Articles | Volume 21, issue 1
https://doi.org/10.5194/hess-21-549-2017
https://doi.org/10.5194/hess-21-549-2017
Research article
 | 
27 Jan 2017
Research article |  | 27 Jan 2017

Spatially distributed characterization of soil-moisture dynamics using travel-time distributions

Falk Heße, Matthias Zink, Rohini Kumar, Luis Samaniego, and Sabine Attinger

Related authors

Data-driven estimates for the geostatistical characterization of subsurface hydraulic properties
Falk Heße, Sebastian Müller, and Sabine Attinger
Hydrol. Earth Syst. Sci., 28, 357–374, https://doi.org/10.5194/hess-28-357-2024,https://doi.org/10.5194/hess-28-357-2024, 2024
Short summary
GSTools v1.3: a toolbox for geostatistical modelling in Python
Sebastian Müller, Lennart Schüler, Alraune Zech, and Falk Heße
Geosci. Model Dev., 15, 3161–3182, https://doi.org/10.5194/gmd-15-3161-2022,https://doi.org/10.5194/gmd-15-3161-2022, 2022
Short summary
Predicting the impact of spatial heterogeneity on microbially mediated nutrient cycling in the subsurface
Swamini Khurana, Falk Heße, Anke Hildebrandt, and Martin Thullner
Biogeosciences, 19, 665–688, https://doi.org/10.5194/bg-19-665-2022,https://doi.org/10.5194/bg-19-665-2022, 2022
Short summary
Assessing the response of groundwater quantity and travel time distribution to 1.5, 2, and 3 °C global warming in a mesoscale central German basin
Miao Jing, Rohini Kumar, Falk Heße, Stephan Thober, Oldrich Rakovec, Luis Samaniego, and Sabine Attinger
Hydrol. Earth Syst. Sci., 24, 1511–1526, https://doi.org/10.5194/hess-24-1511-2020,https://doi.org/10.5194/hess-24-1511-2020, 2020
Short summary
Influence of input and parameter uncertainty on the prediction of catchment-scale groundwater travel time distributions
Miao Jing, Falk Heße, Rohini Kumar, Olaf Kolditz, Thomas Kalbacher, and Sabine Attinger
Hydrol. Earth Syst. Sci., 23, 171–190, https://doi.org/10.5194/hess-23-171-2019,https://doi.org/10.5194/hess-23-171-2019, 2019
Short summary

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Modelling approaches
Improving the hydrological consistency of a process-based solute-transport model by simultaneous calibration of streamflow and stream concentrations
Jordy Salmon-Monviola, Ophélie Fovet, and Markus Hrachowitz
Hydrol. Earth Syst. Sci., 29, 127–158, https://doi.org/10.5194/hess-29-127-2025,https://doi.org/10.5194/hess-29-127-2025, 2025
Short summary
Leveraging a time-series event separation method to disentangle time-varying hydrologic controls on streamflow – application to wildfire-affected catchments
Haley A. Canham, Belize Lane, Colin B. Phillips, and Brendan P. Murphy
Hydrol. Earth Syst. Sci., 29, 27–43, https://doi.org/10.5194/hess-29-27-2025,https://doi.org/10.5194/hess-29-27-2025, 2025
Short summary
The significance of the leaf area index for evapotranspiration estimation in SWAT-T for characteristic land cover types of West Africa
Fabian Merk, Timo Schaffhauser, Faizan Anwar, Ye Tuo, Jean-Martial Cohard, and Markus Disse
Hydrol. Earth Syst. Sci., 28, 5511–5539, https://doi.org/10.5194/hess-28-5511-2024,https://doi.org/10.5194/hess-28-5511-2024, 2024
Short summary
Improved representation of soil moisture processes through incorporation of cosmic-ray neutron count measurements in a large-scale hydrologic model
Eshrat Fatima, Rohini Kumar, Sabine Attinger, Maren Kaluza, Oldrich Rakovec, Corinna Rebmann, Rafael Rosolem, Sascha E. Oswald, Luis Samaniego, Steffen Zacharias, and Martin Schrön
Hydrol. Earth Syst. Sci., 28, 5419–5441, https://doi.org/10.5194/hess-28-5419-2024,https://doi.org/10.5194/hess-28-5419-2024, 2024
Short summary
Spatio-temporal patterns and trends of streamflow in water-scarce Mediterranean basins
Laia Estrada, Xavier Garcia, Joan Saló-Grau, Rafael Marcé, Antoni Munné, and Vicenç Acuña
Hydrol. Earth Syst. Sci., 28, 5353–5373, https://doi.org/10.5194/hess-28-5353-2024,https://doi.org/10.5194/hess-28-5353-2024, 2024
Short summary

Cited articles

Almorox, J., Quej, V. H., and Martí, P.: Global performance ranking of temperature-based approaches for evapotranspiration estimation considering Köppen climate classes, J. Hydrol., 528, 514–522, https://doi.org/10.1016/j.jhydrol.2015.06.057, 2015.
Benettin, P., Rinaldo, A., and Botter, G.: Kinematics of age mixing in advection-dispersion models, Water Resour. Res., 49, 8539–8551, https://doi.org/10.1002/2013WR014708, 2013.
Benettin, P., Rinaldo, A., and Botter, G.: Tracking residence times in hydrological systems: forward and backward formulations, Hydrol. Process., 29, 5203–5213, https://doi.org/10.1002/hyp.10513, 2015a.
Benettin, P., Kirchner, J. W., Rinaldo, A., and Botter, G.: Modeling chloride transport using travel time distributions at plynlimon, wales, Water Resour. Res., 51, 3259–3276, https://doi.org/10.1002/2014WR016600, 2015b.
Bergström, S.: Computer Models of Watershed Hydrology, in: The HBV Model, edited by: Singh, V. P., Water Resources Publications, LLC, USA, 443–476, 1995.
Download
Short summary
Travel-time distributions are a comprehensive tool for the characterization of hydrological systems. In our study, we used data that were simulated by virtue of a well-established hydrological model. This gave us a very large yet realistic dataset, both in time and space, from which we could infer the relative impact of different factors on travel-time behavior. These were, in particular, meteorological (precipitation), land surface (land cover, leaf-area index) and subsurface (soil) properties.