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Abstract. Travel-time distributions are a comprehensive tool
for the characterization of hydrological system dynamics.
Unlike the streamflow hydrograph, they describe the move-
ment and storage of water within and throughout the hydro-
logical system. Until recently, studies using such travel-time
distributions have generally either been applied to lumped
models or to real-world catchments using available time se-
ries, e.g., stable isotopes. Whereas the former are limited in
their realism and lack information on the spatial arrange-
ments of the relevant quantities, the latter are limited in their
use of available data sets. In our study, we employ the spa-
tially distributed mesoscale Hydrological Model (mHM) and
apply it to a catchment in central Germany. Being able to
draw on multiple large data sets for calibration and verifica-
tion, we generate a large array of spatially distributed states
and fluxes. These hydrological outputs are then used to com-
pute the travel-time distributions for every grid cell in the
modeling domain. A statistical analysis indicates the gen-
eral soundness of the upscaling scheme employed in mHM
and reveals precipitation, saturated soil moisture and poten-
tial evapotranspiration as important predictors for explaining
the spatial heterogeneity of mean travel times. In addition,
we demonstrate and discuss the high information content of
mean travel times for characterization of internal hydrologi-
cal processes.

1 Introduction

The description of transport of both water and dissolved con-
taminants in catchments is a challenging subject due to the
high heterogeneity of the subsurface properties that govern

their fate (Dagan, 1989). This heterogeneity, combined with
a limited knowledge about the subsurface, results in high
degrees of uncertainty. As a result, stochastic methods are
often applied, where the relevant processes are modeled as
being random (Dagan, 1986; Rubin, 2003). Among these
methods, a powerful tool is the use of travel-time distri-
butions (TTDs), where storage and transport in the catch-
ment are modeled from a Lagrangian perspective (Rinaldo
and Marani, 1987; Rinaldo et al., 1989). This means that
the catchment itself, or meaningful parts of it, is treated as
a control volume (CV). The spatially complex array of dif-
ferent flow paths inside this CV is ignored and only inlet and
outlet fluxes are used for the analysis (Botter et al., 2010;
Rinaldo et al., 2011; Botter, 2012). This observation-based
description of catchment dynamics makes TTDs a very ro-
bust tool. Although the application of TTDs goes back many
decades (Danckwerts, 1953; Niemi, 1977), recent develop-
ments have strongly improved their theoretical foundations,
turning them into a versatile and coherent tool to charac-
terize catchment dynamics (Bertuzzo et al., 2013; Benettin
et al., 2015a; Rinaldo et al., 2015; Porporato and Calabrese,
2015). Owing to this progress, McMillan et al. (2012) and
McDonnell and Beven (2014) have opined that TTDs should
be used routinely for hydrological model calibration, a no-
tion that has been picked up with tremendous speed (Wind-
horst et al., 2014; Vereecken et al., 2015; McGuire and Mc-
Donnell, 2015). Parallel to that, Kitanidis (2015) has recently
pointed out that the key to subsurface characterization is to
use all available information. From this information-centered
perspective, using TTDs has several advantages. First, the
travel-time behavior is controlled by different factors than
the hydrograph response. Whereas the latter relates rainfall—
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runoff events, the former relates rainfall-runoff water (Mc-
Donnell and Beven, 2014; Birkel and Soulsby, 2015). Sec-
ond, spatially distributed tracer experiments may dramati-
cally increase the information content available for catch-
ment characterization (Birkel and Soulsby, 2015).

These advantages have led to a steady increase in both
applied and theoretical studies using TTDs for the descrip-
tion of catchment dynamics. Applied studies here means that
data from real-world sites are used (McGuire et al., 2005;
Cardenas, 2007; Broxton et al., 2009; Tetzlaff et al., 2011;
Dunn et al., 2012; Hrachowitz et al., 2013, 2015; Harman,
2015). Compared to theoretical studies, the data do not suf-
fer from model errors or other conceptual limitations, but
are often limited in amount (typically limited to a few years
only, although Hrachowitz et al. (2009) used time series of
up to 17 years) and variety (only a limited number of data
types are available). As a result, such studies might fail to
find long-term trends, establish connections between travel-
time behavior and specific catchment properties or investi-
gate the impact of certain hydraulic regimes that only occur
rarely (e.g., extreme drought or storm events). The second
category are theoretical studies that either use a very simpli-
fied computational model to focus on specific questions (Ri-
naldo et al., 2006; Duffy, 2010; Botter et al., 2010; van der
Velde et al., 2012; Benettin et al., 2015a; Porporato and Cal-
abrese, 2015) or employ more realistic hydrological models
that provide a large data set typically not available in real-
world sites (Sayama and McDonnell, 2009; Fenicia et al.,
2010; McMillan et al., 2012). Such theoretical studies allow
a more thorough and detailed analysis of the involved pro-
cesses and their interdependence may suffer from an over-
simplified model setup for influx and outflux generation.

Our study falls into the latter category since we use
a hydrological model, i.e., the mesoscale Hydrological
Model (mHM) (Samaniego et al., 2010a; Kumar et al.,
2013a), to generate the fluxes and states for the analysis. Us-
ing detailed data of precipitation, land cover, morphology
and soil type as inputs, mHM is able to provide continu-
ous simulations of spatially distributed fluxes (e.g., ground-
water recharge or evapotranspiration) and states (e.g., soil
moisture) as outputs. By employing mHM, which is a spa-
tially distributed hydrological model, we are, however, able
to go beyond prior studies to a spatially distributed travel-
time analysis.

As a case study, we use a ca. 1000 km? catchment in cen-
tral Germany for which detailed morphological and clima-
tological data are available to parameterize mHM. In addi-
tion, the chosen catchment is located in the Hainich Criti-
cal Zone Exploratory, a comprehensive monitoring network
used within Collaborative Research Center AquaDiva (Kiisel
et al., 2016). AquaDiva seeks to elucidate the critical role
of water fluxes connecting surface conditions with biogeo-
chemical functions in the subsurface. One of the goals of this
project is to understand how far signals of surface proper-
ties, like land cover or land management, can be traced into
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the subsurface water and solute dynamics. Spatially explicit
travel-time distributions are the appropriate analytical tool to
investigate such questions.

By virtue of using the modeled data from mHM, we are
able to address several questions that have not been inves-
tigated before. First, how are spatially distributed quantities,
in particular land cover, precipitation and soil type, impacting
travel-time behavior in the soil? Unlike earlier model-based
studies, mHM is a spatially distributed hydrological model.
We can therefore improve the current knowledge by investi-
gating the travel-time behavior for every mHM grid cell and
relate it to its geophysical and climatic properties. Next, how
do different hydrological regimes (wet vs. dry) impact travel-
time behavior in the soil? Here, we investigate the impact of
changing external conditions (meteorological factors) using
the long time series of modeled fluxes and states. Finally,
what is the inter-connection between travel-time behavior
and specific conceptualization of different hydrological pro-
cesses, and how may these connections be used for further
improvement of model parameterization? Investigating the
impact of model-specific conceptualizations on the predicted
travel-time behavior can provide a better understanding of
how actual measurement may be connected to certain model
parameters. For the quantitative analysis, we focus on soil
moisture only; i.e., we exclude groundwater. This is nec-
essary due to the implementation of groundwater in mHM
as a linear reservoir. Although variations, i.e., fluxes, of the
groundwater level can be represented well (Rakovec et al.,
2016), the total storage remains uncertain. This is a common
feature of hydrological models (Fan, 2015) and mHM is no
exception. Furthermore, we consider this restriction to be ac-
ceptable within the scope of our study, i.e., elucidation of the
spatio-temporal dynamics of TTDs. Groundwater by defini-
tion is far less impacted by the spatial distribution of pre-
cipitation or land cover. In addition, Benettin et al. (2015b)
recently showed that TTDs show little temporal variability
compared to soil moisture.

To present our results on the above questions, the rest of
the paper is organized as follows: in Sect. 2 we describe the
numerical and analytical tools used in this study. This com-
prises the framework of travel-time distributions as applied in
this study as well as the relevant features of mHM. In Sect. 3,
we present the results of our study and demonstrate how they
relate to the questions raised above. Finally in Sect. 4, we
summarize our main findings in light of these questions and
draw some conclusions.

2 Methods

In the following, we provide a short overview of the analyt-
ical and numerical tools and methods used in this study. We
start by introducing the concept of travel-time distributions.
To that end, we use the nomenclature as given by Benet-
tin et al. (2015a) and the theoretical framework by Botter
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et al. (2010). Then, we give a short overview of the numeri-
cal model (mHM) which was used for the calculation of the
states and fluxes. Finally, we introduce the catchment used in
our study.

2.1 Travel-time distributions for a single control
volume

Travel-time distributions are a stochastic description of the
dynamic of a water parcel moving through a given CV. The
definition of such a control volume for a real-world situation
is often arbitrary to some extent (see, e.g., the schematic in
Fig. 1). Within the context of this study, we used a spatially
distributed model where the catchment is partitioned in reg-
ular grid cells (for more details, see Sect. 2.2 below). Con-
sequently, the boundaries of our CV were given by the grid
cells of the model.

Given that such a CV can be defined, it is clear that the
dynamics of a water parcel are determined by the influxes
and outfluxes that are changing the water content or storage.
The time evolution of this storage S inside such a CV is then
given by the following balance equation:

d
S50 = 0in() = Qou®) = () = (ET0) + Q). (1)

Equation (1) is a simple initial-value problem with the in-
flux Qin(¢) given by the effective precipitation J (), whereas
the outflux Qo (?) is given by evapotranspiration ET(¢) and
runoff per grid cell Q(¢).

To denote the different times involved in the dynamic of
a water parcel, we followed the notation of Benettin et al.
(2015a). Chronological time was accordingly denoted with ¢,
whereas the water parcel entered the CV at #;;, and left at fex.
At any given time ¢’ between these two points, a water parcel
can therefore be characterized by two different properties:
its age Ta as well as its (remaining) life expectancy Tg (see
Fig. 2).

In their paper, Benettin et al. (2015a) emphasize the two
interpretations that originate from these two points of view.
Age is a backwards concept referring to the time passed
since the beginning. The associated travel-time distribution
is therefore called the backward TTD. The concept of back-
ward TTDs is of particular interest for the characterization of,
e.g., a water sample, since its composition is determined by
the age of the water in the CV. Life expectancy, on the other
hand, is a forward concept since it is referring to the time still
left until exit from the CV. The associated travel-time dis-
tribution is therefore called the forward TTD. Such forward
TTDs are relevant, e.g., for tracer tests, since the concentra-
tion of an ideal tracer at the outlet is given by the TTD of its
associated water parcel.

To derive the TTDs associated with the forward and back-
ward formulations, Botter et al. (2011) presented a deriva-
tion using only the states and fluxes inside the CV as well
as what they call an age function (for more information on
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Figure 1. Water movement inside a hillslope (physical schematic
on the left and conceptual schematic on the right).

Travel time Ty

Age Ty Life expectancy 1

tin v t
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Figure 2. Schematic of different times associated with the travel-
time dynamics of a water parcel. Age Ty is the time elapsed at ¢’
since the water parcel entered the CV at t;,, whereas life expectancy
Tk is the time remaining at ¢’ until the water parcel leaves at fex.

their derivation, we also refer to Botter et al., 2010, and the
references therein). In the following, we assume a uniform
age function only. This means that the age distribution of the
water leaving the CV is the same as the age distribution of
the water inside the CV; i.e., no age preference of the out-
flow generating processes (discharge and ET) exists. This
decision became necessary since we could not yet draw on
any data for the age distribution of water at the outlet of the
catchment. As a result, we were not able to compare the pre-
dictions of different age functions to any measurements and
therefore determine the most adequate description. In the ab-
sence of such data, the most appropriate choice is the one
involving the least amount of information, which is given by
the assumption of uniform sampling. Using this assumption,
we can state the following for the forward formulation:

Q)

o) +ET(")
€X — _—
0 (tin) S(1)

S0) dr 2)

N
Po(Tg, tin) =

Tg

with Tg =t — tin, t > tip, 1.€., the time from the moment the
water parcel entered the reservoir until now. The function 6
in Eq. (2) is called the partition function (Botter et al., 2010,
2011) and can be derived using the following formula:

°r o) O +ET({)
|- 22D
S(1) N@)

tin Te

0 (tin) = dr’ | de. 3)

This partition function describes the portion of the water par-
cel, entering the CV at #;;, that leaves eventually as discharge
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(as opposed to leaving as evapotranspiration). It is conse-
quently a dimensionless number between 0 and 1.
For the backward formulation, we can state the following:

PoTate) = T exp [ - [LOTETE)

S() S

Ta

dr' |, 4)

with TpA = tex — t, t < lex, 1.€., the time from now until the
moment the water parcel leaves the reservoir.

Both these formulations determine the travel time of the
water leaving as discharge. The TTDs for the water leaving
as evapotranspiration can be determined in an analogous way
and is not repeated here.

2.2 Numerical model

We used the spatially distributed, grid-based mesoscale Hy-
drological Model (mHM; Samaniego et al., 2010a; Kumar
et al., 2013a) to generate the states and fluxes needed for
the TTD analysis described above. The model uses the grid
cell as a primary hydrological unit and models the follow-
ing dominant hydrological process: interception, snow accu-
mulation and melting, soil moisture dynamics, evapotranspi-
ration, surface flow, interflows, recharge and baseflow. The
total runoff generated at each grid cell is routed to the neigh-
boring downstream cell following the river network using
the Muskingum—Cunge routing algorithm. Interested readers
may refer to Samaniego et al. (2010a) for further details on
the model components. The model code is open source and
can be downloaded from www.ufz.de/mhm. The model has
been successfully applied to a number of river basins across
Germany, the USA and Europe (Samaniego et al., 2010a,
b, 2013; Kumar et al., 2010, 2013a, b; Livneh et al., 2015;
Thober et al., 2015; Rakovec et al., 2016).

An important and unique feature of mHM is its multi-
scale parameter regionalization (MPR), which explicitly ac-
counts for sub-grid variability of basin physical character-
istics such as terrain, soil, vegetation, and geological prop-
erties (Samaniego et al., 2010a; Kumar et al., 2013a). The
model considers different levels of spatial resolution to better
account for spatial heterogeneity of inputs, forcings and the
modeled hydrological processes (see the schematic in Fig. 3).
The smallest scale (called /o within the mHM nomenclature)
represents morphological factors like elevation, soil type and
land cover. On the other hand, meteorological inputs can be
represented on a larger scale (called /, within mHM). The
modeling of the hydrology is done on a third scale (called /1
within mHM) that can vary depending, e.g., on catchment
size or computational resources. Based on the MPR tech-
nique, morphological inputs are linked to internal model pa-
rameters (e.g., through the use of pedo-transfer functions)
and a set of regional coefficients (or global parameters y).
In a second step, the internal parameters are upscaled to the
resolution of the hydrological processes, i.e., /1, using param-
eter specific upscaling operators. Thus, MPR takes sub-grid
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Figure 3. Schematic of the mesoscale hydrological model used in
the study, depicting the different scales as well as the states and
fluxes represented in a single cell.

variabilities into account indirectly. The global parameters
are space- and time-invariant and are inferred via a calibra-
tion procedure. mHM has 66 global parameters, which is a
reasonable number for an optimization problem and is there-
fore able to avoid overparameterization. Further details on
MPR can be found in Samaniego et al. (2010a) and Kumar
et al. (2013a).

Relevant to this study are near-surface and root-zone hy-
drological processes, which are computed using different
conceptualizations. In the top layer (x3 in Fig. 3), water
content is estimated using the infiltration excess approach
similar to the HBV model (Bergstrém, 1995), but enhanced
to account for multiple sub-layers. Within these sub-layers,
the water is either percolating into deeper layers or evap-
otranspirating to the atmosphere. Therefore, the root zone
is characterized by effective parameters for porosity, sat-
urated hydraulic conductivity and the permanent wilting
point, which are estimated based on the pedotransfer func-
tions of Zacharias and Wessolek (2007). These effective pa-
rameters are estimated due to transfer functions from the
global parameters, which are determined during the calibra-
tion process. Evapotranspiration is estimated based on po-
tential evapotranspiration, root water uptake and water avail-
ability in layer x3. In the second layer (x5 in Fig. 3), two
different types of interflow take place. Slow interflow g3 is
implemented using a power-law model, whereas fast inter-
flow g is triggered when a threshold value yrv is reached,
ie.,

1
g3 = yox i, (5a)

| vrGs—=yrv), if x5>yry
2= [ 0, otherwise (5b)
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In the third level (x5 in Fig. 3) baseflow ¢4 is generated using
a simple reservoir model, i.e.,

44 = YbX6- (6)

These runoff generation processes are represented at every
grid cell of mHM. The sum of direct runoff ¢ (not used for
the analysis), interflows and baseflow constitutes the grid-
specific total runoff which is then routed through a river
network. Interested readers may refer to Samaniego et al.
(2010a) or http://www.ufz.de/mhm (user manual) for further
details on mHM.

As motivated in Sect. 1, we followed the concept of, e.g.,
Botter et al. (2010) and Benettin et al. (2015b) and divided
the subsurface into two distinct zones: the soil zone (called
the root zone by Botter et al., 2010, and shallow storage by
Benettin et al., 2015b) and the saturated zone (called ground-
water region by Botter et al., 2010 and deep storage by Benet-
tin et al., 2015b). All analysis in our study was performed
with respect to the former. This was seen as necessary due
to the large uncertainties associated with storage estimation
of the deeper regions. Whereas mHM has been demonstrated
to provide good estimates for soil moisture (Rakovec et al.,
2016), storage estimates for groundwater (x¢ in Fig. 3) are
far less reliable. Focusing on the soil zone only was seen as
justified since the focus of our study was the investigation of
spatially distributed factors like precipitation, land cover and
soil type, which have comparably little impact on groundwa-
ter dynamics. Furthermore, Benettin et al. (2015b) recently
demonstrated that travel-time behavior in the deeper zone has
comparably little temporal variability, too.

For computation of the TTDs according to Egs. (2)
through (4), we used the combined estimates of layer x3
and x5 of mHM for the storage S (see Figs. 3 and 4). For
ET, we used the evapotranspiration fluxes from the sub-layers
of x3 and for Q we used ¢, g3 and C. Conceptually, the in-
terflow is generated in the unsaturated zone (reservoirs x3
and xs5) within mHM. Thus, using the interflow as the out-
flow from the unsaturated zone for deriving the travel times
is a valid assumption. Our delineation of shallow and deeper
storage was therefore more similar to Benettin et al. (2015b)
than to Botter et al. (2010).

2.3 Study area and model setup

In this study, we used a mesoscale catchment in central Ger-
many with a drainage area of approximately 1000km? to
the gauging station at Nigelstedt (see Fig. 5). The catch-
ment comprises the headwaters of the Unstrut River basin
and was selected in this study for its relevance to Collabora-
tive Research Center AquaDiva (Kiisel et al., 2016). The ter-
rain elevation within the catchment ranges between 170 and
520 m, with the higher regions in the west and south being the
forested hill chain of the Hainich (see Fig. 5). The forested
area covers approximately 17 % of the catchment, while 78 %
of the area is covered by crop/grassland. The remaining 5 %
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Figure 4. States and fluxes as computed by mHM (see Fig. 3) for
the derivation of TTDs using Egs. (2)—(3) (see Fig. 1).

is urban built-up area. The area is characterized by continen-
tal climatic conditions with a mean annual precipitation of
approximately 660 mm and a mean temperature of approxi-
mately 8 °C.

We established mHM over the study catchment and per-
formed numerical simulations on several resolutions rang-
ing from 200 m to 2 km. The model was forced using daily
gridded fields of precipitation, air temperature and poten-
tial evapotranspiration. The point data sets for the precipi-
tation and air temperature at several rain gauges and weather
stations located in and around the catchment were acquired
from the German Meteorological Service (DWD). These
point stations were then interpolated on regular grids using
an external drift kriging interpolation procedure wherein the
terrain elevation was used as an external drift (Samaniego
et al., 2013). The potential evapotranspiration was estimated
using the Hargreaves and Samani (1985) method. Other data
sets required to set up the model include a digital elevation
model (DEM) and derived terrain properties like slope, as-
pect, flow direction and catchment boundary; soil and ge-
ological maps provided by the Federal Institute for Geo-
sciences and Natural Resources (BGR) and metadata such
as sand and clay contents, bulk density, horizon depths and
dominant hydrogeological classes; CORINE land-cover in-
formation for the years 1990, 2000 and 2005 available from
the European Environment Agency (EEA); and runoff data
for the catchment outlet provided by the European Water
Agency (EWA) and the Global Runoff Data Centre (GRDC).

The model simulations were performed for the period
1950-2005. The first 5 years of the data were used to warm
up the model to acquire plausible initial conditions. We there-
fore discarded the first 5 years of simulations and the further
analyses were performed using model outputs for the pe-
riod 1955-2005. The model showed quite good performance,
with NSE > 0.8 for the daily discharge simulations at the
Nigelstedt station. Other statistics such as bias and correla-
tions were also within a satisfactory range. To further validate
our model prediction, we used measurements from a single
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Figure 5. Left panel: catchment (highlighted) used in the study shown within the larger confines of the Unstrut catchment (area enclosed by
continuous line). The larger rivers of the catchment are shown in blue. The color bar shows the elevation (in meters) of the study catchment.
Right panel: Unstrut catchment within the larger confines of Germany. The axis descriptions denote the latitude and longitude values.

eddy-covariance measurement station inside the study area
(see Fig. 5). This comparison also showed a good agreement
between measurements and model prediction (see Fig. 6).

3 Results and discussion

In this section, we present and discuss the results which have
been derived using the methods described above. We will be-
gin in the following by demonstrating and exemplifying our
general research procedure by virtue of a single yet represen-
tative example.

Using the time series of soil moisture, evapotranspiration,
interflow and recharge, as computed by mHM, we computed
the travel-time distributions for every grid cell of the catch-
ment (see Eq. 2 and Fig. 7a). One of the problems when com-
puting forward TTDs by virtue of Eq. (2) is that all the water
entering the CV at time #;, must leave by the end of the avail-
able time series. This means that a certain amount of water
at the end of these time series could not be used for the anal-
ysis. To determine this period, we computed 6;, with respect
to discharge as well as to evapotranspiration. Adding up both
values for a given #;, should add up to 1; i.e., all water that
entered at t;, should leave within the available time frame. A
value smaller than 1 therefore indicates that some amount of
the water is still inside the CV with possible error-inducing
effects on the calculation of the TTDs. Analyzing this be-
havior, we concluded that close to 2 years at the end of the
available time series had to be excluded for the calculations
of the TTDs (data not shown). The shape of the resulting
time-dependent distributions varied strongly, depending par-
ticularly on rainfall events that triggered the mobilization of
older water stored within the soil. Another factor, although
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Figure 6. Comparison between monthly measured and modeled
evapotranspiration (ET) at eddy-covariance station Mehrsted (see
Fig. 5).

not apparent from Fig. 7, was the water content, i.e., the state
of the soil itself. As has been demonstrated by Niemi (1977),
soil response to rain events is strongly different between wet
or dry conditions.

To disentangle these event-driven as well as state-
dependent effects from other factors that influence the water
movement in the soil, we averaged these time-dependent dis-
tributions. As a result, we got the stationary TTDs for every
cell:

C 0

N 3 O(t") +ET(t)
PQ(Te) ‘./ 6w s P T

SO di’" | dtiy, (7)

Tk

with Tg =t — tin, t > tin-
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Figure 7. Forward TTD of soil moisture with respect to mean travel time (in months) for a single cell in the Nigelstedt catchment. (a) shows
the time-dependent TTD derived using Eq. (2) for a given #;,. (b) shows the stationary TTD derived using Eq. (7).

In all investigated cases, these stationary TTDs could be
well approximated by an exponential-esque behavior (see
Fig. 7b). Such behavior is often assumed to be valid for TTDs
in general such that they are consequently modeled using ex-
ponential or gamma distributions (Matloszewski and Zuber,
1982). Recent works, however, have questioned this general-
ization by emphasizing the time-dependent nature of TTDs
(Dufty, 2010; Botter et al., 2011). The examples given in
Fig. 7 exemplify these concerns by illustrating their respec-
tive origins. Consequently, we acknowledged the inherent
differences between these two TTDs. Furthermore, the study
area falls within a humid region, with soils being generally
wet and rainfall being evenly distributed throughout the year.
Under these conditions the assumption of (quasi) stationary
TTDs is reasonable (Tetzlaff et al., 2007; Hrachowitz et al.,
2009). These stationary TTDs provided the basis for all fol-
lowing analysis since they allow the description of the aver-
age hydrological response of the catchment. In addition, we
also focused on travel-time behavior under specific hydrolog-
ical regimes, i.e., wet and dry conditions, providing a more
detailed understanding of the catchment.

For our statistical analysis, we used these stationary TTDs,
which, due to their exponential-esque behavior, can be char-
acterized by their expected value . We call this value mean
life expectancy (or mean age in the case of backward TTDs)
hereafter. Estimating this value for every mHM cell provided
therefore a single measure for the travel-time behavior in the
soil without the otherwise dominating impact of single pre-
cipitation events (see Fig. 8). One feature that became imme-
diately apparent was the long travel times in urban areas (see
Fig. 8a). This can be explained by the fact that these areas
are largely sealed, resulting in low infiltration rates and con-
sequently low turnover rates inside the soil. To disentangle
this sealing effect from the soil behavior, we discarded cells
inside urban regions from our analysis (see Fig. 8b). This al-
lowed us to investigate the interplay between soil properties
and travel-time behavior apart from such artificial influences.
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3.1 Impact of modeling resolution

Due to its multiscale parameterization, mHM is able to model
catchment dynamics at different spatial resolutions with the
same set of calibration parameters (see, e.g., Samaniego
et al., 2010a, or Kumar et al., 2013a). Within the context of
TTDs, this feature may be used to investigate the potential in-
fluence of age-dependent outflow generation. The mathemat-
ical theory for including such age dependency has been de-
veloped independently by different groups and recently been
unified using the umbrella term of StorAge Selection (SAS)
functions (Rinaldo et al., 2015; Harman, 2015). These func-
tions fully describe the sampling behavior of the catchment
with respect to the age distribution of the stored water when
discharge is generated. Discharge from a catchment may,
e.g., be primarily composed of younger or older water or it
may show no preference to age whatsoever. SAS functions
are therefore a concise mathematical representation of this
behavior.

On a physical basis, such preference for a different wa-
ter age should be interpreted as the result of complex mix-
ing processes taking place in the subsurface of the catch-
ment (Botter, 2012; Benettin et al., 2013; van der Velde et al.,
2012). To determine the appropriate SAS function for a given
catchment, predictions using different functions would have
to be compared with measurements. Alternatively, the form
of the SAS function can be determined by using a physically
based catchment model (Cornaton and Perrochet, 2006a, b).
As already mentioned above, we could not directly infer
which form of a SAS function would be the most appropriate
choice for our catchment. Instead, we calculated the mean
life expectancy for our catchment on different scales using
the uniform SAS function. We motivated this choice by the
principle of least information (or principle of maximum en-
tropy) stating that, among different alternatives, the one with
the least amount of information should be chosen. Without
any additional constraints, a uniform distribution is usually
associated with maximum ignorance, thereby motivating the
use of the uniform SAS function.
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Figure 8. Mean life expectancy (in months) of soil moisture derived by Eq. (7) for the Nigelstedt catchment (see also Fig. 1 for comparison)

once for all mHM cells (left panel) and for all non-urban cells.
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Figure 9. Kernel density estimate of the mean life expectancy (in months) of soil moisture for several grid sizes in the Niagelstedt catchment.

To estimate the possible influence of this decision, we
reasoned that a scale-dependent bias in the estimation of
travel-time behavior would indicate the existence and pos-
sible strength of such an error. This is due to the multiscale
nature of mHM, where sub-grid heterogeneity is taken into
account by virtue of the multiscale parameter regionaliza-
tion. Using a smaller grid size would make this heterogeneity
explicit and therefore reveal any possible unaccounted sub-
grid influence. Results from our simulations showed no dis-
cernible differences in the statistical distribution of mean life
expectancy (see Fig. 9). Using a higher resolution had a pos-
itive effect on the statistical estimation procedure due to the
increase in data points. In addition, we saw more extreme
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values due to small-scale features that were smeared out on
coarser resolutions. Other than these two changes, we noted
only minor changes in the statistics of mean life expectancy.
We therefore concluded that, within the limits of the spa-
tial scales tested here, mixing processes inside our catchment
had no major impact on mean life expectancy. We are aware
that this assessment only covers one possible source of age-
dependent outflow behavior and that other unresolved het-
erogeneity (at even smaller scales or due to other subsurface
properties not accounted for in mHM) would influence the
outflow generation as well. We therefore regard our conclu-
sions as tentative and open to revision once actual measure-
ments become available.
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Figure 10. Scatter plot of mean life expectancy (in months) of soil moisture vs. monthly values (in millimeters) for precipitation (a) and

effective precipitation (b).

However, our investigation gave us the ability to find a
good trade-off between computational costs and data amount
for the following statistical analyses. We therefore used a
data set from simulations using a grid size of 500 m.

3.2 Statistical analysis of mean life expectancy

The mean life expectancy 7 of a water parcel inside a catch-
ment is the result of a complex interplay of morphological
and climatological factors. Several recent studies have there-
fore tried to determine their relative importance under vary-
ing conditions (McGuire et al., 2005; Cardenas, 2007; Brox-
ton et al., 2009; Tetzlaff et al., 2009, 2011). Contrary to these
studies where field measurements were used, we used re-
sults from computational simulations only. This gave us a
much larger data set, both in time and space, from which we
could infer the relative impact of different factors, in particu-
lar meteorological (precipitation), land surface (land cover,
leaf-area index) and subsurface (soil) properties. Notably,
our approach differs from Hrachowitz et al. (2009) such that
our analysis is based on model-derived gridded simulations
of TTDs as compared to the observation-based basin-wise
quantification of TTDs.

In the first step, we determined for every cell the statis-
tical relationship between the mean life expectancy 7 and
a number of potential predictors like average precipitation,
soil depth, soil type or leaf-area index (LAI). Similar to Hra-
chowitz et al. (2009), we used the coefficient of determina-
tion R? to quantify the strength of the statistical relationship.
This quantity equals 1 minus the ratio of the remaining vari-
ance vs. the total variance of the data themselves. It is there-
fore a measure of the variance explained by the statistical
model (which was always assumed to be linear in our study).

3.2.1 Precipitation

The analysis above showed the strong impact of precipitation
on the event-based TTDs (see Fig. 7). We therefore expected
this quantity to exert strong controls on the steady-state TTDs
as well. In our model, two different quantities can be dis-
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tinguished: first, the precipitation itself as well as, second,
the effective precipitation. The latter value is here defined as
the water flux that is actually entering the soil, i.e., corrected
by surface runoff (through sealing), canopy interception and
snowmelt. While the precipitation can be measured with high
accuracy, it is the effective precipitation that directly impacts
soil-moisture dynamics.

The scatter plots of both data sets vs. the mean life ex-
pectancy show a significant negative correlation between
them (see Fig. 10). This negative relationship can be ex-
plained such that precipitation events apply pressure to the
water already stored in the soil. Instead of immediately trav-
eling through the soil, the water from these events rather
pushes older water out. Strong precipitation events therefore
lead to a “flushing out” of the soil and cause a shorter life
expectancy.

3.2.2 Terrain elevation

In our next analysis, we used the physical elevation as a
variable for our regression model. The height can simply be
derived from the digital elevation model (DEM), which, in
mHM, is represented using data obtained from the Shuttle
Radar Topography Mission.

Using a scatter plot for visualizing the statistical relation-
ship between mean life expectancy and the DEM showed a
negative correlation (see Fig. 11), i.e., longer life expectancy
correlated with lower heights of the terrain, and with a lin-
ear coefficient of determination of R? = 0.668. Since no di-
rect causal connection can be drawn between physical ele-
vation and travel-time behavior, such a high value is indica-
tive of underlying mechanisms. One of these is the afore-
mentioned precipitation, since higher altitudes are correlated
with stronger mean precipitation levels (linear coefficient of
determination of R?> = 0.812). Performing a multiple linear
regression, including precipitation and saturated soil mois-
ture (discussed below), showed strong correlation between
these variables (data not shown). It therefore stands to reason
to attribute potential causal effects to these covariates only.
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Figure 11. Scatter plot of mean life expectancy (in months) of soil
moisture vs. elevation (in m).

3.2.3 Evapotranspiration

Evapotranspiration is directly influencing the form of a TTD
(see, e.g., Eq. 2). Consequently, we anticipated a strong cor-
relation between mean evapotranspiration rates and mean life
expectancy.

With respect to evapotranspiration, two different defini-
tions are typically distinguished: potential evapotranspiration
(PET) and actual evapotranspiration (AET). As implied by
its name, PET describes the maximum possible rate of evapo-
transpiration at a given site. This value is dependent on quan-
tities like solar radiation and temperature that can generally
be measured with good accuracy (Samani, 2000). Using the-
oretical models, good estimates can therefore be provided for
PET at a given site (Almorox et al., 2015). On the other hand,
AET is a real quantity that can be measured. In principle,
in situ measurements can therefore provide good estimates
(e.g., the eddy-covariance method). In practice, however, ex-
act measurements are hampered by a series of factors (Wang
and Dickinson, 2012). As a consequence, PET can often be
estimated with higher accuracy than AET.

Scatter plots of both PET and AET show a positive corre-
lation between evapotranspiration and mean life expectancy
in general (see Fig. 12). This correlation is more pronounced
for AET, with a coefficient of determination of R? =0.496
vs. only R? = 0.259 for PET.

In contrast to precipitation, which is an inflow mechanism,
ET is an outflow mechanism. It does not push, but rather
pulls the water out of the CV, which explains the difference
in behavior between precipitation and ET. The lower relative
strength of the correlation (compared to precipitation) can be
explained such that ET is only one of the two outflow mech-
anisms (the other being discharge). The relative stronger im-
pact of AET compared to PET was also anticipated. AET is
directly used in Eq. (2) for the calculation of TTDs, whereas
PET is only coupled by virtue of an additional function.

As explained above, for real-world situations, better esti-
mates can often be provided for PET. The higher explanatory
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power of AET has to therefore be balanced with its often less
accurate estimate. Depending on the accuracy of measure-
ments of AET, PET estimates may be a better predictor of
mean life expectancy.

3.2.4 Land-cover properties

Land cover is an important interface controlling the strength
of incoming fluxes through artificial and natural sealing. In
mHM, three different land-cover types are distinguished:
forest, crop/grassland and urban area. As explained above,
we excluded mHM cells inside urban areas from our anal-
ysis in order to better focus on the soil properties them-
selves. To further elucidate possible influence of the remain-
ing land-cover types, we separated the catchment into forest
and crop/grassland and calculated the mean travel times sep-
arately.

Estimating the probability density function (PDF) of the
mean life expectancy for both land-cover types separately
revealed strong differences between them both in shape of
the respective PDF and the range of values (see Fig. 13). As
shown above, results for the combined data set showed a dis-
tinct bimodal behavior (see Fig. 9). In contrast to that, the
PDFs for both land-cover types were almost unimodal. The
most dominant peaks of every single PDF coincided with the
two peaks of the combined PDF. The behavior of the latter
can therefore — to some degree — be considered to be a super-
position of the former.

The relationship between these two land-cover types was
such that forest resulted in much shorter mean travel times
compared to crop/grassland. This pronounced difference
may be partially due to a correlation with precipitation val-
ues that have already been shown to exert a strong influ-
ence on travel-time behavior. Forest in the study catchment
(as well as in Germany in general) is found disproportion-
ately in hilly and mountainous regions. These regions in turn
show stronger precipitation values. The tendency depicted
in Fig. 13 may therefore be caused by this covariate. How-
ever, this correlation between forested and high-precipitation
area would not explain the distinct differences between both
land-cover types. Another factor, overlapping with the for-
mer, may be due to the differences in water uptake. Trees are
rooted into deeper soil layers compared to crop and grass and
are therefore able to access a larger part of the subsurface wa-
ter body. This larger access combined with the higher precip-
itation values as well as other factors would explain the al-
most non-overlapping travel-time behavior demonstrated in
Fig. 13.

In addition to this classification scheme, mHM uses the
leaf-area index (LAI) to describe land-cover properties. The
LAI describes the ratio of the cell that is effectively covered
by plant canopy. Due to the already established influence on
evapotranspiration (see above), it stands to reason that an in-
fluence on the mean life expectancy exists as well. Compar-
ing LAI class and land cover reveals a strong overlap between
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Figure 12. Scatter plot of mean life expectancy (in months) of soil moisture vs. monthly evapotranspiration values (in millimeters). Displayed
are both potential evapotranspiration (a) and actual evapotranspiration (b).
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Figure 13. Land cover in the Négelstedt catchment (blue: forest; green: urban; red: crop/grassland). (a) shows the spatial distribution of land
cover in the highest resolution /y and (b) shows the kernel density estimates of the mean life expectancy (in months) of soil moisture for the
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Figure 14. Leaf-area index (LAI) in the Négelstedt catchment. (a) shows the spatial distribution and (b) shows the scatter plot of mean life

expectancy (in months) of soil moisture vs. LAIL

both (see Figs. 13a and 14a). Roughly, forest corresponds to
LAI classes 1-4, urban area corresponds to LAI class 5 and
grassland corresponds to LAI classes 6-10.

Using the same approach as above, i.e., investigating the
mean life expectancy for every LAI class independently, re-
vealed the same overall tendency for LAI classes compared
to land-cover types (data not shown). This was anticipated
due to the aforementioned overlap between the two classifi-
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cation schemes. In addition, we saw little diversity for LAI
classes within the same land-cover class (data not shown).
However, this tendency was not present when using the ac-
tual leaf-area values associated with every LAI class. These
values could be constant over the year (e.g., in the case of
coniferous forest) or vary strongly (e.g., in the case of de-
ciduous forest). To make values from different LAI classes
comparable, we averaged the respective values year-wise. A
scatter plot of leaf-area index vs. mean life expectancy does
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Figure 15. Soil classes in the Négelstedt catchment. (a) shows the spatial distribution and (b) shows the kernel density estimate of the mean
life expectancy (in months) of soil moisture for selected soil classes. The blue curve represents soil class 9 (36 % sand and 10 % clay), the
yellow curve represents soil class 38 (12 % sand and 15 % clay), the orange curve represents soil class 40 (10 % sand and 19 % clay), the red
curve represents soil class 42 (7 % sand and 39 % clay) and the brown curve represents soil class 51 (19 % sand and 70 % clay).

not show strong correlation between the two, with similar
ranges of values being found for almost all LAI values (see
Fig. 14b). This discrepancy can be explained by the imple-
mentation of the LAI in mHM. In contrast to the land-cover
type that is used for the determination of ET processes in
the top soil layer, LAI values are only used for interception
and consequently do not directly influence travel-time behav-
ior. As a result, any possible relationship between LAI and
TTDs is therefore biased and conclusions from our results
must take into account this limitation critically.

3.2.5 Soil properties

An important input parameter in mHM is the soil type inside
every cell. This property is implemented in mHM using Ger-
man soil database Bodeniibersichtskarte 1 : 1000000 (BUK
1000) (BGR, 1998).

Due to this relevance in the model, we anticipated a strong
impact of the soil type in a cell on the resulting mean life ex-
pectancy. Estimating the PDF of mean travel times for every
soil type individually did indeed show significant differences
between them (see Fig. 15). Soil classes found in the geo-
graphically lower regions of the catchment generally show
longer mean travel times with a unimodal distribution shape,
whereas soil types in the geographically higher regions corre-
spond to generally shorter mean travel times, with the shape
of the distributions being less regular. This qualitative anal-
ysis reveals some overlap with the land-cover distributions
as well as mean precipitation rates. It is consequently not
possible to directly infer causal correlation from statistical
correlation.

In addition, the soil class is a symbolic variable; i.e., its
values only indicate a certain type of soil but do not directly
relate to any numerical quantity associated with this soil type.
Consequently, we could not infer any quantitative connection
between soil types and resulting travel-time behavior.

To address this problem, we used the saturated soil mois-
ture of the soil. This quantity is the amount of pore space per
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Figure 16. Scatter plot of mean life expectancy (in months) of soil
moisture vs. saturated soil moisture (in millimeters).

cell that can be potentially filled with water (porosity times
the depth of root-zone soil layer). Its value is determined in
mHM through pedo-transfer functions using the soil textu-
ral information on percentage of sand, clay and bulk density.
Comparing these values in every single cell with the mean
life expectancy shows a very strong statistical relationship
with a coefficient of determination R = 0.675 (see Fig. 16).

The high correlation values of the saturated soil moisture
can be explained by a mixture of causal and statistical fac-
tors. On one hand, it is reasonable to expect the total amount
of storage to be filled with water to have a significant effect
on the resulting travel-time behavior. On the other hand, the
soil types show a strong overlap with other factors like pre-
cipitation levels and land-cover types that have already been
discussed above.

3.3 Statistical analysis of mean age
As described above, the difference between the forward and

backward formulations of travel time has long been acknowl-
edged (Niemi, 1977) and many studies have investigated
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Figure 17. Mean age of soil moisture in the Nigelstedt catchment. (a) shows spatial distribution and (b) shows the scatter plot of mean age

vs. mean life expectancy (see Eq. 8) in months.

their relationship (Cornaton and Perrochet, 2006a; Botter,
2012; Benettin et al., 2013, 2015a; Harman, 2015). Both
these formulations are linked by virtue of the so-called Niemi
relation

T(tin)0 (tin) p (t — tinltin) = Q1) p (¢ — tin]1), (8)

which can be derived by considering a water parcel enter-
ing the CV at f, and leaving at 7. Consequently, mean life
expectancy and age only coincide in the case of steady-state
conditions. As a result, we also investigated the behavior of
mean age to elucidate connections and differences between
forward and backward formulations for our catchment.

Visually comparing mean age (see Fig. 17) and mean life
expectancy (see Fig. 8b) in the Négelstedt catchment showed
strong qualitative and quantitative similarities. Accordingly,
we also got a very strong statistical relationship between
these two quantities, with a coefficient of determination of
R% =0.956. Overall, the relationship was very linear, with
mean age values falling short of mean life expectancy for
both small and large values.

Due to the mathematical and physical similarities, such a
strong connection was anticipated. To further investigate pos-
sible origins of their respective differences, we performed the
same statistical analysis for mean age.

To that end, we considered proxy variables that have al-
ready been shown to have a considerable impact on travel-
time behavior. As demonstrated by the analysis above, these
were precipitation (Pre), potential evapotranspiration (PET)
and saturated soil moisture (SSM) as proxies for influx, out-
flux and state, respectively. Results showed overall the same
trend for mean age and life expectancy with respect to these
predictors (see Table 1). Precipitation was the most dominant
factor for both quantities, with the saturated soil moisture be-
ing a close second. This is in contrast to, e.g., Benettin et al.
(2015a), who emphasized the role of the outfluxes for the
time evolution of both age and life expectancy. In our analy-
sis, we saw that proxy variables for influx and state show the
strongest correlations with mean travel-time behavior. On the
other hand, PET, which is a good proxy for one of the two
outfluxes, showed only moderately strong correlations with
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Table 1. R? values for several predictors of mean travel time.

Pre PET SSM

0.860 0.260 0.675
0.728 0.143  0.711

Mean life expectancy
Mean age

said behavior. In the case of mean age, this relationship was
even weaker compared to the other two (precipitation and
saturated soil moisture). Since we could not provide a proxy
variable for the other outflux, i.e., discharge, we excluded
this quantity from our analysis.

3.4 Joint impact of multiple variables on mean travel
times

In the analysis above, the statistical relationship between
mean travel-time behavior and a number of variables was
presented and discussed. This was done for every variable
individually to elucidate its possible impact on mean travel
times. In addition to this simple analysis, we also investi-
gated the joint impact of several variables. Such results can
be of relevance for prediction, i.e., using a set of variables to
predict travel times in a given CV.

To that end, we used the variables that had been shown to
have the highest impact individually, i.e., precipitation, satu-
rated soil moisture and potential evapotranspiration, and per-
formed a multiple linear regression. Simple linear regression
had already demonstrated that both precipitation and satu-
rated soil moisture could explain a significant amount of the
variability contained in the data set. Combining these fac-
tors could therefore improve the predictability even further.
We therefore applied forward stepwise selection to gener-
ate a series of models with increasing complexity. The first
single-variable model consequently used precipitation as the
variable with the highest single R? value. Next, the double-
variable model used both precipitation and saturated soil
moisture and the most complex three-variable model used
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Table 2. R2 values for several regression models of increasing com-
plexity.

Pre Pre +SSM  Pre + SSM + PET

Mean life

expectancy  0.860 0911 0.913

precipitation, saturated soil moisture and potential evapotran-
spiration jointly.

Results for the default case showed that, compared to us-
ing only one variable (precipitation), using two variables for
the regression (precipitation and saturated soil moisture) im-
proved the predictability of mean travel times (see Table 2).
This was expected since both variables alone provided al-
ready high R? values. In addition, precipitation and satu-
rated soil moisture only showed moderate correlation (R =
0.451), so adding the latter variable added new information
to the prediction model. The correlation that existed between
precipitation and saturated soil moisture is explained by the
orographic effect; i.e., hilly regions in the catchment with
typically lower values of saturated soil moisture also show
higher precipitation values. In contrast, using three variables
(precipitation, saturated soil moisture and potential evapo-
transpiration) resulted in almost negligible improvement (see
Table 2). This is due to the already lower impact of PET com-
pared to precipitation and saturated soil moisture. In addi-
tion, PET showed comparably stronger correlation with both
precipitation and saturated soil moisture (data not shown),
thereby adding only little new information compared to the
other two variables. Such low impact of outgoing fluxes com-
pared to precipitation has already been reported before, for
the case of synthetic toy models (Daly and Porporato, 2006).
Moreover, our results agree with the findings of Hrachowitz
et al. (2009), who also reported similarly strong explanatory
power of climatic variables like precipitation as well as soil
and land surface properties.

3.5 Impact of hydrological regime on travel-time
behavior

The analysis above revealed the strong impact of the influx
(i.e., precipitation) as well as the state variable (i.e., satu-
rated soil moisture) on the travel-time behavior in the soil.
To further elucidate their impact, we investigated the soil
travel-time behavior independently for different hydrologi-
cal regimes during the considered period of time, i.e., from
1955 to 2005. To that end, we partitioned the available time
series into regimes based on soil moisture (state variable) and
precipitation events (influx).

In the first case, we averaged the time series of mean sat-
urated soil moisture in the whole Nigelstedt catchment for
every year, i.e., 50 years in total. Next, we divided the result-
ing time series such that years with an average soil moisture
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Table 3. R? values for several predictors of mean travel time (as
caused by wet and dry years).

Pre PET SSM

Wetyears 0374 0.084 0.388
Dry years 0.781 0.223 0.834

content above the 85th percentile of the time series were la-
beled as wet years. In contrast, years with an average soil
moisture content below the 15th percentile of the time se-
ries were labels as dry years. This year-wise partitioning was
seen as necessary due to the strong annual fluctuations of this
variable. Finally, we performed the same analysis as describe
above for both — now smaller — data sets.

Using results from dry years only (see Fig. 18) showed a
similar qualitative travel-time behavior but strong quantita-
tive contrast compared to the mean travel-time behavior dis-
cussed above (see Fig. 8). Compared to this general case,
mean life expectancy was much larger in dry years. In ad-
dition, dry years exhibit a wider range of values, with the
largest one (over 50 months) being almost 4 times as large as
the smallest one (approximately 12 months).

Wet years, on the other hand, exhibit a very small range of
values, with the smallest value (approximately 5 months) be-
ing roughly half the largest value (approximately 11 months)
(see Fig. 19). Compared to the general case, where the largest
value (approximately 20 months) were roughly 3 times as
large as the smallest value (approximately 6 months), these
two scenarios fall on either side of this spectrum. This dis-
crepancy demonstrates again the strong impact of the state
variable (soil moisture) on travel-time behavior. Another dif-
ference between the mean travel-time behavior in wet years
and the general case is the unimodal distribution of the for-
mer. The analysis above revealed how the bimodal behavior
strongly correlates with the different soil types and therefore
reflects the strong impact on this property on the overall soil-
moisture dynamics. The disappearance of this bimodal be-
havior is therefore reflective of how the soil becomes more
homogeneous when filled up with water.

In addition, our results showed different statistical depen-
dencies of travel-time behavior with respect to precipitation,
PET and SSM (see Table 3). Dry years showed very similar
correlation values compared to the general case (see Table 1).
On the other hand, correlation values for wet years were re-
markably smaller.

In the second case, we investigated travel-time behavior
depending on extreme values of the influx, i.e., for months
having large precipitation values (rainy months). To that end,
we constrained our analysis to forward travel-time distribu-
tions which were triggered by heavy rain events. This means
that, in analogy to the analysis above, we only used months
with precipitation values above the 97th percentile and per-
formed again the same analysis for the reduced data set.
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Figure 18. Mean life expectancy of soil moisture in the Négelstedt catchment in dry years. (a) shows the spatial distribution and (b) shows

the kernel density of mean life expectancy (in months).
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Figure 19. Mean life expectancy of soil moisture in the Négelstedt catchment in wet years. (a) shows the spatial distribution and (b) shows

the kernel density of mean life expectancy (in months).
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Figure 20. Mean life expectancy of soil moisture in the Négelstedt catchment caused by rainy months. (a) shows the spatial distribution and

(b) shows the kernel density of mean life expectancy (in months).

Results showed strong differences in mean life expectancy
during rainy months compared to the scenarios discussed
above (compare Fig. 20 with Figs. 8 and 18). Compared to
wet years, we saw even lower mean life expectancy. This can
be explained by the strong impact of the rain on soil mois-
ture leading to a flushing of the soil. We also saw a similarly
small variance and a nearly unimodal distribution of mean
travel-time values.

In addition to that, we saw differences in the statistical cor-
relation of mean life expectancy of precipitation, potential
evapotranspiration and saturated soil moisture (see Table 4).

www.hydrol-earth-syst-sci.net/21/549/2017/

Table 4. RZ values for several predictors for mean travel time (as
caused by rainy months).

Pre PET SSM

Mean life expectancy 0.736  0.221  0.857

Compared to the standard travel-time behavior, precipitation
was slightly correlated with mean life expectancy. This was
caused by lower overall variation in precipitation values due
to constraining our analysis to large values, thereby exclud-
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ing low and medium range rain events. In contrast to that, R>
values for PET and SSM increased.

3.6 Relevance of TTDs for hydrological inference

The above results demonstrated the impact of certain soil
properties, as implemented in mHM, on mean travel times
using the R% metric as a measure. In addition to that statis-
tical analysis, their relationship can further be elucidated by
analyzing Eqgs. (2) or (3). Assuming for example a simple lin-
ear relationship for both Q and ET with respect to S, we get
for Eq. (2) the following:

@Q
0 tin)

Po(Te. tin) = 2 exp (—aprTe) exp (—aqQTE) - )
Equation (9) shows how under such simplified assumptions,
the TTD of such a CV would follow an exponential distribu-
tion with its mean travel time being related to the recession
constants «g and agr. As shown above, such an exponential
behavior is visible in the mean behavior (see Fig. 7 right),
whereas non-stationary TTDs show this exponential behav-
ior to be dominated by the event-based nature of the govern-
ing fluxes (see Fig. 7 left).

In addition to these differences, we also saw different
mean travel-time behavior for different regimes (see above).
These differences can be explained by the actual implemen-
tation of Q and ET in mHM, which is generally nonlinear
(see Sect. 2.2). To assess the different roles of each soil pro-
cess in discharge generation, we calculated the relative con-
tribution of each outflow mechanism for each regime. The
data in Table 5 show how much of the water that entered the
soil during a given time and left eventually as discharge was
leaving as baseflow Qg, slow interflow Qj, or fast interflow
Qy;- On average, baseflow contributed the most to discharge,
with fast interflow having the smallest share. This overall dis-
tribution became more strongly pronounced during dry years,
with baseflow taking the largest share of outflow generation
and fast interflow becoming negligible. For wet years this
trend is reversed, with water entering the soil during rainy
months having an almost equal distribution. These different
weighs show the relative impact and therefore the relative
information content that travel-time distributions could con-
tain; i.e., travel times in dry years are mostly the results of
the successive processes contributing eventually to baseflow
(see Fig. 3), whereas travel times during storm events contain
information on all discharge processes equally.

To further elucidate the relationship between the result-
ing mean travel times and certain model parameters, we per-
formed a regression analysis comparing the recession con-
stant for recharge with the mean travel times for differ-
ent regimes. Results confirmed the relationship described
above, with mean travel times during dry years showing the
strongest correlation (see Table 6).

Such a high interdependency between certain model pa-
rameters and data from different flow regimes is not unique
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Table 5. Relative contribution of the different fluxes to runoff gen-
eration.

All years Dry years  Wet years
Or, 0.150 0.061 0.173
01, 0.298 0.239 0.317
OB 0.552 0.700 0.512

Table 6. RZ values for recharge vs. mean travel times for different
regimes.

All years Dry years Wet years

R? 0.6059 0.6954 0.3619

for TTDs. Using discharge alone would reveal similar overall
tendencies; e.g., discharge data from droughts are more in-
formative for calibrating baseflow recession constants. What
is new, however, is the additional information content, which
is not contained in discharge data alone. Not only can this
improve calibration efforts, it allows the inference of addi-
tional system states. This is particularly relevant with respect
to, but not confined to, the total amount of stored ground-
water. Discharge data are not sensitive to, and therefore not
informative for, groundwater levels, but are to its variations,
i.e., fluxes. TTDs on the other hand strongly depend on the
total amount of water stored in every CV. Using both data
types for inference would therefore allow one to provide rea-
sonable estimates of this quantity. Similarly, the estimation
of water in the root and vadose zone can be improved.

In addition, Birkel and Soulsby (2015) highlight the tem-
poral aspects of travel times on model calibration. They point
out how the sampling frequency of the time series should
match the expected travel times of the underlying process.
Our results above revealed different timescales for different
hydrological regimes, varying by almost an order of magni-
tude. Despite this heterogeneity, all travel times in our study
remained within the range of months. Under such circum-
stances, a high-resolution measurement campaign with daily
or even hourly intervals would not be necessary.

Although the above explanations provide only a limited
perspective on the relationship between TTDs and model
parameters, it can be said that the strong interlink between
the travel-time behavior and outflow generation indicates
the high information content of the former with respect to
the latter. As a result, travel-time distributions should be re-
garded as highly informative for the calibration of hydrolog-
ical models. As mentioned in the Introduction, McDonnell
and Beven (2014) have made the case for the usefulness of
TTDs for the parametrization of such models. The above pre-
sentations provide empirical support for this notion.

www.hydrol-earth-syst-sci.net/21/549/2017/



F. HeBe et al.: Characterization of soil-moisture dynamics

4 Conclusions

In this study, we investigated the spatially distributed soil-
moisture dynamics in the Nigelstedt catchment using travel-
time distributions. The states and fluxes, needed for the
derivation of the travel times, were numerically computed us-
ing the mesoscale Hydrological Model (mHM), which was
calibrated against discharge data as well as using detailed
data on soil properties, land cover and precipitation. We per-
formed a statistical analysis of mean travel times to describe
the soil response decoupled from the event-driven impact of
precipitation.

Comparing the derived mean travel times for several mod-
eling scales (spanning over 1 order of magnitude), we did not
see any significant difference in their distribution. This indi-
cates a general soundness of the parameterization scheme of
mHM used for the calculation of the states and fluxes on the
different modeling scales. Our analysis shows that precipita-
tion, saturated soil moisture and potential evapotranspiration
are strong statistical predictors of mean travel-time behavior.
We also note that, on average, shorter mean travel times cor-
respond to forested area and larger ones to crop/grassland,
an observation that we linked to both correlations between
forested and high-precipitation areas as well as the different
water uptake mechanisms of trees vs. crop/grass.

We also investigated the travel-time behavior for different
hydrological regimes, i.e., for dry and wet conditions (us-
ing soil moisture and precipitation as indicators). Our anal-
ysis revealed significantly different travel-time behavior for
each of these regimes. Despite the strong heterogeneity of
soil properties as well as (to a lesser extent) precipitation val-
ues, we could discriminate these regimes also in the resulting
distribution of mean travel times.

Under dry conditions, we saw mean travel times having
a pronounced bimodal distribution with long mean travel
times and large variance. Such long travel times reveal the
strong impact of baseflow on the generated outflow, whereas
the large variance shows the variety of soil responses under
dry conditions. Such conditions are therefore suited to infer-
ring soil properties relating to baseflow generation. In addi-
tion, due to the large variance of soil responses, such condi-
tions would allow the inference of the spatial origin of so-
lutes found in discharge streams. Such inferences are, how-
ever, hampered by the long travel times involved. Not only
are long time series needed, measurements must also be per-
formed during such dry conditions.

Under wet conditions, we saw mean travel times having
a unimodal distribution with shorter mean travel times and
a smaller variance. This shorter travel times are caused by
a larger influence of the slow and fast interflows on the to-
tal discharge behavior. As a result, TTDs derived under such
conditions may be suited to inferring the parameters relating
to these hydrological processes.
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In the case of rainy months, which overlap with wet con-
ditions to a significant degree, we saw a similar distribution
of mean travel times, but with even shorter mean values. This
indicates a stronger impact of fast interflow on the total dis-
charge behavior. Such information can therefore be valuable
for improving the parametrization of the fast interflow related
processes.

It is important to emphasize that our results have been de-
rived with respect to a single hydrological model, i.e., mHM,
only. As a result, we also need to critically assess the lim-
itations of this approach and its impact on the reliability of
our conclusions. First, mHM treats the hydrological storage
in every compartment as fully mixed. In the absence of addi-
tional information, we consequently assumed a uniform sam-
pling scheme for the discharge generation from every mHM
cell. This may have introduced errors in the age distribution
of fluxes and therefore the travel-time behavior as discussed
in Sect. 2.1. Due to the well-established ability of mHM to
take sub-grid heterogeneity into account, we have confidence
in the physical plausibility of the spatially explicit soil mois-
ture states and fluxes. In the absence of, say, solute data,
we have, however, to consider these assumptions as tentative
and open to revision. The other limitation of our approach
stems from the computational nature of our study, introduc-
ing a number of uncertainties. Like any hydrological model,
mHM may suffer from three different sources of uncertainty:
input uncertainty, structural uncertainty and parametric un-
certainty. We would therefore like to assess their nature and
potential impact on our results and conclusions. First, input
uncertainty refers to the uncertainties inherent in the forc-
ing of the model, i.e., precipitation. Our results have shown
the strong impact of precipitation on travel-time behavior.
It would therefore stand to reason that a strong impact of
any uncertainty from precipitation propagates to the result-
ing travel-time behavior. However, we investigated mean be-
havior only, where time series from many months were aver-
aged. We therefore consider possible contributions to our re-
sults to be minor. Next, structural uncertainty depends on the
conceptual implementation of subsurface processes within
mHM and our choices of different mHM compartments for
our analysis. In Sect. 2.2, we discussed this issue by provid-
ing the rationales for, e.g., including the interflow compo-
nents in our analysis. Finally, parameter analysis is proba-
bly the largest total source of uncertainty and several studies
have recently investigated its impact on mHM output genera-
tion (Samaniego et al., 2013; Cuntz et al., 2015; Livneh et al.,
2015). The studies show that, while the fluxes are typically
well represented in mHM (Livneh et al., 2015), the over-
all soil moisture storage showed less accuracy, in particular
during droughts Samaniego et al. (2013). For droughts, our
results showed in general long travel times and pronounced
soil-specific behavior with comparably lesser impact of pre-
cipitation. While we do not expect a major impact on the
qualitative nature of these results, we should consider the
quantitative aspect, i.e., the specific values for mean travel
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times, to be inconclusive. In general, we consider the un-
certainty stemming from the storage estimate to be the most
relevant due to having both comparably lower accuracy and
the strong impact on overall travel-time behavior demon-
strated above. This is exacerbated since the water content
relevant for outflow generation may not be the same as the
one relevant for travel-time behavior. Immobile water due to,
e.g., dead-end pores, affects the latter but not the former. It
is, however, this connection between the total water content
and the resulting travel-time behavior that makes the use of
TTDs an important tool for a better calibration of hydrologi-
cal models.

As an outlook, we can say that, having established a com-
prehensive description for the storage and release of water in
the investigated catchment, the natural next step is the inte-
gration of reactive solute transport. As demonstrated by, e.g.,
Botter et al. (2010), the concept of travel-time distributions
can directly be adapted to account for the transport of both
conservative and reactive solutes. This extension would fa-
cilitate the comparison of our predictions with the wealth of
data that has been and continues to be collected within the
AquaDiva center at the Hainich Critical Zone Exploratory
(Kiisel et al., 2016). Thereby, we will be able to test our pre-
dictions by virtue of a large data set as well as initiate the
collection of additional new data.
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5 Data availability

For the production of the simulations that were used in this
study, we used the mesoscale Hydrological Model with sev-
eral forcings. The model itself is properly referenced in the
paper, whereas the providers of the forcings (digital eleva-
tion, rain intensity, solar radiation, soil types, etc.) are refer-
enced in the Acknowledgements. Both the raw data, i.e., the
results of the mHM simulations, as well as the post-processed
data, can be solicited from the corresponding author.
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Appendix A: Forward and backward formulation of
travel times

Both the forward and backward formulations for TTDs can
be derived from Eq. (1) by additionally associating each term
with its distribution. Therefore, we get

d
a[ﬂﬂpdTﬁﬂ=aK0pﬂTJ)—ETOnmﬂTJ)

— Q@) pQ(T,1). (AD)

Here T is a placeholder for either the age or life expectancy
of the water parcel. The total derivative in Eq. (A1) can be
reformulated using the material derivative, so

R D N
(5+5 ﬁ)[()l’S(v )] =JOpst.T)

—ET®)per(t, T) — Q1) pq(t. T). (A2)

Equation (A2) is the general partial differential equation
(PDE) describing the time evolution of the age of the wa-
ter in the CV. It is worthwhile noting that there is a sig-
nificant inconsistency in the literature with respect to this
equation. Botter et al. (2011) discuss the backward formu-
lation of Eq. (A2), while referring to it as the Master Equa-
tion (ME). This is certainly justified given that the ME is
describing the time evolution of the PDF of any Markov
process, i.e., a stochastic process that is local in (chrono-
logical) time. This condition is true for Eq. (A2). In addi-
tion, Eq. (A2) is not only local with respect to chronologi-
cal time ¢, but also with respect to the travel time 7. Inter-
preting T as x, it becomes obvious that Eq. (A2) is analo-
gous to the much simpler Fokker—Planck equation or, since
there is no “diffusion”, the even simpler advection—reaction
equation. On the other hand, Porporato and Calabrese (2015)
are careful to trace this equation back to the seminal work
of both M’Kendrick (1925) and von Forster (1959) in pop-
ulation dynamics. Consequently, they call this equation the
McKendrick—von Forster (MKVF) equation.
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One problem with Egs. (A1) and (A2) is the lack of clo-
sure; i.e., ps(T,t), py(T,t), per(T,t) and po(T,t) are dif-
ferent variables. The solution to this problem is the formula-
tion and/or derivation of a dependency, i.e., closure, between
the storage and the fluxes through

Pe(T, 1) = (T, 1) ps(T, 1). (A3)

This closure function w (7T, t) must follow some properties
to ensure the normality of both ps(T,t) and pp(T,t), with
the latter being the PDF of a flux, i.e., effective precipitation,
evapotranspiration or discharge. These closure functions are
called StorAge Selection (SAS) functions in the literature
(Rinaldo et al., 2015). Several different formulations exist,
with the one given above being based on the work of Botter
(2012).

The shape of the SAS function determines the preference
of the fluxes, e.g., discharge, for several ages of the water
stored in the CV. In the backward formulation, a flat func-
tion would correspond to no preference with respect to age,
a monotonously decreasing function would correspond to a
preference for younger water and a monotonously increasing
function would correspond to a preference for older water.
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