with the mean and variance of daily
precipitation of wet days and the mean and variance of the
maximum and minimum temperatures. These were adjusted
according to relationships developed based on observations,

Hydrol. Earth Syst. Sci., 21, 5531–5546, 2017 www.hydrol-earth-syst-sci.net/21/5531/2017/



Z. Li and J. Jin: Evaluating climate change impacts on streamflow variability 5535

the detailed procedure of which can be found in Zhang and
Liu (2005) and in Li et al. (2011). The adjusted parameters
were used to drive the SSWG to obtain climate change sce-
narios for a 100-year period. To test the performance of our
method for the reconstructions of multisite and of multivari-
ate correlations, the temperature generation was not taken as
dependent on the dry/wet status in the weather generators,
and no intersite or intervariable correlations were taken into
account during the single-site downscaling.

For the third step, a method for pairing independent vari-
ables to induce the desired rank correlations (Iman and
Conover, 1982), which was used successfully in our previous
study for multisite precipitation simulation using a TSWG
(Li, 2014), was introduced to obtain the multisite and the
multivariate correlations. The theoretical basis is described
as follows. To assign a desired correlation matrix [C] to a
random row vector [X], two steps should be performed. First,
[C] is decomposed to [C]= [R][R′]. Then, the upper triangu-
lar matrix [R′] is used to multiply [X] to produce a new ma-
trix [X][R′] with the desired correlation matrix [C]. Specif-
ically, for this study, the daily time series of P , Tmax, and
Tmin, which were generated by the SSWG for all stations and
for each month, were placed in one matrix where the rows
represented days and the columns represented stations and
variables. Then, the ranks of each column were converted
to a standard normal distribution by calculating the van der
Waerden scores, which can be calculated by 8−1 {i/(n+ 1)},
where 8−1 is the inverse function of the standard normal
distribution, and i represents the rank of each column. The
score matrix was multiplied by the decomposed correlation
matrix [R′] to obtain a new matrix with the target correla-
tion coefficients. The ranks in the new matrix were used to
shuffle the raw matrix, and during this shuffle procedure, the
non-positive correlation matrices and the tied ranks due to
dry days were adjusted. The non-positive correlation matri-
ces were amended using a spectral decomposition procedure
(Rebonato and Jäckel, 2000). The tied ranks were resolved
by assigning small values of less than the threshold defini-
tion of a wet event (0.1 mm in this study) to dry days. As
the data rearrangements perturb the occurrence structure, oc-
currence adjustment should be undertaken according to those
from the SSWG. Detailed descriptions of the procedures can
be found in Li (2014).

2.3 Hydrological simulation

The SWAT, which is a physically based distributed hydrolog-
ical model for studying the impact of environmental changes
on hydrology (Arnold et al., 1998), was employed to evalu-
ate the response of streamflow to climate change. First, the
SWAT was calibrated using observed data, and then it was
used to simulate hydrological processes for the period 2011–
2040. The two main components in the hydrological cycle,
i.e., runoff and potential evapotranspiration (ET0), were sim-
ulated using the curve number method (USDA-SCS, 1972)
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Figure 3. Observed and simulated runoff at the Zhangjiashan sta-
tion on the Jing River during 1961–2005 (CAL and VAL indicate
the periods used for model calibration and validation, respectively).

and the Hargreaves method (Hargreaves et al., 1985), re-
spectively. The Hargreaves method was preferred over the
Penman–Monteith and Priestley–Taylor methods because the
climate projection in this study considered only changes in
temperature. As the Hargreaves-based ET0 depends mostly
on temperature, the changes in the projected temperature can
thus be better translated into evaporation losses.

Monthly streamflow for the period 1960–1970, recorded
at the Zhangjiashan gauge station, was used to calibrate the
SWAT. The period 1960–1970 was chosen because of the
minimal human activity and the small changes in climate.
Soil conservation measures as well as the other human activ-
ities were minor before 1970 and thus, they had minimal im-
pact on rainfall–runoff relationships. The period before 1970
is used by the Yellow River Conservancy Commission as the
baseline against which to assess the effects of soil conserva-
tion measures. Therefore, 1961–1970 was considered a rea-
sonable period for SWAT calibration and validation.

The period 1960–1964 was used for model calibration
and the period 1965–1970 was used for model validation.
Automated calibration/validation and uncertainty analyses
were undertaken using the Sequential Uncertainty Fitting
version 2 in the SWAT Calibration and Uncertainty Programs
(Abbaspour et al., 2007). After sensitivity analysis, the pa-
rameters most responsible for runoff simulation were iden-
tified and they were calibrated using the objective function
of the Nash–Sutcliffe efficiency coefficient. In this study, the
sensitive parameters comprised the curve number (CN), base
flow recession coefficient (ALPHA_BF), soil evaporation co-
efficient (ESCO), available water capacity (SOL_AWC), and
groundwater delay time (GW_DELAY). The Nash–Sutcliffe
efficiency coefficients for the two periods were both 0.78,
indicating that the SWAT could satisfactorily simulate the
streamflow of the studied catchment (Fig. 3).

Although soil and water conservation projects, imple-
mented in the study basin since the 1990s, have affected
runoff processes and streamflow amounts considerably, they
were not taken into account in our SWAT simulations, which
might have introduced simulation errors for the period 1991–
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Figure 4. (a) and (b) Observed (OBS) versus generated multisite and multivariate correlations of daily precipitation (P ), maximum temper-
ature (Tmax), and minimum temperature (Tmin). (c)–(h) Average and standard deviations (SD) of monthly P , Tmax, and Tmin.

2005. To exclude the impacts of human activities, the natural
runoff represented by the SWAT-simulated runoff for the pe-
riod 1960–2005 was used hereafter as the baseline against
which to emphasize climate-induced changes in runoff.

During the hydrological simulation for both current and
future periods, the land surface conditions were assumed in-
variant. According to our analysis, the land use pattern in
2010 was similar to 1986, although there was some variation
during 1986–2010 (Li et al., 2016). Furthermore, the current
vegetation coverage is approaching the limit sustainable by
the available water resources (Feng et al., 2016). Thus, veg-
etation coverage cannot increase in the future and according
to the land use planning of the local government, it will prob-
ably remain invariant. Accordingly, the assumption of invari-
ant land use pattern in this study was considered reasonable.

3 Results

3.1 Performance of correlation reconstruction method

To validate the performance of the proposed method, the
downscaled parameters related to changes in precipitation
and temperature from RCP2.6 in CanESM2 were used to
generate multisite multivariate climate change scenarios. As
no correlation was considered during the single-site ESM
downscaling, the intersite and intervariable correlations fluc-
tuated around zero (Fig. 4a). However, after rearranging the
structure of the data matrix, the multisite multivariate cor-
relations were reproduced well (Fig. 4b). In addition, the
averages and standard deviations of monthly precipitation

and monthly mean temperatures were reproduced well be-
cause the shuffle procedure did not change them from the
SSWG (Fig. 4c–h). The slightly underestimated standard
deviations of monthly precipitation were caused by inher-
ent weakness of the weather generator, i.e., an underesti-
mation of low-frequency variability. The statistics of the
monthly mean temperatures were almost the same as the
ESM-downscaled parameters. The above results imply that
the proposed method could be considered effective in corre-
lation reconstruction, and that it could satisfactorily repro-
duce the statistics including low-frequency variability.

To undertake an impact assessment of climate change, the
projected climate changes should be transferred to a hydro-
logical simulation. The observed precipitation and temper-
ature for the period 1961–2005 were used to generate 100-
year climates using the SSWG and TSWG, which were used
to drive the SWAT. Then, the simulated hydrological statis-
tics were compared with observations to ensure the correla-
tion reconstruction method did not introduce errors (Fig. 5).
Obviously, the three climate series produced similar monthly
mean streamflows. The SSWG underestimated the variances
and maxima of the monthly streamflow but overestimated its
minima, whereas the TSWG produced similar variances and
extremes of the monthly streamflow except for a few months.
The above results suggested that the developed multisite mul-
tivariate climate change scenarios based on the TSWG could
be used effectively for simulating hydrological variability
and extremes.
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Figure 5. Statistics of observed (OBS) and simulated (by SSWG- and TSWG-generated climate) monthly streamflow. Observation period
was 1961–1990 and the simulated runoff was from the 100-year climate generated from the statistical parameters from the observed climate.

Table 2. Relative changes in annual mean climate between 1961–2005 and 2011–2040.

P change, % Tmax change, ◦C Tmin change, ◦C

RCP 2.6 4.5 6.0 8.5 2.6 4.5 6.0 8.5 2.6 4.5 6.0 8.5

CanESM2 +9.2 −4.2 – +5.1 +1.8 +1.7 – +2.0 +1.4 +1.4 – +1.6
CSIRO_3.6.0 +0.3 +0.3 −3.3 −3.3 +1.8 +1.4 +1.1 +1.6 +1.5 +1.2 +0.8 +1.3
GFDL_CM3 +0.1 −1.5 +1.3 −7.7 +1.8 +1.8 +1.5 +2.1 +1.4 +1.4 +1.2 +1.6
HadGEM2-ES −6.3 −2.2 −2.9 −6.7 +2.0 +1.6 +1.5 +2.0 +1.5 +1.3 +1.2 +1.4
MPI-ESM-LR +4.5 −0.7 – −4.7 +1.2 +1.2 – +1.3 +1.2 +1.2 – +1.3
Mean-each RCP +1.5 −1.7 −1.6 −3.4 +1.7 +1.6 +1.4 +1.8 +1.4 +1.3 +1.1 +1.4
p-each RCP 0.29 0.05 0.19 0.10 < 0.01 < 0.01 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

Mean-all RCPs −1.3 +1.6 +1.3

p-all RCPs 0.12 < 0.01 < 0.01

Mean-each/all RCP, average changes for all ESMs under one/all RCP; p-each/all RCP, significance of t test for all ESMs under one/all RCP. The data in bold font
indicate that changes are significant (p < 0.05).

3.2 Projected climate changes

Compared with that during 1961–2005, the climate projected
for 2011–2040 appeared drier and warmer under most sce-
narios (Table 2), and the trend was more significant under
higher RCPs. Averaged over all scenarios, the annual mean
precipitation decreased by −1.3± 4.4 %, while Tmax and

Tmin increased by 1.6± 0.3 and 1.3± 0.2 ◦C, respectively.
Comparison of the projected climate (2011–2040) from all
scenarios with the baseline data (p= 0.05) indicated that
while the annual mean precipitation would not change, the
temperature would increase significantly.

The differences in monthly mean climate between 2011–
2040 and 1961–2005 showed the seasonal patterns of climate

www.hydrol-earth-syst-sci.net/21/5531/2017/ Hydrol. Earth Syst. Sci., 21, 5531–5546, 2017



5538 Z. Li and J. Jin: Evaluating climate change impacts on streamflow variability

(a)

J F M A M J J A S O N D

M
o

n
th

ly
 p

re
c
ip

it
at

io
n
 c

h
an

g
e
, 
%

-30

-20

-10

0

10

20

30

40 RCP2.6 

RCP4.5

RCP6.0

RCP8.5

(d)

J F M A M J J A S O N D

V
ar

ia
n
c
e
 r

at
io

 o
f 

m
o

n
th

ly
 p

re
c
ip

it
at

io
n

0.6

0.8

1.0

1.2

1.4

1.6

1.8

(b)

J F M A M J J A S O N D

M
o

n
th

ly
 m

e
an

 T
m

ax
 c

h
an

g
e
, 
o

C

0.5

1.0

1.5

2.0

2.5

(e)

Month

J F M A M J J A S O N D

V
ar

ia
n
c
e
 r

at
io

 o
f 

m
o

n
th

ly
 m

e
an

 T
m

ax
 

0.6

0.8

1.0

1.2

1.4

1.6

1.8

(c)

J F M A M J J A S O N D

M
o

n
th

ly
 m

e
an

 T
m

in
 c

h
an

g
e
, 
o

C

0.5

1.0

1.5

2.0

2.5

(f)

J F M A M J J A S O N D

V
ar

ia
n
c
e
 r

at
io

 o
f 

m
o

n
th

ly
 m

e
an

 T
m

in

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Figure 6. Changes in the averages and variances of monthly climate during 2011–2040 relative to 1961–2005.

change (Fig. 6). Precipitation decreased significantly from
August to October but it increased from November through
to March and into May (Fig. 6a), and temperature increased
significantly across all seasons (Fig. 6b and c). Therefore,
during 2011–2040, a drier climate would be expected dur-
ing the flood season, whereas a wetter climate might exist
through winter and spring.

The variances in precipitation and temperature during
2011–2040 relative to 1961–2005 tended to increase un-
der most scenarios (Table 3). Averaged over all scenarios,
the variance ratios of P , Tmax, and Tmin were 1.15± 0.13,
1.15± 0.14, and 1.04± 0.10, respectively. The significance
test (p= 0.05) further confirmed the variance increase for P

and Tmax, which suggested that the future climate would be
more variable than the present climate.

The variance of monthly precipitation tended to increase
under most scenarios and for most months (Fig. 6d); how-
ever, the upward trends in variance were only significant for
6 months (i.e., the 1st, 3rd, 5th, 7th, 11th, and 12th months).
For temperature, monthly variances increased over the first
half of the year and decreased during the second half of the
year (Fig. 6e and f), and the significance test further showed
that Tmax variances increased significantly in the first half of
the year, except for March and May, while Tmin variances
increased significantly from March to May. Overall, the in-
crease in climate variability was significant during the first
half of the year.

3.3 Projected changes in hydrological variability

The streamflow in the Jing River was simulated with the
SWAT using the 18 climate change scenarios as external
forcing (Table 4). Averaged over all scenarios, the annual
mean streamflow decreased insignificantly by 1.0± 15.0 %.
The seasonal patterns of streamflow changes were similar un-
der all RCPs (Fig. 7a). Monthly mean streamflow decreased
from September through to November and it increased dur-
ing the other months; the greatest increase occurred during
winter and spring. The t test further showed that both the
upward trend from November through to June and the down-
ward trend in September and October were significant, while
no significant trend was detected for July and August.

The variances of annual streamflow during 2011–2040 rel-
ative to 1961–2005 increased under most scenarios (Table 4).
Averaged over all scenarios, the variance ratios of annual
streamflow were 1.25± 0.55 (p= 0.03), which implies that
the interannual variability of future streamflow would be-
come more significant. The variances of monthly stream-
flow had similar seasonal patterns under all RCPs (Fig. 7b);
they increased significantly from November through to Au-
gust except for January and June, but they decreased in Oc-
tober (p= 0.05), which implies that intra-annual variability
would also become greater during 2011–2040.

The maximum/minimum monthly streamflow in-
creased/decreased significantly by 33± 22 % and
−33± 11 %, respectively (Table 5). The monthly max-
ima increased for most months except October (Fig. 7c, and
October was excluded by the t test). The monthly minima
decreased for most months except for an increase in January
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Table 3. Variance ratios of precipitation and temperature during 2011–2040 relative to 1961–2005.

P variance ratio Tmax variance ratio Tmin variance ratio

RCP 2.6 4.5 6.0 8.5 2.6 4.5 6.0 8.5 2.6 4.5 6.0 8.5
CanESM2 1.34 1.12 – 1.19 1.18 1.41 – 1.40 1.00 1.27 – 1.20
CSIRO_3.6.0 1.02 1.26 1.26 1.12 1.14 1.15 1.19 1.22 0.91 1.06 0.97 1.17
GFDL_CM3 1.38 1.31 1.24 1.15 1.21 1.14 1.03 1.04 1.08 1.03 0.92 1.04
HadGEM2-ES 1.05 1.16 1.01 1.03 1.00 1.16 1.21 1.35 1.07 0.94 1.01 1.10
MPI-ESM-LR 1.00 0.93 – 1.09 0.94 1.04 – 0.91 0.94 1.01 – 0.95
Mean-each RCP 1.16 1.16 1.17 1.12 1.09 1.18 1.14 1.18 1.00 1.07 0.97 1.09
p-each RCP 0.06 0.040 0.08 < 0.01 0.07 0.02 0.06 0.06 0.50 0.16 0.16 0.06

Mean-all RCPs 1.15 1.15 1.04

p-all RCPs < 0.01 < 0.01 0.07

Mean-each/all RCP, average changes for all ESMs under one/all RCP; p-each/all RCP, significance of t test for all ESMs under one/all RCP. The data
in bold font indicate that changes are significant (p < 0.05).

(c)

Month

J F M A M J J A S O N D

C
ha

ng
es

 i
n 

m
ax

im
a,

 %

-50

0

50

100

150

200

(d)

Month

J F M A M J J A S O N D

C
ha

ng
es

 i
n 

m
in

im
a,

 %

-100

-50

0

50

100

150

RCP2.6 

RCP4.5

RCP6.0

RCP8.5

(b)

V
ar

ia
nc

e 
ra

ti
o
s

0

1

2

3

4

5

6

(a)

C
ha

ng
es

 i
n 

av
er

ag
e,

 %

-20

0

20

40

60

Figure 7. Changes in average and variability of monthly streamflow during 2011–2040 relative to 1961–2005.

and February (Fig. 7d), and the downward trend in April
and from June through to November and the upward trend
in January, February, and May were confirmed by the t test.
The combined effects of the upward trend in the maxima
and the downward trend in the minima led to the increase in
variability.

4 Discussion

4.1 Why was the proposed GCM downscaling method
used?

This study extended the TSWG model for multisite precipi-
tation simulation (Li, 2014) to a multisite multivariate GCM
downscaling method to generate climate change scenarios,
which help better project the potential changes in hydrolog-
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Table 4. Changes in average and variance of annual streamflow and mean monthly extreme streamflow during the 2020s relative to 1961–
2005.

Changes in average, % Variance ratio Changes in maxima, % Changes in minima, %

RCP 2.6 4.5 6.0 8.5 2.6 4.5 6.0 8.5 2.6 4.5 6.0 8.5 2.6 4.5 6.0 8.5
CanESM2 38 −8 – 2 2.85 1.23 – 0.98 75 31 – 27 −10 −25 – −18
CSIRO-3.6.0 −6 7 2 −6 0.76 1.32 1.10 0.99 9 64 65 15 −34 −18 −45 −34
GFDL-CM3 9 5 3 −17 1.32 1.70 1.13 0.75 43 43 34 25 −32 −33 −39 −49
HadGEM2-ES −16 −10 26 −6 0.71 1.05 2.25 1.07 −5 21 60 22 −36 −40 −29 −47
MPI-ESM-LR 16 −3 – −17 1.51 1.15 – 0.68 42 21 – 9 −35 −20 – −46
Mean-each RCP 8 −2 10 −9 1.43 1.29 1.49 0.89 33 36 53 20 −30 −27 −37 −39
p-each RCP 0.22 0.31 0.16 0.03 0.16 0.03 0.17 0.17 < 0.01 < 0.01

Mean-all RCPs 1.0 1.25 33 −33

p-all RCPs 0.39 0.03 < 0.01 < 0.01
Mean-each/all RCP, average changes for all ESMs under one/all RCP; p-each/all RCP, significance of t test for all ESMs under one/all RCP. The data in bold font indicate that
changes are significant (p < 0.05).

Table 5. Sensitivity of streamflow to changes in means and variances of precipitation and temperature.

P &Rm, P &Rv TX&Rm, TX&Rv TN&Rm, TN&Rv

Pm&Rm Pv&Rm Pm&Rv Pv&Rv TXm&Rm TXv&Rm TXm&Rv TXv&Rv TNm&Rm TNv&Rm TNm&Rv TNv&Rv

k +0.6 +0.3 +1.9 +1.5 −7.9 +0.1 −24.8 +0.1 −2.7 +0.04 −15.8 −0.03
p < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 0.09 0.06 0.47 0.44 0.40 0.38 0.90

P&Rx, P &Rn TX&Rx, TN&RX TN&Rn, TN&Rn

Pm&Rx Pv&Rx Pm&Rn Pv&Rn TXm&Rx TXv&Rx TXm&Rn TXv&Rn TNm&Rx TNv&Rx TNm&Rn TNv&Rn

k +1.0 +0.6 +0.9 +0.1 −10.9 +0.1 −11.5 +0.1 −7.4 +0.1 −5.7 +0.1
p < 0.01 < 0.01 < 0.01 < 0.01 0.10 0.18 0.02 0.33 0.41 0.57 0.38 0.24

Pm and Pv – changes in mean and variance of precipitation; Rm, Rv, Rx, Rn – changes in mean (%), variance (%), maximum (%), and minimum (%) monthly streamflow; TXm, TXv, TNm, TNv –
changes in mean and variance of Tmax and Tmin; k, p – slope and significance level of linear regression. The data in bold font indicate that the relationships are significant (p < 0.05).

ical variability with distributed hydrological models. Com-
pared with the TSWG, the extension first used a larger data
matrix to include daily maximum and minimum tempera-
tures, and it then adjusted the input correlation matrix with
different pairs of variables. With these adjustments, the pro-
posed method realistically reproduced the climate statistics,
and intersite and intervariable correlations (Fig. 4). Further-
more, the computing efficiency of the model was not affected
either with or without additional variables.

As stated previously, many downscaling methods require
considerable effort regarding parameter estimation and veri-
fication. Even though the application of such methods might
not be limited by computing power, approaches that have
a simple structure and that are easy to implement remain
highly desired (Clark et al., 2004; Bárdossy and Pegram,
2012; Li, 2014; Srivastav and Simonovic, 2015; Scheuerer
et al., 2017). The proposed method first generates daily se-
ries weather for the future period at single sites. It then re-
constructs the intersite and intervariable correlations using
a distribution-free shuffle procedure. Accordingly, the effi-
ciency of the method lies in two aspects: the easily controlled
accuracy because of the availability of multiple algorithms
for the generation of climate change scenarios, and the effi-
cient method for correlation reconstruction.

The first step in this study generated climate change sce-
narios using a Richardson-type weather generator, and the
accuracies of the climate statistics were controlled satisfac-
torily (Fig. 4). However, unlike other methods restricted to
specific algorithms, the proposed method is open to any al-
gorithm used for single-site climate scenario generation, e.g.,
the empirical method of LARS-WG (Semenov and Barrow,
1997) and the circulation-based weather generator of SDSM
(Wilby et al., 2002). Furthermore, as the second step does
not perturb the statistics of climate from the first step, the ad-
vantages of the methods for single-site climate change sce-
nario generation can be adopted. The second step simultane-
ously reconstructs the multisite and multivariate correlations
with one simple shuffle, which is a major advantage of the
postprocessing method. This method constitutes a good op-
tion for methods that consider only the intersite correlation
of one variable, e.g., precipitation or temperature (Kottegoda
et al., 2003; Harpham and Wilby, 2005; Kleiber et al., 2012),
or that reconstruct the correlations for each variable and for
each process, e.g., the preprocessing multisite weather gen-
erator (Wilks, 1998, 1999b).

The method for multisite multivariate correlation recon-
struction slightly perturbs the precipitation occurrence (Li,
2014), which is a weakness inherent in postprocessing meth-

Hydrol. Earth Syst. Sci., 21, 5531–5546, 2017 www.hydrol-earth-syst-sci.net/21/5531/2017/



Z. Li and J. Jin: Evaluating climate change impacts on streamflow variability 5541

-6

-4

-2

0

2

4

6

1.2 1.4 1.6 1.8

 GCM

 RCP

ΔTmax (℃)

Δ
P

/P
 (

%
)

 

Figure 8. Projected changes (1) in annual mean precipitation (P )
and maximum temperature (Tmax) averaged over ESMs or RCPs.

ods (Clark et al., 2004; Bárdossy and Pegram, 2012). Nev-
ertheless, the suitability of the method for sensitivity analy-
ses or impact assessments in relation to streamflow modeling
on the monthly scale in a large catchment (area: 45 421 km2;
18 weather stations) has been demonstrated. To extend the
validation of its applicability on different spatial and tempo-
ral scales, the method should be applied to daily streamflow
simulations and to other watersheds with different catchment
areas and climates.

4.2 How does climate change influence streamflow
variability?

The potential changes in hydrological extremes and regimes
have been discussed widely (Bürger et al., 2011; Hirabayashi
et al., 2013; Arnell and Gosling, 2014; Dankers et al., 2014;
Prudhomme et al., 2014; Schewe et al., 2014); however,
the links between climate change and hydrological vari-
ability have not been explored fully. Most previous stud-
ies have compared the trends or mean changes of climatic
variables with those of hydrological variables only qualita-
tively, providing only a basic understanding of how climate
change might influence hydrological variability (Bawden et
al., 2014). Nevertheless, the effects of climate change on hy-
drological extremes are not necessarily a simple function of
change in precipitation (Hirabayashi et al., 2013; Arnell and
Gosling, 2014; Schewe et al., 2014); instead, multiple cli-
matic and hydrological variables should be examined.

The multiple combinations of ESMs and RCPs for each
month used in this study presented the potential for dis-
cussing the links between climate change and hydrological
variability. Specifically, this study presented the means and
variances of monthly climate and streamflow, which could

be used to interpret how the changes in mean and extreme
climate might influence streamflow variability. Univariate
linear regression analysis was used to obtain the sensitiv-
ity coefficients between climate changes and streamflow re-
sponses. Specifically, based on the data of 18 scenarios ac-
cumulated over 12 months, the changes in the means and
variances of monthly P , Tmax, and Tmin were used to de-
velop relationships with the changes in the means, variances,
or extremes of monthly streamflow. The slope of the linear
equation was used as the sensitivity coefficient.

According to the sensitivity analysis of precipitation
changes during 2011–2040, changes in either the means or in
the variances had significant positive correlation with stream-
flow changes (p < 0.01; Table 5). Precipitation changes had
smaller impacts on the mean streamflow than on the stream-
flow variances; a 1 % increase in the means or variances of
precipitation increased mean streamflow by 0.3–0.6 %, while
it increased streamflow variances by 1.5–1.9 %. Changes in
either the means or variances of precipitation had similar
impacts on hydrological extremes; a 1 % increase in pre-
cipitation increased extreme monthly streamflow by about
1 %. Changes in mean temperatures were correlated nega-
tively with the means and variances of streamflow, while
changes in temperature variances were correlated positively
with the variances and extremes of streamflow (Table 5).
The impacts of changes in mean temperatures were much
greater than temperature variances. For example, the stream-
flow means decreased by 7.9 % (p < 0.01) and increased by
0.1 % (p= 0.09) because of a 1 ◦C increase in Tmax means
and variances, respectively. However, the changes in tem-
perature means had greater impacts on streamflow variances
than on streamflow means. For example, a 1 ◦C increase
in Tmax means decreased streamflow means significantly by
7.9 % (p < 0.01), while it decreased streamflow variance by
24.8 % (p= 0.06). Considering the significance level, the
main factors controlling streamflow variations were found to
be the changes in P variances and Tmax means.

The factors identified in this study as driving streamflow
changes, especially for streamflow variances and extremes,
differed from studies on historical periods. For example, the
trends in the historical streamflow of the Yangtze River in
China (Chen et al., 2014) and of the Athabasca River basin
in Canada (Bawden et al., 2014) were found to be correlated
strongly with precipitation but not related to trends in tem-
perature. In contrast, the results of this study were similar to
studies based on hydrological projections for future periods,
in which changes in precipitation and temperature both con-
tributed to hydrological variability (Leng et al., 2014; Qiao et
al., 2014). In particular, the potential changes in global flood
exposure or water scarcity have been found to be correlated
positively with increases in temperature (Hirabayashi et al.,
2013; Arnell and Gosling, 2014; Schewe et al., 2014). The
temperature increase in the future is projected to be greater
than in the current period (IPCC, 2013), and its magnitude
might exceed the threshold of the temperature that influences
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Figure 9. Projected changes (1) in precipitation (P ), maximum temperature (Tmax), and streamflow (Q) averaged over the ESMs or the
RCPs.

streamflow. The different driving factors between the current
and future periods highlight the reliability of the results ob-
tained from the sensitivity analysis of this study.

4.3 What are the uncertainties and limitations of the
projected hydrological changes?

In assessing the impacts of climate change on hydrology,
uncertainties are usually attributable to the climate models,
emission scenarios, downscaling, and hydrological model-
ing. In most cases, the uncertainties linked with the cli-
mate model structure are greater than those associated with
the hydrological model or the downscaling method (Wilby
and Harris, 2006; Arnell, 2011; Chen et al., 2011; Gosling
et al., 2011). For this study, as the climatic statistics and
multisite multivariate correlations were reproduced well and
the SWAT was calibrated reasonably well, their uncertain-
ties were considered small. However, the uncertainties from
the ESMs and RCPs were comparatively large. Averaged
over all the ESMs and RCPs, the annual mean precipitation
would change by −1.3± 4.4 % (Table 2), and the large un-
certainty in the climate projection caused an even larger un-
certainty in the runoff change. Specifically, the annual mean
runoff changed by 1 %± 15 %, while the monthly maxi-
mum and minimum streamflows changed by 33± 22 % and
−33± 11 %, respectively (Table 4).

Averaged over all projections for a certain ESM or
RCP, the uncertainty related to the ESMs and RCPs was

large (Fig. 8). For example, three ESMs (in the horizontal
dash-dotted rectangle in Fig. 8) projected similar changes in
precipitation but different changes in temperature. Similarly,
three ESMs (in the vertical dashed rectangle in Fig. 8) pro-
jected similar temperature changes but quite different precip-
itation changes. The sensitivity of the uncertainties linked to
the ESMs was reduced in the hydrological response (Fig. 9),
where four out of five ESMs projected similar changes in
the means or variances of runoff. Figure 9 shows that the
CanESM2 model contributed greatly to the uncertainty enve-
lope of runoff changes. Thus, over-reliance on a single ESM
could lead to inappropriate projection of climate changes. By
adopting arithmetic ensemble averages, the uncertainty from
ESMs in an impact analysis could be reduced to some ex-
tent (Leng et al., 2014). Different from ESMs, the sensitivity
of the uncertainties related to the RCPs increased in the im-
pact assessment, where the changes in annual mean stream-
flow covered greater absolute ranges than those of precipita-
tion and temperature. The projected directions of change in
streamflow differed even for the different RCPs.

All the simulations in this study were driven by the ESM
data. The use of such an offline approach means terrestrial
feedback cannot be taken into account. However, over this
inland watershed, land–atmosphere interactions are usually
very significant (Li et al., 2010), which could affect the
streamflow’s magnitude and its variability. Therefore, there is
need for further evaluation of the effects of such interactions
on runoff processes using a coupled high-resolution climate–
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hydrology model, which is a research direction planned for
the near future.

5 Conclusions

Extreme hydrological events such as flooding and drought
have great societal importance, especially for a densely pop-
ulated watershed with fragile environments such as the Jing
River (China). In this study, near-term projections of stream-
flow variability at a watershed scale were produced via a
downscaling approach, which has been evaluated fully in
both previous research and this study, testifying to the reli-
ability of our results. In addition, the uncertainty ranges of
the projections of this study were quantified. Thus, the re-
search results obtained provided a solid basis for deriving
clear insights into the resource and hazard management of
water supplies.

The projections for the Jing River catchment showed that
both annual mean precipitation and streamflow would not
change in the future, which implies that the gross amount
of the water resource might remain similar to the present
level. Further analysis showed that precipitation variances
had greater impacts than precipitation means on the stream-
flow, and that high flows tended to be sensitive to precip-
itation changes, while low flows were determined by tem-
perature changes. The rising variance in streamflow suggests
greater occurrence of floods during the summer and severe
water shortages during the winter and spring. This implies
that the available water resource could possibly decrease and
that soil erosion could become more severe.

Changes in the statistical parameters of precipitation
and/or temperature (i.e., the means and variances) played dif-
ferent roles in the mean state and variability of streamflow.
The changes in precipitation/temperature were correlated
positively/negatively with changes in streamflow. Specifi-
cally, the increase in streamflow variances was attributed
mainly to the increase in precipitation variances and tem-
perature means, but the positive contribution from increased
precipitation variances was larger than the negative contribu-
tions from increased temperature means.
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