Research article
27 Jan 2017
Research article
| 27 Jan 2017
Spatially distributed characterization of soil-moisture dynamics using travel-time distributions
Falk Heße et al.
Viewed
Total article views: 2,737 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 30 May 2016)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
1,481 | 1,089 | 167 | 2,737 | 74 | 92 |
- HTML: 1,481
- PDF: 1,089
- XML: 167
- Total: 2,737
- BibTeX: 74
- EndNote: 92
Total article views: 2,102 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 27 Jan 2017)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
1,228 | 719 | 155 | 2,102 | 50 | 66 |
- HTML: 1,228
- PDF: 719
- XML: 155
- Total: 2,102
- BibTeX: 50
- EndNote: 66
Total article views: 635 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 30 May 2016)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
253 | 370 | 12 | 635 | 24 | 26 |
- HTML: 253
- PDF: 370
- XML: 12
- Total: 635
- BibTeX: 24
- EndNote: 26
Cited
13 citations as recorded by crossref.
- Variability of transit time distributions with climate and topography: A modelling approach F. Remondi et al. 10.1016/j.jhydrol.2018.11.011
- An analytical approach for urban groundwater transit time distributions accounting for the effect of stormwater infiltration system M. Jing et al. 10.1016/j.jhydrol.2021.127413
- EcH<sub>2</sub>O-iso 1.0: water isotopes and age tracking in a process-based, distributed ecohydrological model S. Kuppel et al. 10.5194/gmd-11-3045-2018
- Consistency and Discrepancy of Global Surface Soil Moisture Changes From Multiple Model-Based Data Sets Against Satellite Observations X. Gu et al. 10.1029/2018JD029304
- Spatial Patterns of Water Age: Using Young Water Fractions to Improve the Characterization of Transit Times in Contrasting Catchments S. Lutz et al. 10.1029/2017WR022216
- Soil water stable isotopes reveal evaporation dynamics at the soil–plant–atmosphere interface of the critical zone M. Sprenger et al. 10.5194/hess-21-3839-2017
- Improved regional-scale groundwater representation by the coupling of the mesoscale Hydrologic Model (mHM v5.7) to the groundwater model OpenGeoSys (OGS) M. Jing et al. 10.5194/gmd-11-1989-2018
- Strong hydroclimatic controls on vulnerability to subsurface nitrate contamination across Europe R. Kumar et al. 10.1038/s41467-020-19955-8
- Assessing the contribution of groundwater to catchment travel time distributions through integrating conceptual flux tracking with explicit Lagrangian particle tracking M. Jing et al. 10.1016/j.advwatres.2021.103849
- Influence of input and parameter uncertainty on the prediction of catchment-scale groundwater travel time distributions M. Jing et al. 10.5194/hess-23-171-2019
- Water Flux Tracking With a Distributed Hydrological Model to Quantify Controls on the Spatiotemporal Variability of Transit Time Distributions F. Remondi et al. 10.1002/2017WR021689
- Transport and Water Age Dynamics in Soils: A Comparative Study of Spatially Integrated and Spatially Explicit Models M. Asadollahi et al. 10.1029/2019WR025539
- Modeling Travel Time Distributions of Preferential Subsurface Runoff, Deep Percolation and Transpiration at A Montane Forest Hillslope Site J. Dusek & T. Vogel 10.3390/w11112396
13 citations as recorded by crossref.
- Variability of transit time distributions with climate and topography: A modelling approach F. Remondi et al. 10.1016/j.jhydrol.2018.11.011
- An analytical approach for urban groundwater transit time distributions accounting for the effect of stormwater infiltration system M. Jing et al. 10.1016/j.jhydrol.2021.127413
- EcH<sub>2</sub>O-iso 1.0: water isotopes and age tracking in a process-based, distributed ecohydrological model S. Kuppel et al. 10.5194/gmd-11-3045-2018
- Consistency and Discrepancy of Global Surface Soil Moisture Changes From Multiple Model-Based Data Sets Against Satellite Observations X. Gu et al. 10.1029/2018JD029304
- Spatial Patterns of Water Age: Using Young Water Fractions to Improve the Characterization of Transit Times in Contrasting Catchments S. Lutz et al. 10.1029/2017WR022216
- Soil water stable isotopes reveal evaporation dynamics at the soil–plant–atmosphere interface of the critical zone M. Sprenger et al. 10.5194/hess-21-3839-2017
- Improved regional-scale groundwater representation by the coupling of the mesoscale Hydrologic Model (mHM v5.7) to the groundwater model OpenGeoSys (OGS) M. Jing et al. 10.5194/gmd-11-1989-2018
- Strong hydroclimatic controls on vulnerability to subsurface nitrate contamination across Europe R. Kumar et al. 10.1038/s41467-020-19955-8
- Assessing the contribution of groundwater to catchment travel time distributions through integrating conceptual flux tracking with explicit Lagrangian particle tracking M. Jing et al. 10.1016/j.advwatres.2021.103849
- Influence of input and parameter uncertainty on the prediction of catchment-scale groundwater travel time distributions M. Jing et al. 10.5194/hess-23-171-2019
- Water Flux Tracking With a Distributed Hydrological Model to Quantify Controls on the Spatiotemporal Variability of Transit Time Distributions F. Remondi et al. 10.1002/2017WR021689
- Transport and Water Age Dynamics in Soils: A Comparative Study of Spatially Integrated and Spatially Explicit Models M. Asadollahi et al. 10.1029/2019WR025539
- Modeling Travel Time Distributions of Preferential Subsurface Runoff, Deep Percolation and Transpiration at A Montane Forest Hillslope Site J. Dusek & T. Vogel 10.3390/w11112396
Latest update: 30 Jun 2022
Short summary
Travel-time distributions are a comprehensive tool for the characterization of hydrological systems. In our study, we used data that were simulated by virtue of a well-established hydrological model. This gave us a very large yet realistic dataset, both in time and space, from which we could infer the relative impact of different factors on travel-time behavior. These were, in particular, meteorological (precipitation), land surface (land cover, leaf-area index) and subsurface (soil) properties.
Travel-time distributions are a comprehensive tool for the characterization of hydrological...