Research article
27 Jan 2017
Research article
| 27 Jan 2017
Spatially distributed characterization of soil-moisture dynamics using travel-time distributions
Falk Heße et al.
Related authors
Sebastian Müller, Lennart Schüler, Alraune Zech, and Falk Heße
Geosci. Model Dev., 15, 3161–3182, https://doi.org/10.5194/gmd-15-3161-2022, https://doi.org/10.5194/gmd-15-3161-2022, 2022
Short summary
Short summary
The GSTools package provides a Python-based platform for geoostatistical applications. Salient features of GSTools are its random field generation, its kriging capabilities and its versatile covariance model. It is furthermore integrated with other Python packages, like PyKrige, ogs5py or scikit-gstat, and provides interfaces to meshio and PyVista. Four presented workflows showcase the abilities of GSTools.
Swamini Khurana, Falk Heße, Anke Hildebrandt, and Martin Thullner
Biogeosciences, 19, 665–688, https://doi.org/10.5194/bg-19-665-2022, https://doi.org/10.5194/bg-19-665-2022, 2022
Short summary
Short summary
In this study, we concluded that the residence times of solutes and the Damköhler number (Da) of the biogeochemical reactions in the domain are governing factors for evaluating the impact of spatial heterogeneity of the domain on chemical (such as carbon and nitrogen compounds) removal. We thus proposed a relationship to scale this impact governed by Da. This relationship may be applied in larger domains, thereby resulting in more accurate modelling outcomes of nutrient removal in groundwater.
Miao Jing, Rohini Kumar, Falk Heße, Stephan Thober, Oldrich Rakovec, Luis Samaniego, and Sabine Attinger
Hydrol. Earth Syst. Sci., 24, 1511–1526, https://doi.org/10.5194/hess-24-1511-2020, https://doi.org/10.5194/hess-24-1511-2020, 2020
Short summary
Short summary
This study investigates the response of regional groundwater system to the climate change under three global warming levels (1.5, 2, and 3 °C) in a central German basin. A comprehensive uncertainty analysis is also presented. This study indicates that the variability of responses increases with the amount of global warming, which might affect the cost of managing the groundwater system.
Miao Jing, Falk Heße, Rohini Kumar, Olaf Kolditz, Thomas Kalbacher, and Sabine Attinger
Hydrol. Earth Syst. Sci., 23, 171–190, https://doi.org/10.5194/hess-23-171-2019, https://doi.org/10.5194/hess-23-171-2019, 2019
Short summary
Short summary
We evaluated the uncertainty propagation from the inputs (forcings) and parameters to the predictions of groundwater travel time distributions (TTDs) using a fully distributed numerical model (mHM-OGS) and the StorAge Selection (SAS) function. Through detailed numerical and analytical investigations, we emphasize the key role of recharge estimation in the reliable predictions of TTDs and the good interpretability of the SAS function.
Yoram Rubin, Ching-Fu Chang, Jiancong Chen, Karina Cucchi, Bradley Harken, Falk Heße, and Heather Savoy
Hydrol. Earth Syst. Sci., 22, 5675–5695, https://doi.org/10.5194/hess-22-5675-2018, https://doi.org/10.5194/hess-22-5675-2018, 2018
Short summary
Short summary
This paper addresses questions related to the adoption of stochastic methods in hydrogeology, looking at factors such as environmental regulations, financial incentives, higher education, and the collective feedback loop involving these factors. We show that stochastic hydrogeology's blind spot is in focusing on risk while ignoring uncertainty, to the detriment of its potential clients. The imbalance between the treatments of risk and uncertainty is shown to be common to multiple disciplines.
Miao Jing, Falk Heße, Rohini Kumar, Wenqing Wang, Thomas Fischer, Marc Walther, Matthias Zink, Alraune Zech, Luis Samaniego, Olaf Kolditz, and Sabine Attinger
Geosci. Model Dev., 11, 1989–2007, https://doi.org/10.5194/gmd-11-1989-2018, https://doi.org/10.5194/gmd-11-1989-2018, 2018
Carolin Winter, Tam V. Nguyen, Andreas Musolff, Stefanie R. Lutz, Michael Rode, Rohini Kumar, and Jan H. Fleckenstein
EGUsphere, https://doi.org/10.5194/egusphere-2022-431, https://doi.org/10.5194/egusphere-2022-431, 2022
Short summary
Short summary
We investigated the impact of the severe 2018–2019 Central European drought on riverine nitrate pollution. We found that under severe drought, catchments can lose part of their nitrogen retention capacity due to decreased denitrification and plant uptake, but the time scale of riverine nitrate export responses to drought can be catchment specific. These results imply that severe and prolonged droughts can intensify nitrate pollution and threaten water quality.
Bahar Bahrami, Anke Hildebrandt, Stephan Thober, Corinna Rebmann, Rico Fischer, Luis Samaniego, Oldrich Rakovec, and Rohini Kumar
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2022-87, https://doi.org/10.5194/gmd-2022-87, 2022
Preprint under review for GMD
Short summary
Short summary
Leaf area index (LAI) and gross primary productivity (GPP) are crucial components to carbon cycle, and are closely linked to water cycle in many ways. We develop a Parsimonious Canopy Model (PCM) to simulate GPP and LAI at stand scale, and show its applicability over a diverse range of deciduous broad-leaved forest biomes. With its modular structure, the PCM is able to adapt with existing data requirements, and run in either a stand-alone mode or as an interface linked to hydrologic models.
Sebastian Müller, Lennart Schüler, Alraune Zech, and Falk Heße
Geosci. Model Dev., 15, 3161–3182, https://doi.org/10.5194/gmd-15-3161-2022, https://doi.org/10.5194/gmd-15-3161-2022, 2022
Short summary
Short summary
The GSTools package provides a Python-based platform for geoostatistical applications. Salient features of GSTools are its random field generation, its kriging capabilities and its versatile covariance model. It is furthermore integrated with other Python packages, like PyKrige, ogs5py or scikit-gstat, and provides interfaces to meshio and PyVista. Four presented workflows showcase the abilities of GSTools.
Pia Ebeling, Rohini Kumar, Stefanie R. Lutz, Tam Nguyen, Fanny Sarrazin, Michael Weber, Olaf Büttner, Sabine Attinger, and Andreas Musolff
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2022-6, https://doi.org/10.5194/essd-2022-6, 2022
Revised manuscript under review for ESSD
Short summary
Short summary
Environmental data are critical for understanding and managing ecosystems, including for mitigating degraded water quality. To increase data availability, we here present the first large-sample water quality data set of riverine macronutrient concentrations combined with water quantity, meteorological and nutrient forcing data, and catchment attributes. QUADICA covers 1386 German catchments to facilitate large-sample data-driven and modeling water quality assessments.
Nikolai Knapp, Sabine Attinger, and Andreas Huth
Biogeosciences Discuss., https://doi.org/10.5194/bg-2022-24, https://doi.org/10.5194/bg-2022-24, 2022
Revised manuscript under review for BG
Short summary
Short summary
The biomass of forests is determined by forest growth and mortality. These quantities can be estimated with different methods such as inventories, remote sensing and modelling. These methods are usually being applied at different spatial scales. The scales influence the obtained frequency distributions of biomass, growth and mortality. This study suggests how to transfer between scales, when using forest models of different complexity for a tropical forest.
Swamini Khurana, Falk Heße, Anke Hildebrandt, and Martin Thullner
Biogeosciences, 19, 665–688, https://doi.org/10.5194/bg-19-665-2022, https://doi.org/10.5194/bg-19-665-2022, 2022
Short summary
Short summary
In this study, we concluded that the residence times of solutes and the Damköhler number (Da) of the biogeochemical reactions in the domain are governing factors for evaluating the impact of spatial heterogeneity of the domain on chemical (such as carbon and nitrogen compounds) removal. We thus proposed a relationship to scale this impact governed by Da. This relationship may be applied in larger domains, thereby resulting in more accurate modelling outcomes of nutrient removal in groundwater.
Robert Schweppe, Stephan Thober, Sebastian Müller, Matthias Kelbling, Rohini Kumar, Sabine Attinger, and Luis Samaniego
Geosci. Model Dev., 15, 859–882, https://doi.org/10.5194/gmd-15-859-2022, https://doi.org/10.5194/gmd-15-859-2022, 2022
Short summary
Short summary
The recently released multiscale parameter regionalization (MPR) tool enables
environmental modelers to efficiently use extensive datasets for model setups.
It flexibly ingests the datasets using user-defined data–parameter relationships
and rescales parameter fields to given model resolutions. Modern
land surface models especially benefit from MPR through increased transparency and
flexibility in modeling decisions. Thus, MPR empowers more sound and robust
simulations of the Earth system.
Michael Peichl, Stephan Thober, Luis Samaniego, Bernd Hansjürgens, and Andreas Marx
Hydrol. Earth Syst. Sci., 25, 6523–6545, https://doi.org/10.5194/hess-25-6523-2021, https://doi.org/10.5194/hess-25-6523-2021, 2021
Short summary
Short summary
Using a statistical model that can also take complex systems into account, the most important factors affecting wheat yield in Germany are determined. Different spatial damage potentials are taken into account. In many parts of Germany, yield losses are caused by too much soil water in spring. Negative heat effects as well as damaging soil drought are identified especially for north-eastern Germany. The model is able to explain years with exceptionally high yields (2014) and losses (2003, 2018).
Joni Dehaspe, Fanny Sarrazin, Rohini Kumar, Jan H. Fleckenstein, and Andreas Musolff
Hydrol. Earth Syst. Sci., 25, 6437–6463, https://doi.org/10.5194/hess-25-6437-2021, https://doi.org/10.5194/hess-25-6437-2021, 2021
Short summary
Short summary
Increased nitrate concentrations in surface waters can compromise river ecosystem health. As riverine nitrate uptake is hard to measure, we explore how low-frequency nitrate concentration and discharge observations (that are widely available) can help to identify (in)efficient uptake in river networks. We find that channel geometry and water velocity rather than the biological uptake capacity dominate the nitrate-discharge pattern at the outlet. The former can be used to predict uptake.
Sadaf Nasreen, Markéta Součková, Mijael Rodrigo Vargas Godoy, Ujjwal Singh, Yannis Markonis, Rohini Kumar, Oldrich Rakovec, and Martin Hanel
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2021-282, https://doi.org/10.5194/essd-2021-282, 2021
Preprint under review for ESSD
Short summary
Short summary
This article presents a 500-year reconstructed annual runoff dataset for several European catchments. Several data-driven and hydrological models were used to derive the runoff series using reconstructed precipitation and temperature and a set of proxy data. The simulated runoff was validated using independent observed runoff data and documentary evidence. The validation revealed a good fit between the observed and reconstructed series for 14 catchments, which are available for further analysis.
Bernd Schalge, Gabriele Baroni, Barbara Haese, Daniel Erdal, Gernot Geppert, Pablo Saavedra, Vincent Haefliger, Harry Vereecken, Sabine Attinger, Harald Kunstmann, Olaf A. Cirpka, Felix Ament, Stefan Kollet, Insa Neuweiler, Harrie-Jan Hendricks Franssen, and Clemens Simmer
Earth Syst. Sci. Data, 13, 4437–4464, https://doi.org/10.5194/essd-13-4437-2021, https://doi.org/10.5194/essd-13-4437-2021, 2021
Short summary
Short summary
In this study, a 9-year simulation of complete model output of a coupled atmosphere–land-surface–subsurface model on the catchment scale is discussed. We used the Neckar catchment in SW Germany as the basis of this simulation. Since the dataset includes the full model output, it is not only possible to investigate model behavior and interactions between the component models but also use it as a virtual truth for comparison of, for example, data assimilation experiments.
Friedrich Boeing, Oldrich Rakovech, Rohini Kumar, Luis Samaniego, Martin Schrön, Anke Hildebrandt, Corinna Rebmann, Stephan Thober, Sebastian Müller, Steffen Zacharias, Heye Bogena, Katrin Schneider, Ralf Kiese, and Andreas Marx
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-402, https://doi.org/10.5194/hess-2021-402, 2021
Revised manuscript under review for HESS
Short summary
Short summary
In this paper, we deliver an evaluation of the second generation operational German Drought Monitor (www.ufz.de/duerremonitor) with a state-of-the-art compilation of observed soil moisture data from 40 locations and four different measurement methods in Germany. We show that the expressed stakeholder needs for higher resolution drought information at the one-kilometer scale can be met and that SM dynamics could be moderately improved compared to observations.
Camelia-Eliza Telteu, Hannes Müller Schmied, Wim Thiery, Guoyong Leng, Peter Burek, Xingcai Liu, Julien Eric Stanislas Boulange, Lauren Seaby Andersen, Manolis Grillakis, Simon Newland Gosling, Yusuke Satoh, Oldrich Rakovec, Tobias Stacke, Jinfeng Chang, Niko Wanders, Harsh Lovekumar Shah, Tim Trautmann, Ganquan Mao, Naota Hanasaki, Aristeidis Koutroulis, Yadu Pokhrel, Luis Samaniego, Yoshihide Wada, Vimal Mishra, Junguo Liu, Petra Döll, Fang Zhao, Anne Gädeke, Sam S. Rabin, and Florian Herz
Geosci. Model Dev., 14, 3843–3878, https://doi.org/10.5194/gmd-14-3843-2021, https://doi.org/10.5194/gmd-14-3843-2021, 2021
Short summary
Short summary
We analyse water storage compartments, water flows, and human water use sectors included in 16 global water models that provide simulations for the Inter-Sectoral Impact Model Intercomparison Project phase 2b. We develop a standard writing style for the model equations. We conclude that even though hydrologic processes are often based on similar equations, in the end these equations have been adjusted, or the models have used different values for specific parameters or specific variables.
Alraune Zech, Peter Dietrich, Sabine Attinger, and Georg Teutsch
Hydrol. Earth Syst. Sci., 25, 1–15, https://doi.org/10.5194/hess-25-1-2021, https://doi.org/10.5194/hess-25-1-2021, 2021
Miao Jing, Rohini Kumar, Falk Heße, Stephan Thober, Oldrich Rakovec, Luis Samaniego, and Sabine Attinger
Hydrol. Earth Syst. Sci., 24, 1511–1526, https://doi.org/10.5194/hess-24-1511-2020, https://doi.org/10.5194/hess-24-1511-2020, 2020
Short summary
Short summary
This study investigates the response of regional groundwater system to the climate change under three global warming levels (1.5, 2, and 3 °C) in a central German basin. A comprehensive uncertainty analysis is also presented. This study indicates that the variability of responses increases with the amount of global warming, which might affect the cost of managing the groundwater system.
Sophie Ehrhardt, Rohini Kumar, Jan H. Fleckenstein, Sabine Attinger, and Andreas Musolff
Hydrol. Earth Syst. Sci., 23, 3503–3524, https://doi.org/10.5194/hess-23-3503-2019, https://doi.org/10.5194/hess-23-3503-2019, 2019
Short summary
Short summary
This study shows quantitative and temporal offsets between nitrogen input and riverine output, using time series of three nested catchments in central Germany. The riverine concentrations show lagged reactions to the input, but at the same time exhibit strong inter-annual changes in the relationship between riverine discharge and concentration. The study found a strong retention of nitrogen that is dominantly assigned to a hydrological N legacy, which will affect future stream concentrations.
Stephan Thober, Matthias Cuntz, Matthias Kelbling, Rohini Kumar, Juliane Mai, and Luis Samaniego
Geosci. Model Dev., 12, 2501–2521, https://doi.org/10.5194/gmd-12-2501-2019, https://doi.org/10.5194/gmd-12-2501-2019, 2019
Short summary
Short summary
We present a model that aggregates simulated runoff along a river
(i.e. a routing model). The unique feature of the model is that it
can be run at multiple resolutions without any modifications to the
input data. The model internally (dis-)aggregates all input data to
the resolution given by the user. The model performance does not
depend on the chosen resolution. This allows efficient model
calibration at coarse resolution and subsequent model application at
fine resolution.
Naoki Mizukami, Oldrich Rakovec, Andrew J. Newman, Martyn P. Clark, Andrew W. Wood, Hoshin V. Gupta, and Rohini Kumar
Hydrol. Earth Syst. Sci., 23, 2601–2614, https://doi.org/10.5194/hess-23-2601-2019, https://doi.org/10.5194/hess-23-2601-2019, 2019
Short summary
Short summary
We find that Nash–Sutcliffe (NSE)-based model calibrations result in poor reproduction of high-flow events, such as the annual peak flows that are used for flood frequency estimation. The use of Kling–Gupta efficiency (KGE) results in annual peak flow estimates that are better than from NSE, with only a slight degradation in performance with respect to other related metrics.
Miao Jing, Falk Heße, Rohini Kumar, Olaf Kolditz, Thomas Kalbacher, and Sabine Attinger
Hydrol. Earth Syst. Sci., 23, 171–190, https://doi.org/10.5194/hess-23-171-2019, https://doi.org/10.5194/hess-23-171-2019, 2019
Short summary
Short summary
We evaluated the uncertainty propagation from the inputs (forcings) and parameters to the predictions of groundwater travel time distributions (TTDs) using a fully distributed numerical model (mHM-OGS) and the StorAge Selection (SAS) function. Through detailed numerical and analytical investigations, we emphasize the key role of recharge estimation in the reliable predictions of TTDs and the good interpretability of the SAS function.
Yoram Rubin, Ching-Fu Chang, Jiancong Chen, Karina Cucchi, Bradley Harken, Falk Heße, and Heather Savoy
Hydrol. Earth Syst. Sci., 22, 5675–5695, https://doi.org/10.5194/hess-22-5675-2018, https://doi.org/10.5194/hess-22-5675-2018, 2018
Short summary
Short summary
This paper addresses questions related to the adoption of stochastic methods in hydrogeology, looking at factors such as environmental regulations, financial incentives, higher education, and the collective feedback loop involving these factors. We show that stochastic hydrogeology's blind spot is in focusing on risk while ignoring uncertainty, to the detriment of its potential clients. The imbalance between the treatments of risk and uncertainty is shown to be common to multiple disciplines.
Stefanie R. Lutz, Andrea Popp, Tim van Emmerik, Tom Gleeson, Liz Kalaugher, Karsten Möbius, Tonie Mudde, Brett Walton, Rolf Hut, Hubert Savenije, Louise J. Slater, Anna Solcerova, Cathelijne R. Stoof, and Matthias Zink
Hydrol. Earth Syst. Sci., 22, 3589–3599, https://doi.org/10.5194/hess-22-3589-2018, https://doi.org/10.5194/hess-22-3589-2018, 2018
Short summary
Short summary
Media play a key role in the communication between scientists and the general public. However, the interaction between scientists and journalists is not always straightforward. In this opinion paper, we present insights from hydrologists and journalists into the benefits, aftermath and potential pitfalls of science–media interaction. We aim to encourage scientists to participate in the diverse and evolving media landscape, and we call on the scientific community to support scientists who do so.
Miao Jing, Falk Heße, Rohini Kumar, Wenqing Wang, Thomas Fischer, Marc Walther, Matthias Zink, Alraune Zech, Luis Samaniego, Olaf Kolditz, and Sabine Attinger
Geosci. Model Dev., 11, 1989–2007, https://doi.org/10.5194/gmd-11-1989-2018, https://doi.org/10.5194/gmd-11-1989-2018, 2018
Vimal Mishra, Reepal Shah, Syed Azhar, Harsh Shah, Parth Modi, and Rohini Kumar
Hydrol. Earth Syst. Sci., 22, 2269–2284, https://doi.org/10.5194/hess-22-2269-2018, https://doi.org/10.5194/hess-22-2269-2018, 2018
Michael Peichl, Stephan Thober, Volker Meyer, and Luis Samaniego
Nat. Hazards Earth Syst. Sci., 18, 889–906, https://doi.org/10.5194/nhess-18-889-2018, https://doi.org/10.5194/nhess-18-889-2018, 2018
Short summary
Short summary
Crop yields are routinely derived from meteorological variables, especially temperature. However, the primary water source for plant growth (soil moisture) is neglected. In this study, the predictability of maize yield is investigated using soil moisture or meteorological variables in Germany. The effects of soil moisture dominate those of temperature and are time-dependent. For example, comparatively moist soil conditions in June reduce crop yields, while in August they increase yields.
Mehmet C. Demirel, Juliane Mai, Gorka Mendiguren, Julian Koch, Luis Samaniego, and Simon Stisen
Hydrol. Earth Syst. Sci., 22, 1299–1315, https://doi.org/10.5194/hess-22-1299-2018, https://doi.org/10.5194/hess-22-1299-2018, 2018
Short summary
Short summary
Satellite data offer great opportunities to improve spatial model predictions by means of spatially oriented model evaluations. In this study, satellite images are used to observe spatial patterns of evapotranspiration at the land surface. These spatial patterns are utilized in combination with streamflow observations in a model calibration framework including a novel spatial performance metric tailored to target the spatial pattern performance of a catchment-scale hydrological model.
Andreas Marx, Rohini Kumar, Stephan Thober, Oldrich Rakovec, Niko Wanders, Matthias Zink, Eric F. Wood, Ming Pan, Justin Sheffield, and Luis Samaniego
Hydrol. Earth Syst. Sci., 22, 1017–1032, https://doi.org/10.5194/hess-22-1017-2018, https://doi.org/10.5194/hess-22-1017-2018, 2018
Short summary
Short summary
Hydrological low flows are affected under different levels of future global warming (i.e. 1.5, 2, and 3 K). The multi-model ensemble results show that the change signal amplifies with increasing warming levels. Low flows decrease in the Mediterranean, while they increase in the Alpine and Northern regions. The changes in low flows are significant for regions with relatively large change signals and under higher levels of warming. Adaptation should make use of change and uncertainty information.
Simon Höllering, Jan Wienhöfer, Jürgen Ihringer, Luis Samaniego, and Erwin Zehe
Hydrol. Earth Syst. Sci., 22, 203–220, https://doi.org/10.5194/hess-22-203-2018, https://doi.org/10.5194/hess-22-203-2018, 2018
Short summary
Short summary
Hydrological fingerprints are introduced as response targets for sensitivity analysis and combined with a conventional approach using streamflow data for a temporally resolved sensitivity analysis. The joint benefit of both approaches is presented for several headwater catchments. The approach allows discerning a clarified pattern for parameter influences pinpointed to diverse response characteristics and detecting even slight regional differences.
Luis Samaniego, Rohini Kumar, Stephan Thober, Oldrich Rakovec, Matthias Zink, Niko Wanders, Stephanie Eisner, Hannes Müller Schmied, Edwin H. Sutanudjaja, Kirsten Warrach-Sagi, and Sabine Attinger
Hydrol. Earth Syst. Sci., 21, 4323–4346, https://doi.org/10.5194/hess-21-4323-2017, https://doi.org/10.5194/hess-21-4323-2017, 2017
Short summary
Short summary
We inspect the state-of-the-art of several land surface (LSMs) and hydrologic models (HMs) and show that most do not have consistent and realistic parameter fields for land surface geophysical properties. We propose to use the multiscale parameter regionalization (MPR) technique to solve, at least partly, the scaling problem in LSMs/HMs. A general model protocol is presented to describe how MPR can be applied to a specific model.
Christa D. Peters-Lidard, Martyn Clark, Luis Samaniego, Niko E. C. Verhoest, Tim van Emmerik, Remko Uijlenhoet, Kevin Achieng, Trenton E. Franz, and Ross Woods
Hydrol. Earth Syst. Sci., 21, 3701–3713, https://doi.org/10.5194/hess-21-3701-2017, https://doi.org/10.5194/hess-21-3701-2017, 2017
Short summary
Short summary
In this synthesis of hydrologic scaling and similarity, we assert that it is time for hydrology to embrace a fourth paradigm of data-intensive science. Advances in information-based hydrologic science, coupled with an explosion of hydrologic data and advances in parameter estimation and modeling, have laid the foundation for a data-driven framework for scrutinizing hydrological hypotheses. We call upon the community to develop a focused effort towards a fourth paradigm for hydrology.
Martyn P. Clark, Marc F. P. Bierkens, Luis Samaniego, Ross A. Woods, Remko Uijlenhoet, Katrina E. Bennett, Valentijn R. N. Pauwels, Xitian Cai, Andrew W. Wood, and Christa D. Peters-Lidard
Hydrol. Earth Syst. Sci., 21, 3427–3440, https://doi.org/10.5194/hess-21-3427-2017, https://doi.org/10.5194/hess-21-3427-2017, 2017
Short summary
Short summary
The diversity in hydrologic models has led to controversy surrounding the “correct” approach to hydrologic modeling. In this paper we revisit key modeling challenges on requirements to (1) define suitable model equations, (2) define adequate model parameters, and (3) cope with limitations in computing power. We outline the historical modeling challenges, summarize modeling advances that address these challenges, and define outstanding research needs.
Gabriele Baroni, Matthias Zink, Rohini Kumar, Luis Samaniego, and Sabine Attinger
Hydrol. Earth Syst. Sci., 21, 2301–2320, https://doi.org/10.5194/hess-21-2301-2017, https://doi.org/10.5194/hess-21-2301-2017, 2017
Short summary
Short summary
Three methods are used to characterize the uncertainty in soil properties. The effect on simulated states and fluxes is quantified using a distributed hydrological model. Different impacts are identified as function of the perturbation method, of the model outputs and of the spatio-temporal resolution. The study underlines the importance of a proper characterization of the uncertainty in soil properties for a correct assessment of their role and further improvements in the model application.
Anne F. Van Loon, Rohini Kumar, and Vimal Mishra
Hydrol. Earth Syst. Sci., 21, 1947–1971, https://doi.org/10.5194/hess-21-1947-2017, https://doi.org/10.5194/hess-21-1947-2017, 2017
Short summary
Short summary
Summer 2015 was extremely dry in Europe, hampering groundwater supply to irrigation and drinking water. For effective management, the groundwater situation should be monitored in real time, but data are not available. We tested two methods to estimate groundwater in near-real time, based on satellite data and using the relationship between rainfall and historic groundwater levels. The second method gave a good spatially variable representation of the 2015 groundwater drought in Europe.
Matthias Zink, Rohini Kumar, Matthias Cuntz, and Luis Samaniego
Hydrol. Earth Syst. Sci., 21, 1769–1790, https://doi.org/10.5194/hess-21-1769-2017, https://doi.org/10.5194/hess-21-1769-2017, 2017
Short summary
Short summary
We discuss the estimation of a long-term, high-resolution, continuous and consistent dataset of hydro-meteorological variables for Germany. Here we describe the derivation of national-scale parameter sets and analyze the uncertainty of the estimated hydrologic variables (focusing on the parametric uncertainty). Our study highlights the role of accounting for the parametric uncertainty in model-derived hydrological datasets.
Bernd Schalge, Jehan Rihani, Gabriele Baroni, Daniel Erdal, Gernot Geppert, Vincent Haefliger, Barbara Haese, Pablo Saavedra, Insa Neuweiler, Harrie-Jan Hendricks Franssen, Felix Ament, Sabine Attinger, Olaf A. Cirpka, Stefan Kollet, Harald Kunstmann, Harry Vereecken, and Clemens Simmer
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2016-557, https://doi.org/10.5194/hess-2016-557, 2016
Manuscript not accepted for further review
Short summary
Short summary
In this work we show how we used a coupled atmosphere-land surface-subsurface model at highest possible resolution to create a testbed for data assimilation. The model was able to capture all important processes and interactions between the compartments as well as showing realistic statistical behavior. This proves that using a model as a virtual truth is possible and it will enable us to develop data assimilation methods where states and parameters are updated across compartment.
Simon Höllering, Jürgen Ihringer, Luis Samaniego, and Erwin Zehe
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2016-249, https://doi.org/10.5194/hess-2016-249, 2016
Preprint withdrawn
Alraune Zech and Sabine Attinger
Hydrol. Earth Syst. Sci., 20, 1655–1667, https://doi.org/10.5194/hess-20-1655-2016, https://doi.org/10.5194/hess-20-1655-2016, 2016
Short summary
Short summary
A new method is presented which allows interpreting pumping test in heterogeneous transmissivity fields. Based on radially dependent transmissivity, the effective well flow solution is derived for two cases: the ensemble mean of pumping tests and the drawdown at an individual heterogeneous transmissivity field. The analytical form of the solution allows inversely estimating the parameters of aquifer heterogeneity (mean, variance, and correlation length) from steady-state pumping test data.
Remko C. Nijzink, Luis Samaniego, Juliane Mai, Rohini Kumar, Stephan Thober, Matthias Zink, David Schäfer, Hubert H. G. Savenije, and Markus Hrachowitz
Hydrol. Earth Syst. Sci., 20, 1151–1176, https://doi.org/10.5194/hess-20-1151-2016, https://doi.org/10.5194/hess-20-1151-2016, 2016
Short summary
Short summary
The heterogeneity of landscapes in river basins strongly affects the hydrological response. In this study, the distributed mesoscale Hydrologic Model (mHM) was equipped with additional processes identified by landscapes within one modelling cell. Seven study catchments across Europe were selected to test the value of this additional sub-grid heterogeneity. In addition, the models were constrained based on expert knowledge. Generally, the modifications improved the representation of low flows.
Rohini Kumar, Jude L. Musuuza, Anne F. Van Loon, Adriaan J. Teuling, Roland Barthel, Jurriaan Ten Broek, Juliane Mai, Luis Samaniego, and Sabine Attinger
Hydrol. Earth Syst. Sci., 20, 1117–1131, https://doi.org/10.5194/hess-20-1117-2016, https://doi.org/10.5194/hess-20-1117-2016, 2016
Short summary
Short summary
In a maiden attempt, we performed a multiscale evaluation of the widely used SPI to characterize local- and regional-scale groundwater (GW) droughts using observations at 2040 groundwater wells in Germany and the Netherlands. From this data-based exploratory analysis, we provide sufficient evidence regarding the inability of the SPI to characterize GW drought events, and stress the need for more GW observations and accounting for regional hydrogeological characteristics in GW drought monitoring.
S. Gharari, M. Shafiei, M. Hrachowitz, R. Kumar, F. Fenicia, H. V. Gupta, and H. H. G. Savenije
Hydrol. Earth Syst. Sci., 18, 4861–4870, https://doi.org/10.5194/hess-18-4861-2014, https://doi.org/10.5194/hess-18-4861-2014, 2014
M. Bechmann, C. Schneider, A. Carminati, D. Vetterlein, S. Attinger, and A. Hildebrandt
Hydrol. Earth Syst. Sci., 18, 4189–4206, https://doi.org/10.5194/hess-18-4189-2014, https://doi.org/10.5194/hess-18-4189-2014, 2014
H. V. Gupta, C. Perrin, G. Blöschl, A. Montanari, R. Kumar, M. Clark, and V. Andréassian
Hydrol. Earth Syst. Sci., 18, 463–477, https://doi.org/10.5194/hess-18-463-2014, https://doi.org/10.5194/hess-18-463-2014, 2014
Related subject area
Subject: Catchment hydrology | Techniques and Approaches: Modelling approaches
Teaching hydrological modelling: illustrating model structure uncertainty with a ready-to-use computational exercise
Effects of spatial and temporal variability in surface water inputs on streamflow generation and cessation in the rain–snow transition zone
Quantifying multi-year hydrological memory with Catchment Forgetting Curves
On constraining a lumped hydrological model with both piezometry and streamflow: results of a large sample evaluation
Influences of land use changes on the dynamics of water quantity and quality in the German lowland catchment of the Stör
Impact of spatial distribution information of rainfall in runoff simulation using deep learning method
Towards effective drought monitoring in the Middle East and North Africa (MENA) region: implications from assimilating leaf area index and soil moisture into the Noah-MP land surface model for Morocco
The effects of spatial and temporal resolution of gridded meteorological forcing on watershed hydrological responses
Hydrological response of a peri-urban catchment exploiting conventional and unconventional rainfall observations: the case study of Lambro Catchment
Assessing hydrological sensitivity of grassland basins in the Canadian Prairies to climate using a basin classification-based virtual modelling approach
The value of satellite soil moisture and snow cover data for the transfer of hydrological model parameters to ungauged sites
Storylines of UK drought based on the 2010–2012 event
Uncertainty estimation with deep learning for rainfall–runoff modeling
Applying non-parametric Bayesian networks to estimate maximum daily river discharge: potential and challenges
The Great Lakes Runoff Intercomparison Project Phase 4: The Great Lakes (GRIP-GL)
Contrasting changes in hydrological processes of the Volta River basin under global warming
A retrospective on hydrological catchment modelling based on half a century with the HBV model
Ecosystem adaptation to climate change: the sensitivity of hydrological predictions to time-dynamic model parameters
Rainfall–runoff relationships at event scale in western Mediterranean ephemeral streams
Combined impacts of uncertainty in precipitation and air temperature on simulated mountain system recharge from an integrated hydrologic model
Simultaneous assimilation of water levels from river gauges and satellite flood maps for near-real-time flood mapping
Remote sensing-aided rainfall–runoff modeling in the tropics of Costa Rica
Drivers of drought-induced shifts in the water balance through a Budyko approach
Regionalization of hydrological model parameters using gradient boosting machine
Aquifer recharge in the Piedmont Alpine zone: historical trends and future scenarios
Improved representation of agricultural land use and crop management for large-scale hydrological impact simulation in Africa using SWAT+
How well are we able to close the water budget at the global scale?
Bending of the concentration discharge relationship can inform about in-stream nitrate removal
Quantifying the impacts of land cover change on hydrological responses in the Mahanadi river basin in India
Identification of the contributing area to river discharge during low-flow periods
Simulating sediment discharge at water treatment plants under different land use scenarios using cascade modelling with an expert-based erosion-runoff model and a deep neural network
In-stream Escherichia coli modeling using high-temporal-resolution data with deep learning and process-based models
Can we use precipitation isotope outputs of isotopic general circulation models to improve hydrological modeling in large mountainous catchments on the Tibetan Plateau?
Small-scale topography explains patterns and dynamics of dissolved organic carbon exports from the riparian zone of a temperate, forested catchment
Revisiting parameter sensitivities in the Variable Infiltration Capacity model
Flood forecasting with machine learning models in an operational framework
Effects of spatial resolution of terrain models on modelled discharge and soil loss in Oaxaca, Mexico
Benchmarking data-driven rainfall–runoff models in Great Britain: a comparison of long short-term memory (LSTM)-based models with four lumped conceptual models
Numerical daemons of hydrological models are summoned by extreme precipitation
How is Baseflow Index (BFI) impacted by water resource management practices?
Technical note: RAT – a robustness assessment test for calibrated and uncalibrated hydrological models
Analysis of high streamflow extremes in climate change studies: How do we calibrate hydrological models?
Reduction of vegetation-accessible water storage capacity after deforestation affects catchment travel time distributions and increases young water fractions in a headwater catchment
Combining split-sample testing and hidden Markov modelling to assess the robustness of hydrological models
Diel streamflow cycles suggest more sensitive snowmelt-driven streamflow to climate change than land surface modeling
Deep learning rainfall-runoff predictions of extreme events
Hydrologically informed machine learning for rainfall–runoff modelling: towards distributed modelling
Development and evaluation of 0.05° terrestrial water storage estimates using Community Atmosphere Biosphere Land Exchange (CABLE) land surface model and assimilation of GRACE data
Conditioning ensemble streamflow prediction with the North Atlantic Oscillation improves skill at longer lead times
Technical note: Hydrology modelling R packages – a unified analysis of models and practicalities from a user perspective
Wouter J. M. Knoben and Diana Spieler
Hydrol. Earth Syst. Sci., 26, 3299–3314, https://doi.org/10.5194/hess-26-3299-2022, https://doi.org/10.5194/hess-26-3299-2022, 2022
Short summary
Short summary
This paper introduces educational materials that can be used to teach students about model structure uncertainty in hydrological modelling. There are many different hydrological models and differences between these models impact their usefulness in different places. Such models are often used to support decision making about water resources and to perform hydrological science, and it is thus important for students to understand that model choice matters.
Leonie Kiewiet, Ernesto Trujillo, Andrew Hedrick, Scott Havens, Katherine Hale, Mark Seyfried, Stephanie Kampf, and Sarah E. Godsey
Hydrol. Earth Syst. Sci., 26, 2779–2796, https://doi.org/10.5194/hess-26-2779-2022, https://doi.org/10.5194/hess-26-2779-2022, 2022
Short summary
Short summary
Climate change affects precipitation phase, which can propagate into changes in streamflow timing and magnitude. This study examines how variations in rainfall and snowmelt affect discharge. We found that annual discharge and stream cessation depended on the magnitude and timing of rainfall and snowmelt and on the snowpack melt-out date. This highlights the importance of precipitation timing and emphasizes the need for spatiotemporally distributed simulations of snowpack and rainfall dynamics.
Alban de Lavenne, Vazken Andréassian, Louise Crochemore, Göran Lindström, and Berit Arheimer
Hydrol. Earth Syst. Sci., 26, 2715–2732, https://doi.org/10.5194/hess-26-2715-2022, https://doi.org/10.5194/hess-26-2715-2022, 2022
Short summary
Short summary
A watershed remembers the past to some extent, and this memory influences its behavior. This memory is defined by the ability to store past rainfall for several years. By releasing this water into the river or the atmosphere, it tends to forget. We describe how this memory fades over time in France and Sweden. A few watersheds show a multi-year memory. It increases with the influence of groundwater or dry conditions. After 3 or 4 years, they behave independently of the past.
Antoine Pelletier and Vazken Andréassian
Hydrol. Earth Syst. Sci., 26, 2733–2758, https://doi.org/10.5194/hess-26-2733-2022, https://doi.org/10.5194/hess-26-2733-2022, 2022
Short summary
Short summary
A large part of the water cycle takes place underground. In many places, the soil stores water during the wet periods and can release it all year long, which is particularly visible when the river level is low. Modelling tools that are used to simulate and forecast the behaviour of the river struggle to represent this. We improved an existing model to take underground water into account using measurements of the soil water content. Results allow us make recommendations for model users.
Chaogui Lei, Paul D. Wagner, and Nicola Fohrer
Hydrol. Earth Syst. Sci., 26, 2561–2582, https://doi.org/10.5194/hess-26-2561-2022, https://doi.org/10.5194/hess-26-2561-2022, 2022
Short summary
Short summary
We presented an integrated approach to hydrologic modeling and partial least squares regression quantifying land use change impacts on water and nutrient balance over 3 decades. Results highlight that most variations (70 %–80 %) in water quantity and quality variables are explained by changes in land use class-specific areas and landscape metrics. Arable land influences water quantity and quality the most. The study provides insights on water resources management in rural lowland catchments.
Yang Wang and Hassan A. Karimi
Hydrol. Earth Syst. Sci., 26, 2387–2403, https://doi.org/10.5194/hess-26-2387-2022, https://doi.org/10.5194/hess-26-2387-2022, 2022
Short summary
Short summary
We found that rainfall data with spatial information can improve the model's performance, especially when simulating the future multi-day discharges. We did not observe that regional LSTM as a regional model achieved better results than LSTM as individual model. This conclusion applies to both one-day and multi-day simulations. However, we found that using spatially distributed rainfall data can reduce the difference between individual LSTM and regional LSTM.
Wanshu Nie, Sujay V. Kumar, Kristi R. Arsenault, Christa D. Peters-Lidard, Iliana E. Mladenova, Karim Bergaoui, Abheera Hazra, Benjamin F. Zaitchik, Sarith P. Mahanama, Rachael McDonnell, David M. Mocko, and Mahdi Navari
Hydrol. Earth Syst. Sci., 26, 2365–2386, https://doi.org/10.5194/hess-26-2365-2022, https://doi.org/10.5194/hess-26-2365-2022, 2022
Short summary
Short summary
The MENA (Middle East and North Africa) region faces significant food and water insecurity and hydrological hazards. Here we investigate the value of assimilating remote sensing data sets into an Earth system model to help build an effective drought monitoring system and support risk mitigation and management by countries in the region. We highlight incorporating satellite-informed vegetation conditions into the model as being one of the key processes for a successful application for the region.
Pin Shuai, Xingyuan Chen, Utkarsh Mital, Ethan T. Coon, and Dipankar Dwivedi
Hydrol. Earth Syst. Sci., 26, 2245–2276, https://doi.org/10.5194/hess-26-2245-2022, https://doi.org/10.5194/hess-26-2245-2022, 2022
Short summary
Short summary
Using an integrated watershed model, we compared simulated watershed hydrologic variables driven by three publicly available gridded meteorological forcings (GMFs) at various spatial and temporal resolutions. Our results demonstrated that spatially distributed variables are sensitive to the spatial resolution of the GMF. The temporal resolution of the GMF impacts the dynamics of watershed responses. The choice of GMF depends on the quantity of interest and its spatial and temporal scales.
Greta Cazzaniga, Carlo De Michele, Michele D'Amico, Cristina Deidda, Antonio Ghezzi, and Roberto Nebuloni
Hydrol. Earth Syst. Sci., 26, 2093–2111, https://doi.org/10.5194/hess-26-2093-2022, https://doi.org/10.5194/hess-26-2093-2022, 2022
Short summary
Short summary
Rainfall estimates are usually obtained from rain gauges, weather radars, or satellites. An alternative is the measurement of the signal loss induced by rainfall on commercial microwave links (CMLs). In this work, we assess the hydrologic response of Lambro Basin when CML-retrieved rainfall is used as model input. CML estimates agree with rain gauge data. CML-driven discharge simulations show performance comparable to that from rain gauges if a CML-based calibration of the model is undertaken.
Christopher Spence, Zhihua He, Kevin R. Shook, Balew A. Mekonnen, John W. Pomeroy, Colin J. Whitfield, and Jared D. Wolfe
Hydrol. Earth Syst. Sci., 26, 1801–1819, https://doi.org/10.5194/hess-26-1801-2022, https://doi.org/10.5194/hess-26-1801-2022, 2022
Short summary
Short summary
We determined how snow and flow in small creeks change with temperature and precipitation in the Canadian Prairie, a region where water resources are often under stress. We tried something new. Every watershed in the region was placed in one of seven groups based on their landscape traits. We selected one of these groups and used its traits to build a model of snow and streamflow. It worked well, and by the 2040s there may be 20 %–40 % less snow and 30 % less streamflow than the 1980s.
Rui Tong, Juraj Parajka, Borbála Széles, Isabella Greimeister-Pfeil, Mariette Vreugdenhil, Jürgen Komma, Peter Valent, and Günter Blöschl
Hydrol. Earth Syst. Sci., 26, 1779–1799, https://doi.org/10.5194/hess-26-1779-2022, https://doi.org/10.5194/hess-26-1779-2022, 2022
Short summary
Short summary
The role and impact of using additional data (other than runoff) for the prediction of daily hydrographs in ungauged basins are not well understood. In this study, we assessed the model performance in terms of runoff, soil moisture, and snow cover predictions with the existing regionalization approaches. Results show that the best transfer methods are the similarity and the kriging approaches. The performance of the transfer methods differs between lowland and alpine catchments.
Wilson C. H. Chan, Theodore G. Shepherd, Katie Facer-Childs, Geoff Darch, and Nigel W. Arnell
Hydrol. Earth Syst. Sci., 26, 1755–1777, https://doi.org/10.5194/hess-26-1755-2022, https://doi.org/10.5194/hess-26-1755-2022, 2022
Short summary
Short summary
We select the 2010–2012 UK drought and investigate an alternative unfolding of the drought from changes to its attributes. We created storylines of drier preconditions, alternative seasonal contributions, a third dry winter, and climate change. Storylines of the 2010–2012 drought show alternative situations that could have resulted in worse conditions than observed. Event-based storylines exploring plausible situations are used that may lead to high impacts and help stress test existing systems.
Daniel Klotz, Frederik Kratzert, Martin Gauch, Alden Keefe Sampson, Johannes Brandstetter, Günter Klambauer, Sepp Hochreiter, and Grey Nearing
Hydrol. Earth Syst. Sci., 26, 1673–1693, https://doi.org/10.5194/hess-26-1673-2022, https://doi.org/10.5194/hess-26-1673-2022, 2022
Short summary
Short summary
This contribution evaluates distributional runoff predictions from deep-learning-based approaches. We propose a benchmarking setup and establish four strong baselines. The results show that accurate, precise, and reliable uncertainty estimation can be achieved with deep learning.
Elisa Ragno, Markus Hrachowitz, and Oswaldo Morales-Nápoles
Hydrol. Earth Syst. Sci., 26, 1695–1711, https://doi.org/10.5194/hess-26-1695-2022, https://doi.org/10.5194/hess-26-1695-2022, 2022
Short summary
Short summary
We explore the ability of non-parametric Bayesian networks to reproduce maximum daily discharge in a given month in a catchment when the remaining hydro-meteorological and catchment attributes are known. We show that a saturated network evaluated in an individual catchment can reproduce statistical characteristics of discharge in about ~ 40 % of the cases, while challenges remain when a saturated network considering all the catchments together is evaluated.
Juliane Mai, Hongren Shen, Bryan A. Tolson, Étienne Gaborit, Richard Arsenault, James R. Craig, Vincent Fortin, Lauren M. Fry, Martin Gauch, Daniel Klotz, Frederik Kratzert, Nicole O'Brien, Daniel G. Princz, Sinan Rasiya Koya, Tirthankar Roy, Frank Seglenieks, Narayan K. Shrestha, André G. T. Temgoua, Vincent Vionnet, and Jonathan W. Waddell
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2022-113, https://doi.org/10.5194/hess-2022-113, 2022
Revised manuscript accepted for HESS
Short summary
Short summary
Model intercomparison studies are carried out to test various models and compare the quality of their outputs over the same domain. In this study, 13 diverse models setup using the same input data are evaluated over the Great Lakes region. Various model outputs – such as streamflow, evaporation, soil moisture, and amount of snow on the ground – are compared using standardized methods and metrics. The basin-wise model outputs and observations are made available through an interactive website.
Moctar Dembélé, Mathieu Vrac, Natalie Ceperley, Sander J. Zwart, Josh Larsen, Simon J. Dadson, Grégoire Mariéthoz, and Bettina Schaefli
Hydrol. Earth Syst. Sci., 26, 1481–1506, https://doi.org/10.5194/hess-26-1481-2022, https://doi.org/10.5194/hess-26-1481-2022, 2022
Short summary
Short summary
Climate change impacts on water resources in the Volta River basin are investigated under various global warming scenarios. Results reveal contrasting changes in future hydrological processes and water availability, depending on greenhouse gas emission scenarios, with implications for floods and drought occurrence over the 21st century. These findings provide insights for the elaboration of regional adaptation and mitigation strategies for climate change.
Jan Seibert and Sten Bergström
Hydrol. Earth Syst. Sci., 26, 1371–1388, https://doi.org/10.5194/hess-26-1371-2022, https://doi.org/10.5194/hess-26-1371-2022, 2022
Short summary
Short summary
Hydrological catchment models are commonly used as the basis for water resource management planning. The HBV model, which is a typical example of such a model, was first applied about 50 years ago in Sweden. We describe and reflect on the model development and applications. The aim is to provide an understanding of the background of model development and a basis for addressing the balance between model complexity and data availability that will continue to face hydrologists in the future.
Laurène J. E. Bouaziz, Emma E. Aalbers, Albrecht H. Weerts, Mark Hegnauer, Hendrik Buiteveld, Rita Lammersen, Jasper Stam, Eric Sprokkereef, Hubert H. G. Savenije, and Markus Hrachowitz
Hydrol. Earth Syst. Sci., 26, 1295–1318, https://doi.org/10.5194/hess-26-1295-2022, https://doi.org/10.5194/hess-26-1295-2022, 2022
Short summary
Short summary
Assuming stationarity of hydrological systems is no longer appropriate when considering land use and climate change. We tested the sensitivity of hydrological predictions to changes in model parameters that reflect ecosystem adaptation to climate and potential land use change. We estimated a 34 % increase in the root zone storage parameter under +2 K global warming, resulting in up to 15 % less streamflow in autumn, due to 14 % higher summer evaporation, compared to a stationary system.
Roberto Serrano-Notivoli, Alberto Martínez-Salvador, Rafael García-Lorenzo, David Espín-Sánchez, and Carmelo Conesa-García
Hydrol. Earth Syst. Sci., 26, 1243–1260, https://doi.org/10.5194/hess-26-1243-2022, https://doi.org/10.5194/hess-26-1243-2022, 2022
Short summary
Short summary
Ephemeral streams in the western Mediterranean area are driven by the duration, magnitude, and intensity of rainfall events (REs). A detailed statistical analysis showed that the average RE (1.2 d and 1.5 mm) is not enough to generate new flow, which is only guaranteed by events occurring in return periods from 2 to > 50 years. REs explain near to 75 % of new flow, meaning that terrain and lithological characteristics play a fundamental role.
Adam P. Schreiner-McGraw and Hoori Ajami
Hydrol. Earth Syst. Sci., 26, 1145–1164, https://doi.org/10.5194/hess-26-1145-2022, https://doi.org/10.5194/hess-26-1145-2022, 2022
Short summary
Short summary
We assess the impact of uncertainty in measurements of precipitation and air temperature on simulated groundwater processes in a mountainous watershed. We illustrate the role of topography in controlling how uncertainty in the input datasets propagates through the soil and into the groundwater. While the focus of previous investigations has been on the impact of precipitation uncertainty, we show that air temperature uncertainty is equally important in controlling the groundwater recharge.
Antonio Annis, Fernando Nardi, and Fabio Castelli
Hydrol. Earth Syst. Sci., 26, 1019–1041, https://doi.org/10.5194/hess-26-1019-2022, https://doi.org/10.5194/hess-26-1019-2022, 2022
Short summary
Short summary
In this work, we proposed a multi-source data assimilation framework for near-real-time flood mapping. We used a quasi-2D hydraulic model to update model states by injecting both stage gauge observations and satellite-derived flood extents. Results showed improvements in terms of water level prediction and reduction of flood extent uncertainty when assimilating both stage gauges and satellite images with respect to the disjoint assimilation of both observations.
Saúl Arciniega-Esparza, Christian Birkel, Andrés Chavarría-Palma, Berit Arheimer, and José Agustín Breña-Naranjo
Hydrol. Earth Syst. Sci., 26, 975–999, https://doi.org/10.5194/hess-26-975-2022, https://doi.org/10.5194/hess-26-975-2022, 2022
Short summary
Short summary
In the humid tropics, a notoriously data-scarce region, we need to find alternatives in order to reasonably apply hydrological models. Here, we tested remotely sensed rainfall data in order to drive a model for Costa Rica, and we evaluated the simulations against evapotranspiration satellite products. We found that our model was able to reasonably simulate the water balance and streamflow dynamics of over 600 catchments where the satellite data helped to reduce the model uncertainties.
Tessa Maurer, Francesco Avanzi, Steven D. Glaser, and Roger C. Bales
Hydrol. Earth Syst. Sci., 26, 589–607, https://doi.org/10.5194/hess-26-589-2022, https://doi.org/10.5194/hess-26-589-2022, 2022
Short summary
Short summary
Predicting how much water will end up in rivers is more difficult during droughts because the relationship between precipitation and streamflow can change in unexpected ways. We differentiate between changes that are predictable based on the weather patterns and those harder to predict because they depend on the land and vegetation of a particular region. This work helps clarify why models are less accurate during droughts and helps predict how much water will be available for human use.
Zhihong Song, Jun Xia, Gangsheng Wang, Dunxian She, Chen Hu, and Si Hong
Hydrol. Earth Syst. Sci., 26, 505–524, https://doi.org/10.5194/hess-26-505-2022, https://doi.org/10.5194/hess-26-505-2022, 2022
Short summary
Short summary
We performed a machine learning approach to regionalize the parameters of a China-wide hydrological model by linking six model parameters with 10 physical attributes (terrain and soil properties). The results show the superiority of machine-learning-based regionalization approach compared with the traditional linear regression method in ungauged regions. We also obtained the relative importance of attributes against model parameters.
Elisa Brussolo, Elisa Palazzi, Jost von Hardenberg, Giulio Masetti, Gianna Vivaldo, Maurizio Previati, Davide Canone, Davide Gisolo, Ivan Bevilacqua, Antonello Provenzale, and Stefano Ferraris
Hydrol. Earth Syst. Sci., 26, 407–427, https://doi.org/10.5194/hess-26-407-2022, https://doi.org/10.5194/hess-26-407-2022, 2022
Short summary
Short summary
In this study, we evaluate the past, present and future quantity of groundwater potentially available for drinking purposes in the metropolitan area of Turin, north-western Italy. In order to effectively manage water resources, a knowledge of the water cycle components is necessary, including precipitation, evapotranspiration and subsurface reservoirs. All these components have been carefully evaluated in this paper, using observational datasets and modelling approaches.
Albert Nkwasa, Celray James Chawanda, Jonas Jägermeyr, and Ann van Griensven
Hydrol. Earth Syst. Sci., 26, 71–89, https://doi.org/10.5194/hess-26-71-2022, https://doi.org/10.5194/hess-26-71-2022, 2022
Short summary
Short summary
We present an approach on how to incorporate crop phenology in a regional hydrological model using decision tables and global datasets of rainfed and irrigated cropland with the associated cropping calendar and management practices. Results indicate improved temporal patterns of leaf area index (LAI) and evapotranspiration (ET) simulations in comparison with remote sensing data. In addition, the improvement of the cropping season also helps to improve soil erosion estimates in cultivated areas.
Fanny Lehmann, Bramha Dutt Vishwakarma, and Jonathan Bamber
Hydrol. Earth Syst. Sci., 26, 35–54, https://doi.org/10.5194/hess-26-35-2022, https://doi.org/10.5194/hess-26-35-2022, 2022
Short summary
Short summary
Many data sources are available to evaluate components of the water cycle (precipitation, evapotranspiration, runoff, and terrestrial water storage). Despite this variety, it remains unclear how different combinations of datasets satisfy the conservation of mass. We conducted the most comprehensive analysis of water budget closure on a global scale to date. Our results can serve as a basis to select appropriate datasets for regional hydrological studies.
Joni Dehaspe, Fanny Sarrazin, Rohini Kumar, Jan H. Fleckenstein, and Andreas Musolff
Hydrol. Earth Syst. Sci., 25, 6437–6463, https://doi.org/10.5194/hess-25-6437-2021, https://doi.org/10.5194/hess-25-6437-2021, 2021
Short summary
Short summary
Increased nitrate concentrations in surface waters can compromise river ecosystem health. As riverine nitrate uptake is hard to measure, we explore how low-frequency nitrate concentration and discharge observations (that are widely available) can help to identify (in)efficient uptake in river networks. We find that channel geometry and water velocity rather than the biological uptake capacity dominate the nitrate-discharge pattern at the outlet. The former can be used to predict uptake.
Shaini Naha, Miguel Angel Rico-Ramirez, and Rafael Rosolem
Hydrol. Earth Syst. Sci., 25, 6339–6357, https://doi.org/10.5194/hess-25-6339-2021, https://doi.org/10.5194/hess-25-6339-2021, 2021
Short summary
Short summary
Rapid growth in population in developing countries leads to an increase in food demand, and as a consequence, percentages of land are being converted to cropland which alters river flow processes. This study describes how the hydrology of a flood-prone river basin in India would respond to the current and future changes in land cover. Our findings indicate that the recurrent flood events occurring in the basin might be influenced by these changes in land cover at the catchment scale.
Maxime Gillet, Corinne Le Gal La Salle, Pierre Alain Ayral, Somar Khaska, Philippe Martin, and Patrick Verdoux
Hydrol. Earth Syst. Sci., 25, 6261–6281, https://doi.org/10.5194/hess-25-6261-2021, https://doi.org/10.5194/hess-25-6261-2021, 2021
Short summary
Short summary
This paper aims at identifying the key reservoirs sustaining river low flow during dry summer. The reservoirs are discriminated based on the geological nature of the formations and the geochemical signature of groundwater. Results show the increasing importance to low-flow support of a specific reservoir, showing only a limited outcrop area and becoming preponderant in the heart of the dry season. This finding will contribute to improving the protective measures for preserving low flows.
Edouard Patault, Valentin Landemaine, Jérôme Ledun, Arnaud Soulignac, Matthieu Fournier, Jean-François Ouvry, Olivier Cerdan, and Benoit Laignel
Hydrol. Earth Syst. Sci., 25, 6223–6238, https://doi.org/10.5194/hess-25-6223-2021, https://doi.org/10.5194/hess-25-6223-2021, 2021
Short summary
Short summary
The goal of this study was to assess the sediment discharge variability at a water treatment plant (Normandy, France) according to multiple realistic land use scenarios. We developed a new cascade modelling approach and simulations suggested that coupling eco-engineering and best farming practices can significantly reduce the sediment discharge (up to 80 %).
Ather Abbas, Sangsoo Baek, Norbert Silvera, Bounsamay Soulileuth, Yakov Pachepsky, Olivier Ribolzi, Laurie Boithias, and Kyung Hwa Cho
Hydrol. Earth Syst. Sci., 25, 6185–6202, https://doi.org/10.5194/hess-25-6185-2021, https://doi.org/10.5194/hess-25-6185-2021, 2021
Short summary
Short summary
Correct estimation of fecal indicator bacteria in surface waters is critical for public health. Process-driven models and recently data-driven models have been applied for water quality modeling; however, a systematic comparison for simulation of E. coli is missing in the literature. We compared performance of process-driven (HSPF) and data-driven (LSTM) models for E. coli simulation. We show that LSTM can be an alternative to process-driven models for estimation of E. coli in surface waters.
Yi Nan, Zhihua He, Fuqiang Tian, Zhongwang Wei, and Lide Tian
Hydrol. Earth Syst. Sci., 25, 6151–6172, https://doi.org/10.5194/hess-25-6151-2021, https://doi.org/10.5194/hess-25-6151-2021, 2021
Short summary
Short summary
Hydrological modeling has large problems of uncertainty in cold regions. Tracer-aided hydrological models are increasingly used to reduce uncertainty and refine the parameterizations of hydrological processes, with limited application in large basins due to the unavailability of spatially distributed precipitation isotopes. This study explored the utility of isotopic general circulation models in driving a tracer-aided hydrological model in a large basin on the Tibetan Plateau.
Benedikt J. Werner, Oliver J. Lechtenfeld, Andreas Musolff, Gerrit H. de Rooij, Jie Yang, Ralf Gründling, Ulrike Werban, and Jan H. Fleckenstein
Hydrol. Earth Syst. Sci., 25, 6067–6086, https://doi.org/10.5194/hess-25-6067-2021, https://doi.org/10.5194/hess-25-6067-2021, 2021
Short summary
Short summary
Export of dissolved organic carbon (DOC) from riparian zones (RZs) is an important yet poorly understood component of the catchment carbon budget. This study chemically and spatially classifies DOC source zones within a RZ of a small catchment to assess DOC export patterns. Results highlight that DOC export from only a small fraction of the RZ with distinct DOC composition dominates overall DOC export. The application of a spatial, topographic proxy can be used to improve DOC export models.
Ulises Sepúlveda, Pablo A. Mendoza, Naoki Mizukami, and Andrew J. Newman
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-550, https://doi.org/10.5194/hess-2021-550, 2021
Revised manuscript accepted for HESS
Short summary
Short summary
This paper characterizes parameter sensitivities across > 5,500 grid cells for a commonly used macro-scale hydrological model, including a suite of eight performance metrics and 43 soil, vegetation and snow parameters. The results show that the model is highly overparameterized and, more importantly, help to provide guidance on the most relevant parameters for specific target processes across diverse climatic types.
Sella Nevo, Efrat Morin, Adi Gerzi Rosenthal, Asher Metzger, Chen Barshai, Dana Weitzner, Dafi Voloshin, Frederik Kratzert, Gal Elidan, Gideon Dror, Gregory Begelman, Grey Nearing, Guy Shalev, Hila Noga, Ira Shavitt, Liora Yuklea, Moriah Royz, Niv Giladi, Nofar Peled Levi, Ofir Reich, Oren Gilon, Ronnie Maor, Shahar Timnat, Tal Shechter, Vladimir Anisimov, Yotam Gigi, Yuval Levin, Zach Moshe, Zvika Ben-Haim, Avinatan Hassidim, and Yossi Matias
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-554, https://doi.org/10.5194/hess-2021-554, 2021
Revised manuscript accepted for HESS
Short summary
Short summary
Early flood warnings are one of the most effective tools to save lives and goods. Machine learning models can improve flood prediction accuracy but their use in operational frameworks is limited. The paper presents a flood warning system, operational in India and Bangladesh, that uses machine learning models for forecasting river stage and flood inundation maps, and discusses the models’ performances. In 2021 more than 100M flood alerts were sent to people near rivers over an area of 287,000 km2.
Sergio Naranjo, Francelino A. Rodrigues Jr., Georg Cadisch, Santiago Lopez-Ridaura, Mariela Fuentes Ponce, and Carsten Marohn
Hydrol. Earth Syst. Sci., 25, 5561–5588, https://doi.org/10.5194/hess-25-5561-2021, https://doi.org/10.5194/hess-25-5561-2021, 2021
Short summary
Short summary
We integrate a spatially explicit soil erosion model with plot- and watershed-scale characterization and high-resolution drone imagery to assess the effect of spatial resolution digital terrain models (DTMs) on discharge and soil loss. Results showed reduction in slope due to resampling down of DTM. Higher resolution translates to higher slope, denser fluvial system, and extremer values of soil loss, reducing concentration time and increasing soil loss at the outlet. The best resolution was 4 m.
Thomas Lees, Marcus Buechel, Bailey Anderson, Louise Slater, Steven Reece, Gemma Coxon, and Simon J. Dadson
Hydrol. Earth Syst. Sci., 25, 5517–5534, https://doi.org/10.5194/hess-25-5517-2021, https://doi.org/10.5194/hess-25-5517-2021, 2021
Short summary
Short summary
We used deep learning (DL) models to simulate the amount of water moving through a river channel (discharge) based on the rainfall, temperature and potential evaporation in the previous days. We tested the DL models on catchments across Great Britain finding that the model can accurately simulate hydrological systems across a variety of catchment conditions. Ultimately, the model struggled most in areas where there is chalky bedrock and where human influence on the catchment is large.
Peter T. La Follette, Adriaan J. Teuling, Nans Addor, Martyn Clark, Koen Jansen, and Lieke A. Melsen
Hydrol. Earth Syst. Sci., 25, 5425–5446, https://doi.org/10.5194/hess-25-5425-2021, https://doi.org/10.5194/hess-25-5425-2021, 2021
Short summary
Short summary
Hydrological models are useful tools that allow us to predict distributions and movement of water. A variety of numerical methods are used by these models. We demonstrate which numerical methods yield large errors when subject to extreme precipitation. As the climate is changing such that extreme precipitation is more common, we find that some numerical methods are better suited for use in hydrological models. Also, we find that many current hydrological models use relatively inaccurate methods.
John P. Bloomfield, Mengyi Gong, Benjamin P. Marchant, Gemma Coxon, and Nans Addor
Hydrol. Earth Syst. Sci., 25, 5355–5379, https://doi.org/10.5194/hess-25-5355-2021, https://doi.org/10.5194/hess-25-5355-2021, 2021
Short summary
Short summary
Groundwater provides flow, known as baseflow, to surface streams and rivers. It is important as it sustains the flow of many rivers at times of water stress. However, it may be affected by water management practices. Statistical models have been used to show that abstraction of groundwater may influence baseflow. Consequently, it is recommended that information on groundwater abstraction is included in future assessments and predictions of baseflow.
Pierre Nicolle, Vazken Andréassian, Paul Royer-Gaspard, Charles Perrin, Guillaume Thirel, Laurent Coron, and Léonard Santos
Hydrol. Earth Syst. Sci., 25, 5013–5027, https://doi.org/10.5194/hess-25-5013-2021, https://doi.org/10.5194/hess-25-5013-2021, 2021
Short summary
Short summary
In this note, a new method (RAT) is proposed to assess the robustness of hydrological models. The RAT method is particularly interesting because it does not require multiple calibrations (it is therefore applicable to uncalibrated models), and it can be used to determine whether a hydrological model may be safely used for climate change impact studies. Success at the robustness assessment test is a necessary (but not sufficient) condition of model robustness.
Bruno Majone, Diego Avesani, Patrick Zulian, Aldo Fiori, and Alberto Bellin
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-467, https://doi.org/10.5194/hess-2021-467, 2021
Preprint under review for HESS
Short summary
Short summary
In this work we introduce a methodology for devising reliable high streamflow future scenarios from climate change simulations. The calibration of a hydrological model is carried out maximizing the probability that the modeled and observed high flow extremes belong to the same statistical population. The application to the Adige river catchment (southeastern Alps, Italy) showed that this procedure produces reliable quantiles of the annual maximum streamflow to be used in assessment studies.
Markus Hrachowitz, Michael Stockinger, Miriam Coenders-Gerrits, Ruud van der Ent, Heye Bogena, Andreas Lücke, and Christine Stumpp
Hydrol. Earth Syst. Sci., 25, 4887–4915, https://doi.org/10.5194/hess-25-4887-2021, https://doi.org/10.5194/hess-25-4887-2021, 2021
Short summary
Short summary
Deforestation affects how catchments store and release water. Here we found that deforestation in the study catchment led to a 20 % increase in mean runoff, while reducing the vegetation-accessible water storage from about 258 to 101 mm. As a consequence, fractions of young water in the stream increased by up to 25 % during wet periods. This implies that water and solutes are more rapidly routed to the stream, which can, after contamination, lead to increased contaminant peak concentrations.
Etienne Guilpart, Vahid Espanmanesh, Amaury Tilmant, and François Anctil
Hydrol. Earth Syst. Sci., 25, 4611–4629, https://doi.org/10.5194/hess-25-4611-2021, https://doi.org/10.5194/hess-25-4611-2021, 2021
Short summary
Short summary
The stationary assumption in hydrology has become obsolete because of climate changes. In that context, it is crucial to assess the performance of a hydrologic model over a wide range of climates and their corresponding hydrologic conditions. In this paper, numerous, contrasted, climate sequences identified by a hidden Markov model (HMM) are used in a differential split-sample testing framework to assess the robustness of a hydrologic model. We illustrate the method on the Senegal River.
Sebastian A. Krogh, Lucia Scaff, Gary Sterle, James Kirchner, Beatrice Gordon, and Adrian Harpold
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-437, https://doi.org/10.5194/hess-2021-437, 2021
Revised manuscript accepted for HESS
Short summary
Short summary
We present a new way to detect snowmelt using daily cycles in streamflow driven by solar radiation. Results show that warmer sites have earlier and more intermittent snowmelt than colder sites, and the timing of early snowmelt events is strongly correlated with the timing of streamflow volume. A space-for-time substitution shows greater sensitivity of streamflow timing to climate change in colder than in warmer places, which is then contrasted with land-surface simulations.
Jonathan Frame, Frederik Kratzert, Daniel Klotz, Martin Gauch, Guy Shelev, Oren Gilon, Logan M. Qualls, Hoshin V. Gupta, and Grey S. Nearing
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-423, https://doi.org/10.5194/hess-2021-423, 2021
Revised manuscript accepted for HESS
Short summary
Short summary
The most accurate rainfall-runoff predictions are currently based on deep learning. There is a concern among hydrologists that deep learning models may not be reliable in extrapolation or for predicting extreme events. This study tests that hypothesis. The deep learning models remained relatively accurate in predicting extreme events compared traditional models, even when extreme events are not included in the training set.
Herath Mudiyanselage Viraj Vidura Herath, Jayashree Chadalawada, and Vladan Babovic
Hydrol. Earth Syst. Sci., 25, 4373–4401, https://doi.org/10.5194/hess-25-4373-2021, https://doi.org/10.5194/hess-25-4373-2021, 2021
Short summary
Short summary
Existing hydrological knowledge has been integrated with genetic programming based on a machine learning algorithm (MIKA-SHA) to induce readily interpretable distributed rainfall–runoff models. At present, the model building components of two flexible modelling frameworks (FUSE and SUPERFLEX) represent the elements of hydrological knowledge. The proposed toolkit captures spatial variabilities and automatically induces semi-distributed rainfall–runoff models without any explicit user selections.
Natthachet Tangdamrongsub, Michael F. Jasinski, and Peter J. Shellito
Hydrol. Earth Syst. Sci., 25, 4185–4208, https://doi.org/10.5194/hess-25-4185-2021, https://doi.org/10.5194/hess-25-4185-2021, 2021
Short summary
Short summary
Accurate estimation of terrestrial water storage (TWS) is essential for reliable water resource assessments. TWS can be estimated from the Community Atmosphere–Biosphere Land Exchange model (CABLE), but the resolution is limited to 0.5°. We reconfigure CABLE to improve TWS spatial details from 0.5° to 0.05°. GRACE satellite data are assimilated into CABLE to improve TWS accuracy. Our workflow relies only on publicly accessible data, allowing reproduction of 0.05° TWS in any region.
Seán Donegan, Conor Murphy, Shaun Harrigan, Ciaran Broderick, Dáire Foran Quinn, Saeed Golian, Jeff Knight, Tom Matthews, Christel Prudhomme, Adam A. Scaife, Nicky Stringer, and Robert L. Wilby
Hydrol. Earth Syst. Sci., 25, 4159–4183, https://doi.org/10.5194/hess-25-4159-2021, https://doi.org/10.5194/hess-25-4159-2021, 2021
Short summary
Short summary
We benchmarked the skill of ensemble streamflow prediction (ESP) for a diverse sample of 46 Irish catchments. We found that ESP is skilful in the majority of catchments up to several months ahead. However, the level of skill was strongly dependent on lead time, initialisation month, and individual catchment location and storage properties. We also conditioned ESP with the winter North Atlantic Oscillation and show that improvements in forecast skill, reliability, and discrimination are possible.
Paul C. Astagneau, Guillaume Thirel, Olivier Delaigue, Joseph H. A. Guillaume, Juraj Parajka, Claudia C. Brauer, Alberto Viglione, Wouter Buytaert, and Keith J. Beven
Hydrol. Earth Syst. Sci., 25, 3937–3973, https://doi.org/10.5194/hess-25-3937-2021, https://doi.org/10.5194/hess-25-3937-2021, 2021
Short summary
Short summary
The R programming language has become an important tool for many applications in hydrology. In this study, we provide an analysis of some of the R tools providing hydrological models. In total, two aspects are uniformly investigated, namely the conceptualisation of the models and the practicality of their implementation for end-users. These comparisons aim at easing the choice of R tools for users and at improving their usability for hydrology modelling to support more transferable research.
Cited articles
Almorox, J., Quej, V. H., and Martí, P.: Global performance ranking of temperature-based approaches for evapotranspiration estimation considering Köppen climate classes, J. Hydrol., 528, 514–522, https://doi.org/10.1016/j.jhydrol.2015.06.057, 2015.
Benettin, P., Rinaldo, A., and Botter, G.: Kinematics of age mixing in advection-dispersion models, Water Resour. Res., 49, 8539–8551, https://doi.org/10.1002/2013WR014708, 2013.
Benettin, P., Rinaldo, A., and Botter, G.: Tracking residence times in hydrological systems: forward and backward formulations, Hydrol. Process., 29, 5203–5213, https://doi.org/10.1002/hyp.10513, 2015a.
Benettin, P., Kirchner, J. W., Rinaldo, A., and Botter, G.: Modeling chloride transport using travel time distributions at plynlimon, wales, Water Resour. Res., 51, 3259–3276, https://doi.org/10.1002/2014WR016600, 2015b.
Bergström, S.: Computer Models of Watershed Hydrology, in: The HBV Model, edited by: Singh, V. P., Water Resources Publications, LLC, USA, 443–476, 1995.
Bertuzzo, E., Thomet, M., Botter, G., and Rinaldo, A.: Catchment-scale herbicides transport: Theory and application, Adv. Water Resour., 52, 232–242, https://doi.org/10.1016/j.advwatres.2012.11.007, 2013.
Birkel, C. and Soulsby, C.: Advancing tracer-aided rainfall-runoff modelling: a review of progress, problems and unrealised potential, Hydrol. Process., 29, 5227–5240, https://doi.org/10.1002/hyp.10594, 2015.
Botter, G.: Catchment mixing processes and travel time distributions, Water Resour. Res., 48, W05545, https://doi.org/10.1029/2011WR011160, 2012.
Botter, G., Bertuzzo, E., and Rinaldo, A.: Transport in the hydrologic response: Travel time distributions, soil moisture dynamics, and the old water paradox, Water Resour. Res., 46, W03514, https://doi.org/10.1029/2009WR008371, 2010.
Botter, G., Bertuzzo, E., and Rinaldo, A.: Catchment residence and travel time distributions: The master equation, Geophys. Res. Lett., 38, L11403, https://doi.org/10.1029/2011GL047666, 2011.
Broxton, P. D., Troch, P. A., and Lyon, S. W.: On the role of aspect to quantify water transit times in small mountainous catchments, Water Resour. Res., 45, W08427, https://doi.org/10.1029/2008WR007438, 2009.
Cardenas, M. B.: Potential contribution of topography-driven regional groundwater flow to fractal stream chemistry: Residence time distribution analysis of tóth flow, Geophys. Res. Lett., 34, L05403, https://doi.org/10.1029/2006GL029126, 2007.
Cornaton, F. and Perrochet, P.: Groundwater age, life expectancy and transit time distributions in advective–dispersive systems: 1. generalized reservoir theory, Adv. Water Resour., 29, 1267–1291, https://doi.org/10.1016/j.advwatres.2005.10.009, 2006a.
Cornaton, F. and Perrochet, P.: Groundwater age, life expectancy and transit time distributions in advective–dispersive systems; 2. reservoir theory for sub-drainage basins, Adv. Water Resour., 29, 1292–1305, https://doi.org/10.1016/j.advwatres.2005.10.010, 2006b.
Cuntz, M., Mai, J., Zink, M., Thober, S., Kumar, R., Schäfer, D., Schrön, M., Craven, J., Rakovec, D., Spieler, D., Prykhodko, V., Dalmasso, G., Musuuza, J., Langenberg, B., Attinger, S., and Samaniego, L.: Computationally inexpensive identification of noninformative model parameters by sequential screening, Water Resour. Res., 51, 6417–6441, https://doi.org/10.1002/2015WR016907, 2015.
Dagan, G.: Statistical theory of groundwater flow and transport: Pore to laboratory, laboratory to formation, and formation to regional scale, Water Resour. Res., 22, 120S–134S, https://doi.org/10.1029/WR022i09Sp0120S, 1986.
Dagan, G.: Flow and Transport in Porous Formations, Springer, Berlin Heidelberg, 1989.
Daly, E. and Porporato, A.: Impact of hydroclimatic fluctuations on the soil water balance, Water Resour. Res., 42, W06401, https://doi.org/10.1029/2005WR004606, 2006.
Danckwerts, P.: Continuous flow systems, Chem. Eng. Sci., 2, 1–13, https://doi.org/10.1016/0009-2509(53)80001-1, 1953.
Duffy, C. J.: Dynamical modelling of concentration-age-discharge in watersheds, Hydrol. Process., 24, 1711–1718, https://doi.org/10.1002/hyp.7691, 2010.
Dunn, S. M., Darling, W. G., Birkel, C., and Bacon, J. R.: The role of groundwater characteristics in catchment recovery from nitrate pollution, Hydrol. Res., 43, 560–575, https://doi.org/10.2166/nh.2012.020, 2012.
Fan, Y.: Groundwater in the earth's critical zone: Relevance to large-scale patterns and processes, Water Resour. Res., 51, 3052–3069, https://doi.org/10.1002/2015WR017037, 2015.
Federal Institute for Geosciences and Natural Resources (BGR): Digital soil map of Germany 1 : 1 000 000 (BUEK 1000), Tech. rep., Hannover, Berlin, Germany, 1998.
Fenicia, F., Wrede, S., Kavetski, D., Pfister, L., Hoffmann, L., Savenije, H. H. G., and McDonnell, J. J.: Assessing the impact of mixing assumptions on the estimation of streamwater mean residence time, Hydrol. Process., 24, 1730–1741, https://doi.org/10.1002/hyp.7595, 2010.
Hargreaves, G. H. and Samani, Z. A.: Reference crop evapotranspiration from temperature, Appl. Eng. Agr., 1, 96–99, 1985.
Harman, C. J.: Time-variable transit time distributions and transport: Theory and application to storage-dependent transport of chloride in a watershed, Water Resour. Res., 51, 1–30, https://doi.org/10.1002/2014WR015707, 2015.
Hrachowitz, M., Soulsby, C., Tetzlaff, D., Dawson, J. J. C., and Malcolm, I. A.: Regionalization of transit time estimates in montane catchments by integrating landscape controls, Water Resour. Res., 45, W05421, https://doi.org/10.1029/2008WR007496, 2009.
Hrachowitz, M., Savenije, H., Bogaard, T. A., Tetzlaff, D., and Soulsby, C.: What can flux tracking teach us about water age distribution patterns and their temporal dynamics?, Hydrol. Earth Syst. Sci., 17, 533–564, https://doi.org/10.5194/hess-17-533-2013, 2013.
Hrachowitz, M., Fovet, O., Ruiz, L., and Savenije, H. H. G.: Transit time distributions, legacy contamination and variability in biogeochemical 1∕f(α) scaling: how are hydrological response dynamics linked to water quality at the catchment scale?, Hydrol. Process., 29, 5241–5256, https://doi.org/10.1002/hyp.10546, 2015.
Kitanidis, P. K.: Persistent questions of heterogeneity, uncertainty, and scale in subsurface flow and transport, Water Resour. Res., 51, 5888–5904, https://doi.org/10.1002/2015WR017639, 2015.
Kumar, R., Samaniego, L., and Attinger, S.: The effects of spatial discretization and model parameterization on the prediction of extreme runoff characteristics, J. Hydrol., 392, 54–69, https://doi.org/10.1016/j.jhydrol.2010.07.047, 2010.
Kumar, R., Samaniego, L., and Attinger, S.: Implications of distributed hydrologic model parameterization on water fluxes at multiple scales and locations, Water Resour. Res., 49, 360–379, https://doi.org/10.1029/2012WR012195, 2013a.
Kumar, R., Livneh, B., and Samaniego, L.: Toward computationally efficient large-scale hydrologic predictions with a multiscale regionalization scheme, Water Resour. Res., 49, 5700–5714, https://doi.org/10.1002/wrcr.20431, 2013b.
Küsel, K., Totsche, K. U., Trumbore, S. E., Lehmann, R., Steinhäuser, C., and Herrmann, M.: How deep can surface signals be traced in the critical zone? Merging biodiversity with biogeochemistry research in a central German Muschelkalk landscape, Front. Earth Sci., 4, 32, https://doi.org/10.3389/feart.2016.00032, 2016.
Livneh, B., Kumar, R., and Samaniego, L.: Influence of soil textural properties on hydrologic fluxes in the mississippi river basin, Hydrol. Process., 29, 4638–4655, https://doi.org/10.1002/hyp.10601, 2015.
Małloszewski, P. and Zuber, A.: Determining the turnover time of groundwater systems with the aid of environmental tracers, J. Hydrol., 57, 207–231, https://doi.org/10.1016/0022-1694(82)90147-0, 1982.
McDonnell, J. J. and Beven, K.: Debates – The future of hydrological sciences: A (common) path forward? A call to action aimed at understanding velocities, celerities and residence time distributions of the headwater hydrograph, Water Resour. Res., 50, 5342–5350, https://doi.org/10.1002/2013WR015141, 2014.
McGuire, K. J. and McDonnell, V: Tracer advances in catchment hydrology, Hydrol. Process., 29, 5135–5138, https://doi.org/10.1002/hyp.10740, 2015.
McGuire, K. J., McDonnell, J. J., Weiler, M., Kendall, C., McGlynn, B. L., Welker, J. M., and Seibert, J.: The role of topography on catchment-scale water residence time, Water Resour. Res., 41, W05002, https://doi.org/10.1029/2004WR003657, 2005.
McMillan, H., Tetzlaff, D., Clark, M., and Soulsby, C.: Do time-variable tracers aid the evaluation of hydrological model structure? a multimodel approach, Water Resour. Res., 48, W05501, https://doi.org/10.1029/2011WR011688, 2012.
M'Kendrick, L.-C. A. G.: Applications of mathematics to medical problems, Proc. Edinburgh Math. Soc., 44, 98–130, 1925.
Niemi, A. J.: Residence time distributions of variable flow processes, Int. J. Appl. Radiat. Isotopes, 28, 855–860, https://doi.org/10.1016/0020-708X(77)90026-6, 1977.
Porporato, A. and Calabrese, S.: On the probabilistic structure of water age, Water Resour. Res., 51, 3588–3600, https://doi.org/10.1002/2015WR017027, 2015.
Rakovec, O., Kumar, R., Mai, J., Cuntz, M., Thober, S., Zink, M., Attinger, S., Schäfer, D., Schrön, M., and Samaniego, L.: Multiscale and multivariate evaluation of water fluxes and states over European river basins, J. Hydrometeorol., 17, 287–307, https://doi.org/10.1175/JHM-D-15-0054.1, 2016.
Rinaldo, A. and Marani, A.: Basin scale model of solute transport, Water Resour. Res., 23, 2107–2118, https://doi.org/10.1029/WR023i011p02107, 1987.
Rinaldo, A., Marani, A., and Bellin, A.: On mass response functions, Water Resour. Res., 25, 1603–1617, https://doi.org/10.1029/WR025i007p01603, 1989.
Rinaldo, A., Botter, G., Bertuzzo, E., Uccelli, A., Settin, T., and Marani, M.: Transport at basin scales: 1. theoretical framework, Hydrol. Earth Syst. Sci., 10, 19–29, https://doi.org/10.5194/hess-10-19-2006, 2006.
Rinaldo, A., Beven, K. J., Bertuzzo, E., Nicotina, L., Davies, J., Fiori, A., Russo, D., and Botter, G.: Catchment travel time distributions and water flow in soils, Water Resour. Res., 47, W07537, https://doi.org/10.1029/2011WR010478, 2011.
Rinaldo, A., Benettin, P., Harman, C. J., Hrachowitz, M., McGuire, K. J., van der Velde, Y., Bertuzzo, E., and Botter, G.: Storage selection functions: A coherent framework for quantifying how catchments store and release water and solutes, Water Resour. Res., 51, 4840–4847, https://doi.org/10.1002/2015WR017273, 2015.
Rubin, Y.: Applied Stochastic Hydrogeology, Oxford University Press, Oxford, USA, 416 pp., 2003.
Samani, Z. A.: Estimating solar radiation and evapotranspiration using minimum climatological data, J. Irrig. Drain. Eng., 126, 265–267, https://doi.org/10.1061/(ASCE)0733-9437(2000)126:4(265), 2000.
Samaniego, L., Kumar, R., and Attinger, S.: Multiscale parameter regionalization of a grid-based hydrologic model at the mesoscale, Water Resour. Res., 46, W05523, https://doi.org/10.1029/2008WR007327, 2010a.
Samaniego, L., Bárdossy, A., and Kumar, R.: Streamflow prediction in ungauged catchments using copula-based dissimilarity measures, Water Resour. Res., 46, W02506, https://doi.org/10.1029/2008WR007695, 2010b.
Samaniego, L., Kumar, R., and Zink, M.: Implications of parameter uncertainty on soil moisture drought analysis in germany, J. Hydrometeorol., 14, 47–68, https://doi.org/10.1175/JHM-D-12-075.1, 2013.
Sayama, T. and McDonnell, J. J.: A new time-space accounting scheme to predict stream water residence time and hydrograph source components at the watershed scale, Water Resour. Res., 45, W07401, https://doi.org/10.1029/2008WR007549, 2009.
Tetzlaff, D., Malcolm, I., and Soulsby, C.: Influence of forestry, environmental change and climatic variability on the hydrology, hydrochemistry and residence times of upland catchments, J. Hydrol., 346, 93–111, https://doi.org/10.1016/j.jhydrol.2007.08.016, 2007.
Tetzlaff, D., Seibert, J., McGuire, K. J., Laudon, H., Burns, D. A., Dunn, S. M., and Soulsby, C.: How does landscape structure influence catchment transit time across different geomorphic provinces?, Hydrol. Process., 23, 945–953, https://doi.org/10.1002/hyp.7240, 2009.
Tetzlaff, D., Soulsby, C., Hrachowitz, M., and Speed, M.: Relative influence of upland and lowland headwaters on the isotope hydrology and transit times of larger catchments, J. Hydrol., 400, 438–447, https://doi.org/10.1016/j.jhydrol.2011.01.053, 2011.
Thober, S., Kumar, R., Sheffield, J., Mai, J., and Schäfer, D., and Samaniego, L.: Seasonal Soil Moisture Drought Prediction over Europe Using the North American Multi-Model Ensemble (NMME), J. Hydrometeorol., 16, 2329–2344, 2015.
van der Velde, Y., Torfs, P. J. J. F., van der Zee, S. E. A. T. M., and Uijlenhoet, R.: Quantifying catchment-scale mixing and its effect on time-varying travel time distributions, Water Resour. Res., 48, W06536, https://doi.org/10.1029/2011WR011310, 2012.
Vereecken, H., Huisman, J. A., Franssen, H.-J. H., Brueggemann, N., Bogena, H. R., Kollet, S., Javaux, M., van der Kruk, J., and Vanderborght, J.: Soil hydrology: Recent methodological advances, challenges, and perspectives, Water Resour. Res., 51, 2616–2633, https://doi.org/10.1002/2014WR016852, 2015.
von Förster, H.: Some remarks on changing populations, in: The Kinetics of Cellular Proliferation, edited by: Stohlman, F., Grune and Stratton, New York, NY, 382–407, 1959.
Wang, K. and Dickinson, R. E.: A review of global terrestrial evapotranspiration: Observation, modeling, climatology, and climatic variability, Rev. Geophys., 50, RG2005, https://doi.org/10.1029/2011RG000373, 2012.
Windhorst, D., Kraft, P., Timbe, E., Frede, H.-G., and Breuer, L.: Stable water isotope tracing through hydrological models for disentangling runoff generation processes at the hillslope scale, Hydrol. Earth Syst. Sci., 18, 4113–4127, https://doi.org/10.5194/hess-18-4113-2014.
Zacharias, S. and Wessolek, G.: Excluding organic matter content from pedotransfer predictors of soil water retention, Soil Sci. Soc. Am. J., 71, 43–50, 2007.
Short summary
Travel-time distributions are a comprehensive tool for the characterization of hydrological systems. In our study, we used data that were simulated by virtue of a well-established hydrological model. This gave us a very large yet realistic dataset, both in time and space, from which we could infer the relative impact of different factors on travel-time behavior. These were, in particular, meteorological (precipitation), land surface (land cover, leaf-area index) and subsurface (soil) properties.
Travel-time distributions are a comprehensive tool for the characterization of hydrological...