Articles | Volume 21, issue 7
https://doi.org/10.5194/hess-21-3597-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/hess-21-3597-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Reproducing an extreme flood with uncertain post-event information
Diana Fuentes-Andino
CORRESPONDING AUTHOR
Department of Earth Sciences, Uppsala University, Villavägen 16, 752 36 Uppsala, Sweden
Centre for Natural Disaster Science (CNDS), Uppsala University, Uppsala, Sweden
Keith Beven
Department of Earth Sciences, Uppsala University, Villavägen 16, 752 36 Uppsala, Sweden
Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
Sven Halldin
Department of Earth Sciences, Uppsala University, Villavägen 16, 752 36 Uppsala, Sweden
Centre for Natural Disaster Science (CNDS), Uppsala University, Uppsala, Sweden
Chong-Yu Xu
Department of Earth Sciences, Uppsala University, Villavägen 16, 752 36 Uppsala, Sweden
Department of Geosciences, University of Oslo, P.O. Box 1047, Blindern, 0316, Oslo, Norway
José Eduardo Reynolds
Department of Earth Sciences, Uppsala University, Villavägen 16, 752 36 Uppsala, Sweden
Centre for Natural Disaster Science (CNDS), Uppsala University, Uppsala, Sweden
Giuliano Di Baldassarre
Department of Earth Sciences, Uppsala University, Villavägen 16, 752 36 Uppsala, Sweden
Centre for Natural Disaster Science (CNDS), Uppsala University, Uppsala, Sweden
Related authors
No articles found.
Heidi Kreibich, Kai Schröter, Giuliano Di Baldassarre, Anne F. Van Loon, Maurizio Mazzoleni, Guta Wakbulcho Abeshu, Svetlana Agafonova, Amir AghaKouchak, Hafzullah Aksoy, Camila Alvarez-Garreton, Blanca Aznar, Laila Balkhi, Marlies H. Barendrecht, Sylvain Biancamaria, Liduin Bos-Burgering, Chris Bradley, Yus Budiyono, Wouter Buytaert, Lucinda Capewell, Hayley Carlson, Yonca Cavus, Anaïs Couasnon, Gemma Coxon, Ioannis Daliakopoulos, Marleen C. de Ruiter, Claire Delus, Mathilde Erfurt, Giuseppe Esposito, Didier François, Frédéric Frappart, Jim Freer, Natalia Frolova, Animesh K. Gain, Manolis Grillakis, Jordi Oriol Grima, Diego A. Guzmán, Laurie S. Huning, Monica Ionita, Maxim Kharlamov, Dao Nguyen Khoi, Natalie Kieboom, Maria Kireeva, Aristeidis Koutroulis, Waldo Lavado-Casimiro, Hong-Yi Li, Maria Carmen LLasat, David Macdonald, Johanna Mård, Hannah Mathew-Richards, Andrew McKenzie, Alfonso Mejia, Eduardo Mario Mendiondo, Marjolein Mens, Shifteh Mobini, Guilherme Samprogna Mohor, Viorica Nagavciuc, Thanh Ngo-Duc, Huynh Thi Thao Nguyen, Pham Thi Thao Nhi, Olga Petrucci, Nguyen Hong Quan, Pere Quintana-Seguí, Saman Razavi, Elena Ridolfi, Jannik Riegel, Md Shibly Sadik, Nivedita Sairam, Elisa Savelli, Alexey Sazonov, Sanjib Sharma, Johanna Sörensen, Felipe Augusto Arguello Souza, Kerstin Stahl, Max Steinhausen, Michael Stoelzle, Wiwiana Szalińska, Qiuhong Tang, Fuqiang Tian, Tamara Tokarczyk, Carolina Tovar, Thi Van Thu Tran, Marjolein H. J. van Huijgevoort, Michelle T. H. van Vliet, Sergiy Vorogushyn, Thorsten Wagener, Yueling Wang, Doris E. Wendt, Elliot Wickham, Long Yang, Mauricio Zambrano-Bigiarini, and Philip J. Ward
Earth Syst. Sci. Data, 15, 2009–2023, https://doi.org/10.5194/essd-15-2009-2023, https://doi.org/10.5194/essd-15-2009-2023, 2023
Short summary
Short summary
As the adverse impacts of hydrological extremes increase in many regions of the world, a better understanding of the drivers of changes in risk and impacts is essential for effective flood and drought risk management. We present a dataset containing data of paired events, i.e. two floods or two droughts that occurred in the same area. The dataset enables comparative analyses and allows detailed context-specific assessments. Additionally, it supports the testing of socio-hydrological models.
Trevor Page, Paul Smith, Keith Beven, Francesca Pianosi, Fanny Sarrazin, Susana Almeida, Liz Holcombe, Jim Freer, and Thorsten Wagener
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2022-349, https://doi.org/10.5194/hess-2022-349, 2022
Revised manuscript accepted for HESS
Short summary
Short summary
This Technical Note provides an introduction to the Cedible UnceRtainty Estimation Toolbox (CURE) that provides workflows for a variety of uncertainty estimation methods. One of its most important features is the requirement to define all the assumptions on which a workflow analysis depends. This facilitates the communication with potential users of an analysis. An audit trail log is produced automatically from a workflow for future reference.
Shanlin Tong, Weiguang Wang, Jie Chen, Chong-Yu Xu, Hisashi Sato, and Guoqing Wang
Geosci. Model Dev., 15, 7075–7098, https://doi.org/10.5194/gmd-15-7075-2022, https://doi.org/10.5194/gmd-15-7075-2022, 2022
Short summary
Short summary
Plant carbon storage potential is central to moderate atmospheric CO2 concentration buildup and mitigation of climate change. There is an ongoing debate about the main driver of carbon storage. To reconcile this discrepancy, we use SEIB-DGVM to investigate the trend and response mechanism of carbon stock fractions among water limitation regions. Results show that the impact of CO2 and temperature on carbon stock depends on water limitation, offering a new perspective on carbon–water coupling.
Pengxiang Wang, Zuhao Zhou, Jiajia Liu, Chongyu Xu, Kang Wang, Yangli Liu, Jia Li, Yuqing Li, Yangwen Jia, and Hao Wang
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2022-215, https://doi.org/10.5194/hess-2022-215, 2022
Preprint under review for HESS
Short summary
Short summary
Considering the impact of the special geological and climatic conditions of the Qinghai-Tibet Plateau on the hydrological cycle, this study established the WEP-QTP hydrological model. The snow cover and gravel layers affected the temporal and spatial changes of frozen soil and improved the regulation of groundwater on the flow process. Ignoring he influence of special underlying surface conditions has a great impact on the hydrological forecast and water resources utilization in this area.
Antonio Capponi, Natalie J. Harvey, Helen F. Dacre, Keith Beven, Cameron Saint, Cathie Wells, and Mike R. James
Atmos. Chem. Phys., 22, 6115–6134, https://doi.org/10.5194/acp-22-6115-2022, https://doi.org/10.5194/acp-22-6115-2022, 2022
Short summary
Short summary
Forecasts of the dispersal of volcanic ash in the atmosphere are hampered by uncertainties in parameters describing the characteristics of volcanic plumes. Uncertainty quantification is vital for making robust flight-planning decisions. We present a method using satellite data to refine a series of volcanic ash dispersion forecasts and quantify these uncertainties. We show how we can improve forecast accuracy and potentially reduce the regions of high risk of volcanic ash relevant to aviation.
Giuliano Di Baldassarre, Elena Mondino, Maria Rusca, Emanuele Del Giudice, Johanna Mård, Elena Ridolfi, Anna Scolobig, and Elena Raffetti
Nat. Hazards Earth Syst. Sci., 21, 3439–3447, https://doi.org/10.5194/nhess-21-3439-2021, https://doi.org/10.5194/nhess-21-3439-2021, 2021
Short summary
Short summary
COVID-19 has affected humankind in an unprecedented way, and it has changed how people perceive multiple risks. In this paper, we compare public risk perceptions in Italy and Sweden in two different phases of the pandemic. We found that people are more worried about risks related to recently experienced events. This finding is in line with the availability heuristic: individuals assess the risk associated with a given hazard based on how easily it comes to their mind.
Pengxiang Wang, Zuhao Zhou, Jiajia Liu, Chongyu Xu, Kang Wang, Yangli Liu, Jia Li, Yuqing Li, Yangwen Jia, and Hao Wang
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-538, https://doi.org/10.5194/hess-2021-538, 2021
Manuscript not accepted for further review
Short summary
Short summary
Combining the geological characteristics of the thin soil layer on the thick gravel layer and the climate characteristics of the long-term snow cover of the Qinghai-Tibet Plateau, the WEP-QTP hydrological model was constructed by dividing a single soil structure into soil and gravel. In contrast to the general cold area, the special environment of the Qinghai–Tibet Plateau affects the hydrothermal transport process, which can not be ignored in hydrological forecast and water resource assessment.
Sara Lindersson, Luigia Brandimarte, Johanna Mård, and Giuliano Di Baldassarre
Nat. Hazards Earth Syst. Sci., 21, 2921–2948, https://doi.org/10.5194/nhess-21-2921-2021, https://doi.org/10.5194/nhess-21-2921-2021, 2021
Short summary
Short summary
Riverine flood risk assessments require the identification of areas prone to potential flooding. We find that (topography-based) hydrogeomorphic floodplain maps can in many cases be useful for riverine flood risk assessments, particularly where hydrologic data are scarce. For 26 countries across the global south, we also demonstrate how dataset choice influences the estimated number of people living within flood-prone zones.
Qifen Yuan, Thordis L. Thorarinsdottir, Stein Beldring, Wai Kwok Wong, and Chong-Yu Xu
Hydrol. Earth Syst. Sci., 25, 5259–5275, https://doi.org/10.5194/hess-25-5259-2021, https://doi.org/10.5194/hess-25-5259-2021, 2021
Short summary
Short summary
Localized impacts of changing precipitation patterns on surface hydrology are often assessed at a high spatial resolution. Here we introduce a stochastic method that efficiently generates gridded daily precipitation in a future climate. The method works out a stochastic model that can describe a high-resolution data product in a reference period and form a realistic precipitation generator under a projected future climate. A case study of nine catchments in Norway shows that it works well.
Elena Mondino, Anna Scolobig, Marco Borga, and Giuliano Di Baldassarre
Nat. Hazards Earth Syst. Sci., 21, 2811–2828, https://doi.org/10.5194/nhess-21-2811-2021, https://doi.org/10.5194/nhess-21-2811-2021, 2021
Short summary
Short summary
Survey data collected over time can provide new insights on how different people respond to floods and can be used in models to study the complex coevolution of human–water systems. We present two methods to collect such data, and we compare the respective results. Risk awareness decreases only for women, while preparedness takes different trajectories depending on the damage suffered. These results support a more diverse representation of society in flood risk modelling and risk management.
Paul C. Astagneau, Guillaume Thirel, Olivier Delaigue, Joseph H. A. Guillaume, Juraj Parajka, Claudia C. Brauer, Alberto Viglione, Wouter Buytaert, and Keith J. Beven
Hydrol. Earth Syst. Sci., 25, 3937–3973, https://doi.org/10.5194/hess-25-3937-2021, https://doi.org/10.5194/hess-25-3937-2021, 2021
Short summary
Short summary
The R programming language has become an important tool for many applications in hydrology. In this study, we provide an analysis of some of the R tools providing hydrological models. In total, two aspects are uniformly investigated, namely the conceptualisation of the models and the practicality of their implementation for end-users. These comparisons aim at easing the choice of R tools for users and at improving their usability for hydrology modelling to support more transferable research.
Keith Beven
Hydrol. Earth Syst. Sci., 25, 851–866, https://doi.org/10.5194/hess-25-851-2021, https://doi.org/10.5194/hess-25-851-2021, 2021
Short summary
Short summary
Inspired by a quotation from Howard Cook in 1946, this paper traces the evolution of the infiltration theory of runoff from the work of Robert Horton and LeRoy Sherman in the 1930s to the early digital computer models of the 1970s and 1980s. Reconsideration of the perceptual model for many catchments, partly as a result of the greater appreciation of the contribution of subsurface flows to the hydrograph indicated by tracer studies, suggests a reconsideration of hydrological nomenclature.
Keith J. Beven, Mike J. Kirkby, Jim E. Freer, and Rob Lamb
Hydrol. Earth Syst. Sci., 25, 527–549, https://doi.org/10.5194/hess-25-527-2021, https://doi.org/10.5194/hess-25-527-2021, 2021
Short summary
Short summary
The theory that forms the basis of TOPMODEL was first outlined by Mike Kirkby some 45 years ago. This paper recalls some of the early developments: the rejection of the first journal paper, the early days of digital terrain analysis, model calibration and validation, the various criticisms of the simplifying assumptions, and the relaxation of those assumptions in the dynamic forms of TOPMODEL, and it considers what we might do now with the benefit of hindsight.
Tian Lan, Kairong Lin, Chong-Yu Xu, Zhiyong Liu, and Huayang Cai
Hydrol. Earth Syst. Sci., 24, 5859–5874, https://doi.org/10.5194/hess-24-5859-2020, https://doi.org/10.5194/hess-24-5859-2020, 2020
Zhengke Pan, Pan Liu, Chong-Yu Xu, Lei Cheng, Jing Tian, Shujie Cheng, and Kang Xie
Hydrol. Earth Syst. Sci., 24, 4369–4387, https://doi.org/10.5194/hess-24-4369-2020, https://doi.org/10.5194/hess-24-4369-2020, 2020
Short summary
Short summary
This study aims to identify the response of catchment water storage capacity (CWSC) to meteorological drought by examining the changes of hydrological-model parameters after drought events. This study improves our understanding of possible changes in the CWSC induced by a prolonged meteorological drought, which will help improve our ability to simulate the hydrological system under climate change.
Wenyan Qi, Jie Chen, Lu Li, Chong-yu Xu, Jingjing Li, Yiheng Xiang, and Shaobo Zhang
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2020-127, https://doi.org/10.5194/hess-2020-127, 2020
Manuscript not accepted for further review
Short summary
Short summary
Global hydrological models (GHMs) play important roles in global water resources estimation and it is difficult to obtain parameter values for GHMs. A framework is developed for building GHMs based on parameter regionalization of catchment scale conceptual hydrological models. Four different GHMs established based on this framework can produce reliable streamflow simulations. Over all, it can be used with any conceptual hydrological model even though uncertainty exists in using different models.
Keith J. Beven
Hydrol. Earth Syst. Sci., 24, 2655–2670, https://doi.org/10.5194/hess-24-2655-2020, https://doi.org/10.5194/hess-24-2655-2020, 2020
Short summary
Short summary
The concept of time of concentration in the analysis of catchment responses dates back over 150 years. It is normally discussed in terms of the velocity of flow of a water particle from the furthest part of a catchment to the outlet. This is also the basis for the definition in the International Glossary of Hydrology, but this is in conflict with the way in which it is commonly used. This paper provides a clarification of the concept and its correct useage.
Giuliano Di Baldassarre, Fernando Nardi, Antonio Annis, Vincent Odongo, Maria Rusca, and Salvatore Grimaldi
Nat. Hazards Earth Syst. Sci., 20, 1415–1419, https://doi.org/10.5194/nhess-20-1415-2020, https://doi.org/10.5194/nhess-20-1415-2020, 2020
Short summary
Short summary
Global floodplain mapping has rapidly progressed over the past few years. Different methods have been proposed to identify areas prone to river flooding, resulting in a plethora of available products. Here we assess the potential and limitations of two main paradigms and provide guidance on the use of these global products in assessing flood risk in data-poor regions.
Tian Lan, Kairong Lin, Chong-Yu Xu, Xuezhi Tan, and Xiaohong Chen
Hydrol. Earth Syst. Sci., 24, 1347–1366, https://doi.org/10.5194/hess-24-1347-2020, https://doi.org/10.5194/hess-24-1347-2020, 2020
Shaokun He, Shenglian Guo, Chong-Yu Xu, Kebing Chen, Zhen Liao, Lele Deng, Huanhuan Ba, and Dimitri Solomatine
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2019-586, https://doi.org/10.5194/hess-2019-586, 2020
Manuscript not accepted for further review
Short summary
Short summary
Aiming at cascade impoundment operation, we develop a classification-aggregation-decomposition method to overcome the
curse of dimensionalityand inflow stochasticity problem. It is tested with a mixed 30-reservoir system in China. The results show that our method can provide lots of schemes to refer to different flood event scenarios. The best scheme outperforms the conventional operating rule, as it increases impoundment efficiency and hydropower generation while flood control risk is less.
Paolo De Luca, Gabriele Messori, Robert L. Wilby, Maurizio Mazzoleni, and Giuliano Di Baldassarre
Earth Syst. Dynam., 11, 251–266, https://doi.org/10.5194/esd-11-251-2020, https://doi.org/10.5194/esd-11-251-2020, 2020
Short summary
Short summary
We show that floods and droughts can co-occur in time across remote regions on the globe and introduce metrics that can help in quantifying concurrent wet and dry hydrological extremes. We then link wet–dry extremes to major modes of climate variability (i.e. ENSO, PDO, and AMO) and provide their spatial patterns. Such concurrent extreme hydrological events may pose risks to regional hydropower production and agricultural yields.
Philippe Weyrich, Elena Mondino, Marco Borga, Giuliano Di Baldassarre, Anthony Patt, and Anna Scolobig
Nat. Hazards Earth Syst. Sci., 20, 287–298, https://doi.org/10.5194/nhess-20-287-2020, https://doi.org/10.5194/nhess-20-287-2020, 2020
Désirée Treichler, Andreas Kääb, Nadine Salzmann, and Chong-Yu Xu
The Cryosphere, 13, 2977–3005, https://doi.org/10.5194/tc-13-2977-2019, https://doi.org/10.5194/tc-13-2977-2019, 2019
Short summary
Short summary
Glacier growth such as that found on the Tibetan Plateau (TP) is counterintuitive in a warming world. Climate models and meteorological data are conflicting about the reasons for this glacier anomaly. We quantify the glacier changes in High Mountain Asia using satellite laser altimetry as well as the growth of over 1300 inland lakes on the TP. Our study suggests that increased summer precipitation is likely the largest contributor to the recently observed increases in glacier and lake masses.
Bin Xiong, Lihua Xiong, Jun Xia, Chong-Yu Xu, Cong Jiang, and Tao Du
Hydrol. Earth Syst. Sci., 23, 4453–4470, https://doi.org/10.5194/hess-23-4453-2019, https://doi.org/10.5194/hess-23-4453-2019, 2019
Short summary
Short summary
We develop a new indicator of reservoir effects, called the rainfall–reservoir composite index (RRCI). RRCI, coupled with the effects of static reservoir capacity and scheduling-related multivariate rainfall, has a better performance than the previous indicator in terms of explaining the variation in the downstream floods affected by reservoir operation. A covariate-based flood frequency analysis using RRCI can provide more reliable downstream flood risk estimation.
Hui-Min Wang, Jie Chen, Chong-Yu Xu, Hua Chen, Shenglian Guo, Ping Xie, and Xiangquan Li
Hydrol. Earth Syst. Sci., 23, 4033–4050, https://doi.org/10.5194/hess-23-4033-2019, https://doi.org/10.5194/hess-23-4033-2019, 2019
Short summary
Short summary
When using large ensembles of global climate models in hydrological impact studies, there are pragmatic questions on whether it is necessary to weight climate models and how to weight them. We use eight methods to weight climate models straightforwardly, based on their performances in hydrological simulations, and investigate the influences of the assigned weights. This study concludes that using bias correction and equal weighting is likely viable and sufficient for hydrological impact studies.
Tian Lan, Kairong Lin, Xuezhi Tan, Chong-Yu Xu, and Xiaohong Chen
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2019-301, https://doi.org/10.5194/hess-2019-301, 2019
Manuscript not accepted for further review
Short summary
Short summary
A calibration scheme was developed for the dynamics of hydrological model parameters. Furthermore, a novel tool was designed to assess the reliability of the dynamized parameter set. The tool evaluates the convergence processes for global optimization algorithms using violin plots (ECP-VP). The results showed that the developed calibration scheme overcame the salient issues for poor model performance. Besides, the ECP-VP tool effectively assessed the reliability of the dynamic parameter set.
Cong Jiang, Lihua Xiong, Lei Yan, Jianfan Dong, and Chong-Yu Xu
Hydrol. Earth Syst. Sci., 23, 1683–1704, https://doi.org/10.5194/hess-23-1683-2019, https://doi.org/10.5194/hess-23-1683-2019, 2019
Short summary
Short summary
We present the methods addressing the multivariate hydrologic design applied to the engineering practice under nonstationary conditions. A dynamic C-vine copula allowing for both time-varying marginal distributions and a time-varying dependence structure is developed to capture the nonstationarities of multivariate flood distribution. Then, the multivariate hydrologic design under nonstationary conditions is estimated through specifying the design criterion by average annual reliability.
Lu Li, Mingxi Shen, Yukun Hou, Chong-Yu Xu, Arthur F. Lutz, Jie Chen, Sharad K. Jain, Jingjing Li, and Hua Chen
Hydrol. Earth Syst. Sci., 23, 1483–1503, https://doi.org/10.5194/hess-23-1483-2019, https://doi.org/10.5194/hess-23-1483-2019, 2019
Short summary
Short summary
The study used an integrated glacio-hydrological model for the hydrological projections of the Himalayan Beas basin under climate change. It is very likely that the upper Beas basin will get warmer and wetter in the future. This loss in glacier area will result in a reduction in glacier discharge, while the future changes in total discharge are uncertain. The uncertainty in future hydrological change is not only from GCMs, but also from the bias-correction methods and hydrological modeling.
Pan Hu, Qiang Zhang, Chong-Yu Xu, Shao Sun, and Jiayi Fang
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2019-73, https://doi.org/10.5194/hess-2019-73, 2019
Preprint withdrawn
Short summary
Short summary
China is the country highly sensitive to flood disasters. Here we investigated flood disasters and relevant driving factors using meteorological disaster records s and also hourly rainfall data. We used the GeoDetector method to analyze potential driving factors behind flood disasters. We found increased rainstorm-induced flood disasters and increase in flood disaster frequency. Meanwhile, reduced flood-related death rates imply enhanced flood-mitigation infrastructure and facilities.
Nevil Quinn, Günter Blöschl, András Bárdossy, Attilio Castellarin, Martyn Clark, Christophe Cudennec, Demetris Koutsoyiannis, Upmanu Lall, Lubomir Lichner, Juraj Parajka, Christa D. Peters-Lidard, Graham Sander, Hubert Savenije, Keith Smettem, Harry Vereecken, Alberto Viglione, Patrick Willems, Andy Wood, Ross Woods, Chong-Yu Xu, and Erwin Zehe
Proc. IAHS, 380, 3–8, https://doi.org/10.5194/piahs-380-3-2018, https://doi.org/10.5194/piahs-380-3-2018, 2018
Nevil Quinn, Günter Blöschl, András Bárdossy, Attilio Castellarin, Martyn Clark, Christophe Cudennec, Demetris Koutsoyiannis, Upmanu Lall, Lubomir Lichner, Juraj Parajka, Christa D. Peters-Lidard, Graham Sander, Hubert Savenije, Keith Smettem, Harry Vereecken, Alberto Viglione, Patrick Willems, Andy Wood, Ross Woods, Chong-Yu Xu, and Erwin Zehe
Hydrol. Earth Syst. Sci., 22, 5735–5739, https://doi.org/10.5194/hess-22-5735-2018, https://doi.org/10.5194/hess-22-5735-2018, 2018
Giuliano Di Baldassarre, Heidi Kreibich, Sergiy Vorogushyn, Jeroen Aerts, Karsten Arnbjerg-Nielsen, Marlies Barendrecht, Paul Bates, Marco Borga, Wouter Botzen, Philip Bubeck, Bruna De Marchi, Carmen Llasat, Maurizio Mazzoleni, Daniela Molinari, Elena Mondino, Johanna Mård, Olga Petrucci, Anna Scolobig, Alberto Viglione, and Philip J. Ward
Hydrol. Earth Syst. Sci., 22, 5629–5637, https://doi.org/10.5194/hess-22-5629-2018, https://doi.org/10.5194/hess-22-5629-2018, 2018
Short summary
Short summary
One common approach to cope with floods is the implementation of structural flood protection measures, such as levees. Numerous scholars have problematized this approach and shown that increasing levels of flood protection can generate a false sense of security and attract more people to the risky areas. We briefly review the literature on this topic and then propose a research agenda to explore the unintended consequences of structural flood protection.
Keith J. Beven, Susana Almeida, Willy P. Aspinall, Paul D. Bates, Sarka Blazkova, Edoardo Borgomeo, Jim Freer, Katsuichiro Goda, Jim W. Hall, Jeremy C. Phillips, Michael Simpson, Paul J. Smith, David B. Stephenson, Thorsten Wagener, Matt Watson, and Kate L. Wilkins
Nat. Hazards Earth Syst. Sci., 18, 2741–2768, https://doi.org/10.5194/nhess-18-2741-2018, https://doi.org/10.5194/nhess-18-2741-2018, 2018
Short summary
Short summary
This paper discusses how uncertainties resulting from lack of knowledge are considered in a number of different natural hazard areas including floods, landslides and debris flows, dam safety, droughts, earthquakes, tsunamis, volcanic ash clouds and pyroclastic flows, and wind storms. As every analysis is necessarily conditional on the assumptions made about the nature of sources of such uncertainties it is also important to follow the guidelines for good practice suggested in Part 2.
Keith J. Beven, Willy P. Aspinall, Paul D. Bates, Edoardo Borgomeo, Katsuichiro Goda, Jim W. Hall, Trevor Page, Jeremy C. Phillips, Michael Simpson, Paul J. Smith, Thorsten Wagener, and Matt Watson
Nat. Hazards Earth Syst. Sci., 18, 2769–2783, https://doi.org/10.5194/nhess-18-2769-2018, https://doi.org/10.5194/nhess-18-2769-2018, 2018
Short summary
Short summary
Part 1 of this paper discussed the uncertainties arising from gaps in knowledge or limited understanding of the processes involved in different natural hazard areas. These are the epistemic uncertainties that can be difficult to constrain, especially in terms of event or scenario probabilities. A conceptual framework for good practice in dealing with epistemic uncertainties is outlined and implications of applying the principles to natural hazard science are discussed.
Hong Li, Jan Erik Haugen, and Chong-Yu Xu
Hydrol. Earth Syst. Sci., 22, 5097–5110, https://doi.org/10.5194/hess-22-5097-2018, https://doi.org/10.5194/hess-22-5097-2018, 2018
Short summary
Short summary
Precipitation is a key in the water system and glacier fate in the Great Himalayas region. We examine four datasets of available types in the Western Himalayas and they show very large differences. The differences depend much on the data source and are particularly large in monsoon seasons and high-elevation areas. All the datasets show a trend to wetter summer and drier winter and this trend reveals a tendency towards a high-flow seasonality and an unfavorable condition for glaciers.
Md Ruknul Ferdous, Anna Wesselink, Luigia Brandimarte, Kymo Slager, Margreet Zwarteveen, and Giuliano Di Baldassarre
Hydrol. Earth Syst. Sci., 22, 5159–5173, https://doi.org/10.5194/hess-22-5159-2018, https://doi.org/10.5194/hess-22-5159-2018, 2018
Short summary
Short summary
Socio-hydrological space (SHS) is a concept that enriches the study of socio-hydrology because it helps understand the detailed human–water interactions in a specific location. The concept suggests that the interactions between society and water are place-bound because of differences in social processes and river dynamics. This would be useful for developing interventions under disaster management, but also other development goals. SHS provides a new way of looking at socio-hydrological systems.
Hui-Min Wang, Jie Chen, Alex J. Cannon, Chong-Yu Xu, and Hua Chen
Hydrol. Earth Syst. Sci., 22, 3739–3759, https://doi.org/10.5194/hess-22-3739-2018, https://doi.org/10.5194/hess-22-3739-2018, 2018
Short summary
Short summary
Facing a growing number of climate models, many selection methods were proposed to select subsets in the field of climate simulation, but the transferability of their performances to hydrological impacts remains doubtful. We investigate the transferability of climate simulation uncertainty to hydrological impacts using two selection methods, and conclude that envelope-based selection of about 10 climate simulations based on properly chosen climate variables is suggested for impact studies.
Peter Metcalfe, Keith Beven, Barry Hankin, and Rob Lamb
Hydrol. Earth Syst. Sci., 22, 2589–2605, https://doi.org/10.5194/hess-22-2589-2018, https://doi.org/10.5194/hess-22-2589-2018, 2018
Short summary
Short summary
Flooding is a significant hazard and extreme events in recent years have focused attention on effective means of reducing its risk. An approach known as natural flood management (NFM) seeks to increase flood resilience by a range of measures that work with natural processes. The paper develops a modelling approach to assess one type NFM of intervention – distributed additional hillslope storage features – and demonstrates that more strategic placement is required than has hitherto been applied.
Bin Xiong, Lihua Xiong, Jie Chen, Chong-Yu Xu, and Lingqi Li
Hydrol. Earth Syst. Sci., 22, 1525–1542, https://doi.org/10.5194/hess-22-1525-2018, https://doi.org/10.5194/hess-22-1525-2018, 2018
Short summary
Short summary
In changing environments, extreme low-flow events are expected to increase. Frequency analysis of low-flow events considering the impacts of changing environments has attracted increasing attention. This study developed a frequency analysis framework by applying 11 indices to trace the main causes of the change in the annual extreme low-flow events of the Weihe River. We showed that the fluctuation in annual low-flow series was affected by climate, streamflow recession and irrigation area.
Kevin Sene, Wlodek Tych, and Keith Beven
Hydrol. Earth Syst. Sci., 22, 127–141, https://doi.org/10.5194/hess-22-127-2018, https://doi.org/10.5194/hess-22-127-2018, 2018
Short summary
Short summary
The theme of the paper is exploration of the potential for seasonal flow forecasting for large lakes using a range of stochastic transfer function techniques with additional insights gained from simple analytical approximations. The methods were evaluated using records for two of the largest lakes in the world. The paper concludes with a discussion of the relevance of the results to operational flow forecasting systems for other large lakes.
Mary C. Ockenden, Wlodek Tych, Keith J. Beven, Adrian L. Collins, Robert Evans, Peter D. Falloon, Kirsty J. Forber, Kevin M. Hiscock, Michael J. Hollaway, Ron Kahana, Christopher J. A. Macleod, Martha L. Villamizar, Catherine Wearing, Paul J. A. Withers, Jian G. Zhou, Clare McW. H. Benskin, Sean Burke, Richard J. Cooper, Jim E. Freer, and Philip M. Haygarth
Hydrol. Earth Syst. Sci., 21, 6425–6444, https://doi.org/10.5194/hess-21-6425-2017, https://doi.org/10.5194/hess-21-6425-2017, 2017
Short summary
Short summary
This paper describes simple models of phosphorus load which are identified for three catchments in the UK. The models use new hourly observations of phosphorus load, which capture the dynamics of phosphorus transfer in small catchments that are often missed by models with a longer time step. Unlike more complex, process-based models, very few parameters are required, leading to low parameter uncertainty. Interpretation of the dominant phosphorus transfer modes is made based solely on the data.
Sharad K. Jain, Sanjay K. Jain, Neha Jain, and Chong-Yu Xu
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2017-100, https://doi.org/10.5194/hess-2017-100, 2017
Manuscript not accepted for further review
Giuliano Di Baldassarre, Fabian Martinez, Zahra Kalantari, and Alberto Viglione
Earth Syst. Dynam., 8, 225–233, https://doi.org/10.5194/esd-8-225-2017, https://doi.org/10.5194/esd-8-225-2017, 2017
Short summary
Short summary
There is still little understanding about the dynamics emerging from human–water interactions. As a result, policies and measures to reduce the impacts of floods and droughts often lead to unintended consequences. This paper proposes a research agenda to improve our understanding of human–water interactions, and presents an initial attempt to model the reciprocal effects between water management, droughts, and floods.
Giuliano Di Baldassarre, Smeralda Saccà, Giuseppe Tito Aronica, Salvatore Grimaldi, Alessio Ciullo, and Massimiliano Crisci
Adv. Geosci., 44, 9–13, https://doi.org/10.5194/adgeo-44-9-2017, https://doi.org/10.5194/adgeo-44-9-2017, 2017
Short summary
Short summary
Throughout history, the city of Rome has experienced numerous flooding events from the Tiber river. Ancient Rome mostly developed on the hills, while the Tiber’s floodplain was mainly used for agricultural purposes. Instead, many people live nowadays in modern districts in the Tiber’s floodplain, often unaware of their exposure to potentially flooding. This research work aims to explore the dynamics of changing flood risk between these two opposite pictures of ancient and contemporary Rome.
Lingqi Li, Lihua Xiong, Chong-Yu Xu, Shenglian Guo, and Pan Liu
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2016-619, https://doi.org/10.5194/hess-2016-619, 2016
Revised manuscript not accepted
Short summary
Short summary
The study offers insights into future design floods that are inferred with both AM and POT samplings under nonstationarity caused by changing climate. Future design floods in nonstationarity context are usually (lower than) but not necessarily more different from stationary estimates. AM-based projection is more sensitive to climate change than POT estimates. The over-dispersion in POT arrival rate leads to the invalidation of Poisson assumption that the misuse may induce overestimated floods.
Rémi Dupas, Jordy Salmon-Monviola, Keith J. Beven, Patrick Durand, Philip M. Haygarth, Michael J. Hollaway, and Chantal Gascuel-Odoux
Hydrol. Earth Syst. Sci., 20, 4819–4835, https://doi.org/10.5194/hess-20-4819-2016, https://doi.org/10.5194/hess-20-4819-2016, 2016
Short summary
Short summary
We developed a parsimonious topography-based hydrologic model coupled with a soil biogeochemistry sub-model in order to improve understanding and prediction of soluble reactive phosphorus (SRP) transfer in agricultural headwater catchments. The modelling approach includes an analysis of the information contained in the calibration data and propagation of uncertainty in model predictions using a GLUE "limits of acceptability" framework.
Anne F. Van Loon, Kerstin Stahl, Giuliano Di Baldassarre, Julian Clark, Sally Rangecroft, Niko Wanders, Tom Gleeson, Albert I. J. M. Van Dijk, Lena M. Tallaksen, Jamie Hannaford, Remko Uijlenhoet, Adriaan J. Teuling, David M. Hannah, Justin Sheffield, Mark Svoboda, Boud Verbeiren, Thorsten Wagener, and Henny A. J. Van Lanen
Hydrol. Earth Syst. Sci., 20, 3631–3650, https://doi.org/10.5194/hess-20-3631-2016, https://doi.org/10.5194/hess-20-3631-2016, 2016
Short summary
Short summary
In the Anthropocene, drought cannot be viewed as a natural hazard independent of people. Drought can be alleviated or made worse by human activities and drought impacts are dependent on a myriad of factors. In this paper, we identify research gaps and suggest a framework that will allow us to adequately analyse and manage drought in the Anthropocene. We need to focus on attribution of drought to different drivers, linking drought to its impacts, and feedbacks between drought and society.
K. J. Beven, S. Almeida, W. P. Aspinall, P. D. Bates, S. Blazkova, E. Borgomeo, K. Goda, J. C. Phillips, M. Simpson, P. J. Smith, D. B. Stephenson, T. Wagener, M. Watson, and K. L. Wilkins
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2015-295, https://doi.org/10.5194/nhess-2015-295, 2016
Preprint withdrawn
Short summary
Short summary
Uncertainties in natural hazard risk assessment are generally dominated by the sources arising from lack of knowledge or understanding of the processes involved. This is Part 2 of 2 papers reviewing these epistemic uncertainties and covers different areas of natural hazards including landslides and debris flows, dam safety, droughts, earthquakes, tsunamis, volcanic ash clouds and pyroclastic flows, and wind storms. It is based on the work of the UK CREDIBLE research consortium.
K. J. Beven, W. P. Aspinall, P. D. Bates, E. Borgomeo, K. Goda, J. W. Hall, T. Page, J. C. Phillips, J. T. Rougier, M. Simpson, D. B. Stephenson, P. J. Smith, T. Wagener, and M. Watson
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhessd-3-7333-2015, https://doi.org/10.5194/nhessd-3-7333-2015, 2015
Preprint withdrawn
Short summary
Short summary
Uncertainties in natural hazard risk assessment are generally dominated by the sources arising from lack of knowledge or understanding of the processes involved. This is Part 1 of 2 papers reviewing these epistemic uncertainties that can be difficult to constrain, especially in terms of event or scenario probabilities. It is based on the work of the CREDIBLE research consortium on Risk and Uncertainty in Natural Hazards.
J. E. Reynolds, S. Halldin, C. Y. Xu, J. Seibert, and A. Kauffeldt
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hessd-12-7437-2015, https://doi.org/10.5194/hessd-12-7437-2015, 2015
Revised manuscript not accepted
Short summary
Short summary
In this study it was found that time-scale dependencies of hydrological model parameters are a result of the numerical method used in the model rather than a real time-scale-data dependence. This study further indicates that as soon as sub-daily driving data can be secured, flood forecasting in watersheds with sub-daily concentration times is possible with model parameter values inferred from long time series of daily data, as long as an appropriate numerical method is used.
A. Md Ali, D. P. Solomatine, and G. Di Baldassarre
Hydrol. Earth Syst. Sci., 19, 631–643, https://doi.org/10.5194/hess-19-631-2015, https://doi.org/10.5194/hess-19-631-2015, 2015
I. K. Westerberg, L. Gong, K. J. Beven, J. Seibert, A. Semedo, C.-Y. Xu, and S. Halldin
Hydrol. Earth Syst. Sci., 18, 2993–3013, https://doi.org/10.5194/hess-18-2993-2014, https://doi.org/10.5194/hess-18-2993-2014, 2014
U. Ehret, H. V. Gupta, M. Sivapalan, S. V. Weijs, S. J. Schymanski, G. Blöschl, A. N. Gelfan, C. Harman, A. Kleidon, T. A. Bogaard, D. Wang, T. Wagener, U. Scherer, E. Zehe, M. F. P. Bierkens, G. Di Baldassarre, J. Parajka, L. P. H. van Beek, A. van Griensven, M. C. Westhoff, and H. C. Winsemius
Hydrol. Earth Syst. Sci., 18, 649–671, https://doi.org/10.5194/hess-18-649-2014, https://doi.org/10.5194/hess-18-649-2014, 2014
G. Di Baldassarre, A. Viglione, G. Carr, L. Kuil, J. L. Salinas, and G. Blöschl
Hydrol. Earth Syst. Sci., 17, 3295–3303, https://doi.org/10.5194/hess-17-3295-2013, https://doi.org/10.5194/hess-17-3295-2013, 2013
G. Di Baldassarre, M. Kooy, J. S. Kemerink, and L. Brandimarte
Hydrol. Earth Syst. Sci., 17, 3235–3244, https://doi.org/10.5194/hess-17-3235-2013, https://doi.org/10.5194/hess-17-3235-2013, 2013
A. Kauffeldt, S. Halldin, A. Rodhe, C.-Y. Xu, and I. K. Westerberg
Hydrol. Earth Syst. Sci., 17, 2845–2857, https://doi.org/10.5194/hess-17-2845-2013, https://doi.org/10.5194/hess-17-2845-2013, 2013
D. Leedal, A. H. Weerts, P. J. Smith, and K. J. Beven
Hydrol. Earth Syst. Sci., 17, 177–185, https://doi.org/10.5194/hess-17-177-2013, https://doi.org/10.5194/hess-17-177-2013, 2013
Related subject area
Subject: Catchment hydrology | Techniques and Approaches: Modelling approaches
Revisiting the hydrological basis of the Budyko framework with the principle of hydrologically similar groups
Reconstructing five decades of sediment export from two glacierized high-alpine catchments in Tyrol, Austria, using nonparametric regression
Water and energy budgets over hydrological basins on short and long timescales
Hydrological response to climate change and human activities in the Three-River Source Region
Incorporating experimentally derived streamflow contributions into model parameterization to improve discharge prediction
Machine-learning- and deep-learning-based streamflow prediction in a hilly catchment for future scenarios using CMIP6 GCM data
River hydraulic modeling with ICESat-2 land and water surface elevation
Hydrological modeling using the Soil and Water Assessment Tool in urban and peri-urban environments: the case of Kifisos experimental subbasin (Athens, Greece)
Technical note: How physically based is hydrograph separation by recursive digital filtering?
A comprehensive open-source course for teaching applied hydrological modelling in Central Asia
Impact of distributed meteorological forcing on simulated snow cover and hydrological fluxes over a mid-elevation alpine micro-scale catchment
Technical note: Extending the SWAT model to transport chemicals through tile and groundwater flow
Long-term reconstruction of satellite-based precipitation, soil moisture, and snow water equivalent in China
Disentangling scatter in long-term concentration–discharge relationships: the role of event types
Simulating the hydrological impacts of land use conversion from annual crop to perennial forage in the Canadian Prairies using the Cold Regions Hydrological Modelling platform
How can we benefit from regime information to make more effective use of long short-term memory (LSTM) runoff models?
When best is the enemy of good – critical evaluation of performance criteria in hydrological models
On the value of satellite remote sensing to reduce uncertainties of regional simulations of the Colorado River
Assessing runoff sensitivity of North American Prairie Pothole Region basins to wetland drainage using a basin classification-based virtual modelling approach
A large-sample investigation into uncertain climate change impacts on high flows across Great Britain
Effects of passive-storage conceptualization on modeling hydrological function and isotope dynamics in the flow system of a cockpit karst landscape
Technical note: Data assimilation and autoregression for using near-real-time streamflow observations in long short-term memory networks
Attribution of climate change and human activities to streamflow variations with a posterior distribution of hydrological simulations
A time-varying distributed unit hydrograph method considering soil moisture
Flood patterns in a catchment with mixed bedrock geology and a hilly landscape: identification of flashy runoff contributions during storm events
A graph neural network (GNN) approach to basin-scale river network learning: the role of physics-based connectivity and data fusion
Improving hydrologic models for predictions and process understanding using neural ODEs
Response of active catchment water storage capacity to a prolonged meteorological drought and asymptotic climate variation
HESS Opinions: Participatory Digital eARth Twin Hydrology systems (DARTHs) for everyone – a blueprint for hydrologists
Development of a national 7-day ensemble streamflow forecasting service for Australia
Future snow changes and their impact on the upstream runoff in Salween
Technical note: Do different projections matter for the Budyko framework?
Representation of seasonal land use dynamics in SWAT+ for improved assessment of blue and green water consumption
Large-sample assessment of varying spatial resolution on the streamflow estimates of the wflow_sbm hydrological model
An algorithm for deriving the topology of belowground urban stormwater networks
Producing reliable hydrologic scenarios from raw climate model outputs without resorting to meteorological observations
Assessing the influence of water sampling strategy on the performance of tracer-aided hydrological modeling in a mountainous basin on the Tibetan Plateau
The suitability of differentiable, learnable hydrologic models for ungauged regions and climate change impact assessment
Flood forecasting with machine learning models in an operational framework
Precipitation fate and transport in a Mediterranean catchment through models calibrated on plant and stream water isotope data
High-resolution satellite products improve hydrological modeling in northern Italy
Analysis of high streamflow extremes in climate change studies: how do we calibrate hydrological models?
A conceptual-model-based sediment connectivity assessment for patchy agricultural catchments
The Great Lakes Runoff Intercomparison Project Phase 4: the Great Lakes (GRIP-GL)
Spatial extrapolation of stream thermal peaks using heterogeneous time series at a national scale
Revisiting parameter sensitivities in the variable infiltration capacity model across a hydroclimatic gradient
Deep learning rainfall–runoff predictions of extreme events
Diel streamflow cycles suggest more sensitive snowmelt-driven streamflow to climate change than land surface modeling does
Teaching hydrological modelling: illustrating model structure uncertainty with a ready-to-use computational exercise
Effects of spatial and temporal variability in surface water inputs on streamflow generation and cessation in the rain–snow transition zone
Yuchan Chen, Xiuzhi Chen, Meimei Xue, Chuanxun Yang, Wei Zheng, Jun Cao, Wenting Yan, and Wenping Yuan
Hydrol. Earth Syst. Sci., 27, 1929–1943, https://doi.org/10.5194/hess-27-1929-2023, https://doi.org/10.5194/hess-27-1929-2023, 2023
Short summary
Short summary
This study addresses the quantification and estimation of the watershed-characteristic-related parameter (Pw) in the Budyko framework with the principle of hydrologically similar groups. The results show that Pw is closely related to soil moisture and fractional vegetation cover, and the relationship varies across specific hydrologic similarity groups. The overall satisfactory performance of the Pw estimation model improves the applicability of the Budyko framework for global runoff estimation.
Lena Katharina Schmidt, Till Francke, Peter Martin Grosse, Christoph Mayer, and Axel Bronstert
Hydrol. Earth Syst. Sci., 27, 1841–1863, https://doi.org/10.5194/hess-27-1841-2023, https://doi.org/10.5194/hess-27-1841-2023, 2023
Short summary
Short summary
We present a suitable method to reconstruct sediment export from decadal records of hydroclimatic predictors (discharge, precipitation, temperature) and shorter suspended sediment measurements. This lets us fill the knowledge gap on how sediment export from glacierized high-alpine areas has responded to climate change. We find positive trends in sediment export from the two investigated nested catchments with step-like increases around 1981 which are linked to crucial changes in glacier melt.
Samantha Petch, Bo Dong, Tristan Quaife, Robert P. King, and Keith Haines
Hydrol. Earth Syst. Sci., 27, 1723–1744, https://doi.org/10.5194/hess-27-1723-2023, https://doi.org/10.5194/hess-27-1723-2023, 2023
Short summary
Short summary
Gravitational measurements of water storage from GRACE (Gravity Recovery and Climate Experiment) can improve understanding of the water budget. We produce flux estimates over large river catchments based on observations that close the monthly water budget and ensure consistency with GRACE on short and long timescales. We use energy data to provide additional constraints and balance the long-term energy budget. These flux estimates are important for evaluating climate models.
Ting Su, Chiyuan Miao, Qingyun Duan, Jiaojiao Gou, Xiaoying Guo, and Xi Zhao
Hydrol. Earth Syst. Sci., 27, 1477–1492, https://doi.org/10.5194/hess-27-1477-2023, https://doi.org/10.5194/hess-27-1477-2023, 2023
Short summary
Short summary
The Three-River Source Region (TRSR) plays an extremely important role in water resources security and ecological and environmental protection in China and even all of Southeast Asia. This study used the variable infiltration capacity (VIC) land surface hydrologic model linked with the degree-day factor algorithm to simulate the runoff change in the TRSR. These results will help to guide current and future regulation and management of water resources in the TRSR.
Andreas Hartmann, Jean-Lionel Payeur-Poirier, and Luisa Hopp
Hydrol. Earth Syst. Sci., 27, 1325–1341, https://doi.org/10.5194/hess-27-1325-2023, https://doi.org/10.5194/hess-27-1325-2023, 2023
Short summary
Short summary
We advance our understanding of including information derived from environmental tracers into hydrological modeling. We present a simple approach that integrates streamflow observations and tracer-derived streamflow contributions for model parameter estimation. We consider multiple observed streamflow components and their variation over time to quantify the impact of their inclusion for streamflow prediction at the catchment scale.
Dharmaveer Singh, Manu Vardhan, Rakesh Sahu, Debrupa Chatterjee, Pankaj Chauhan, and Shiyin Liu
Hydrol. Earth Syst. Sci., 27, 1047–1075, https://doi.org/10.5194/hess-27-1047-2023, https://doi.org/10.5194/hess-27-1047-2023, 2023
Short summary
Short summary
This study examines, for the first time, the potential of various machine learning models in streamflow prediction over the Sutlej River basin (rainfall-dominated zone) in western Himalaya during the period 2041–2070 (2050s) and 2071–2100 (2080s) and its relationship to climate variability. The mean ensemble of the model results shows that the mean annual streamflow of the Sutlej River is expected to rise between the 2050s and 2080s by 0.79 to 1.43 % for SSP585 and by 0.87 to 1.10 % for SSP245.
Monica Coppo Frias, Suxia Liu, Xingguo Mo, Karina Nielsen, Heidi Ranndal, Liguang Jiang, Jun Ma, and Peter Bauer-Gottwein
Hydrol. Earth Syst. Sci., 27, 1011–1032, https://doi.org/10.5194/hess-27-1011-2023, https://doi.org/10.5194/hess-27-1011-2023, 2023
Short summary
Short summary
This paper uses remote sensing data from ICESat-2 to calibrate a 1D hydraulic model. With the model, we can make estimations of discharge and water surface elevation, which are important indicators in flooding risk assessment. ICESat-2 data give an added value, thanks to the 0.7 m resolution, which allows the measurement of narrow river streams. In addition, ICESat-2 provides measurements on the river dry portion geometry that can be included in the model.
Evgenia Koltsida, Nikos Mamassis, and Andreas Kallioras
Hydrol. Earth Syst. Sci., 27, 917–931, https://doi.org/10.5194/hess-27-917-2023, https://doi.org/10.5194/hess-27-917-2023, 2023
Short summary
Short summary
Daily and hourly rainfall observations were inputted to a Soil and Water Assessment Tool (SWAT) hydrological model to investigate the impacts of rainfall temporal resolution on a discharge simulation. Results indicated that groundwater flow parameters were more sensitive to daily time intervals, and channel routing parameters were more influential for hourly time intervals. This study suggests that the SWAT model appears to be a reliable tool to predict discharge in a mixed-land-use basin.
Klaus Eckhardt
Hydrol. Earth Syst. Sci., 27, 495–499, https://doi.org/10.5194/hess-27-495-2023, https://doi.org/10.5194/hess-27-495-2023, 2023
Short summary
Short summary
An important hydrological issue is to identify components of streamflow that react to precipitation with different degrees of attenuation and delay. From the multitude of methods that have been developed for this so-called hydrograph separation, a specific, frequently used one is singled out here. It is shown to be derived from plausible physical principles. This increases confidence in its results.
Beatrice Sabine Marti, Aidar Zhumabaev, and Tobias Siegfried
Hydrol. Earth Syst. Sci., 27, 319–330, https://doi.org/10.5194/hess-27-319-2023, https://doi.org/10.5194/hess-27-319-2023, 2023
Short summary
Short summary
Numerical modelling is often used for climate impact studies in water resources management. It is, however, not yet highly accessible to many students of hydrology in Central Asia. One big hurdle for new learners is the preparation of relevant data prior to the actual modelling. We present a robust, open-source workflow and comprehensive teaching material that can be used by teachers and by students for self study.
Aniket Gupta, Alix Reverdy, Jean-Martial Cohard, Basile Hector, Marc Descloitres, Jean-Pierre Vandervaere, Catherine Coulaud, Romain Biron, Lucie Liger, Reed Maxwell, Jean-Gabriel Valay, and Didier Voisin
Hydrol. Earth Syst. Sci., 27, 191–212, https://doi.org/10.5194/hess-27-191-2023, https://doi.org/10.5194/hess-27-191-2023, 2023
Short summary
Short summary
Patchy snow cover during spring impacts mountainous ecosystems on a large range of spatio-temporal scales. A hydrological model simulated such snow patchiness at 10 m resolution. Slope and orientation controls precipitation, radiation, and wind generate differences in snowmelt, subsurface storage, streamflow, and evapotranspiration. The snow patchiness increases the duration of the snowmelt to stream and subsurface storage, which sustains the plants and streamflow later in the summer.
Hendrik Rathjens, Jens Kiesel, Michael Winchell, Jeffrey Arnold, and Robin Sur
Hydrol. Earth Syst. Sci., 27, 159–167, https://doi.org/10.5194/hess-27-159-2023, https://doi.org/10.5194/hess-27-159-2023, 2023
Short summary
Short summary
The SWAT model can simulate the transport of water-soluble chemicals through the landscape but neglects the transport through groundwater or agricultural tile drains. These transport pathways are, however, important to assess the amount of chemicals in streams. We added this capability to the model, which significantly improved the simulation. The representation of all transport pathways in the model enables watershed managers to develop robust strategies for reducing chemicals in streams.
Wencong Yang, Hanbo Yang, Changming Li, Taihua Wang, Ziwei Liu, Qingfang Hu, and Dawen Yang
Hydrol. Earth Syst. Sci., 26, 6427–6441, https://doi.org/10.5194/hess-26-6427-2022, https://doi.org/10.5194/hess-26-6427-2022, 2022
Short summary
Short summary
We produced a daily 0.1° dataset of precipitation, soil moisture, and snow water equivalent in 1981–2017 across China via reconstructions. The dataset used global background data and local on-site data as forcing input and satellite-based data as reconstruction benchmarks. This long-term high-resolution national hydrological dataset is valuable for national investigations of hydrological processes.
Felipe A. Saavedra, Andreas Musolff, Jana von Freyberg, Ralf Merz, Stefano Basso, and Larisa Tarasova
Hydrol. Earth Syst. Sci., 26, 6227–6245, https://doi.org/10.5194/hess-26-6227-2022, https://doi.org/10.5194/hess-26-6227-2022, 2022
Short summary
Short summary
Nitrate contamination of rivers from agricultural sources is a challenge for water quality management. During runoff events, different transport paths within the catchment might be activated, generating a variety of responses in nitrate concentration in stream water. Using nitrate samples from 184 German catchments and a runoff event classification, we show that hydrologic connectivity during runoff events is a key control of nitrate transport from catchments to streams in our study domain.
Marcos R. C. Cordeiro, Kang Liang, Henry F. Wilson, Jason Vanrobaeys, David A. Lobb, Xing Fang, and John W. Pomeroy
Hydrol. Earth Syst. Sci., 26, 5917–5931, https://doi.org/10.5194/hess-26-5917-2022, https://doi.org/10.5194/hess-26-5917-2022, 2022
Short summary
Short summary
This study addresses the issue of increasing interest in the hydrological impacts of converting cropland to perennial forage cover in the Canadian Prairies. By developing customized models using the Cold Regions Hydrological Modelling (CRHM) platform, this long-term (1992–2013) modelling study is expected to provide stakeholders with science-based information regarding the hydrological impacts of land use conversion from annual crop to perennial forage cover in the Canadian Prairies.
Reyhaneh Hashemi, Pierre Brigode, Pierre-André Garambois, and Pierre Javelle
Hydrol. Earth Syst. Sci., 26, 5793–5816, https://doi.org/10.5194/hess-26-5793-2022, https://doi.org/10.5194/hess-26-5793-2022, 2022
Short summary
Short summary
Hydrologists have long dreamed of a tool that could adequately predict runoff in catchments. Data-driven long short-term memory (LSTM) models appear very promising to the hydrology community in this respect. Here, we have sought to benefit from traditional practices in hydrology to improve the effectiveness of LSTM models. We discovered that one LSTM parameter has a hydrologic interpretation and that there is a need to increase the data and to tune two parameters, thereby improving predictions.
Guillaume Cinkus, Naomi Mazzilli, Hervé Jourde, Andreas Wunsch, Tanja Liesch, Nataša Ravbar, Zhao Chen, and Nico Goldscheider
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2022-380, https://doi.org/10.5194/hess-2022-380, 2022
Revised manuscript accepted for HESS
Short summary
Short summary
The Kling-Gupta Efficiency (KGE) is a performance criterion extensively used to evaluate hydrological models. We conduct a critical study on the KGE and its variant to examine counterbalancing errors. Results show that, assessing a simulation, concurrent over- and underestimation of discharge can lead to an overall higher criterion score without being associated to an increase in model relevance. We suggest to carefully choose performance criteria and to use scaling factors.
Mu Xiao, Giuseppe Mascaro, Zhaocheng Wang, Kristen M. Whitney, and Enrique R. Vivoni
Hydrol. Earth Syst. Sci., 26, 5627–5646, https://doi.org/10.5194/hess-26-5627-2022, https://doi.org/10.5194/hess-26-5627-2022, 2022
Short summary
Short summary
As the major water resource in the southwestern United States, the Colorado River is experiencing decreases in naturalized streamflow and is predicted to face severe challenges under future climate scenarios. Here, we demonstrate the value of Earth observing satellites to improve and build confidence in the spatiotemporal simulations from regional hydrologic models for assessing the sensitivity of the Colorado River to climate change and supporting regional water managers.
Christopher Spence, Zhihua He, Kevin R. Shook, John W. Pomeroy, Colin J. Whitfield, and Jared D. Wolfe
Hydrol. Earth Syst. Sci., 26, 5555–5575, https://doi.org/10.5194/hess-26-5555-2022, https://doi.org/10.5194/hess-26-5555-2022, 2022
Short summary
Short summary
We learnt how streamflow from small creeks could be altered by wetland removal in the Canadian Prairies, where this practice is pervasive. Every creek basin in the region was placed into one of seven groups. We selected one of these groups and used its traits to simulate streamflow. The model worked well enough so that we could trust the results even if we removed the wetlands. Wetland removal did not change low flow amounts very much, but it doubled high flow and tripled average flow.
Rosanna A. Lane, Gemma Coxon, Jim Freer, Jan Seibert, and Thorsten Wagener
Hydrol. Earth Syst. Sci., 26, 5535–5554, https://doi.org/10.5194/hess-26-5535-2022, https://doi.org/10.5194/hess-26-5535-2022, 2022
Short summary
Short summary
This study modelled the impact of climate change on river high flows across Great Britain (GB). Generally, results indicated an increase in the magnitude and frequency of high flows along the west coast of GB by 2050–2075. In contrast, average flows decreased across GB. All flow projections contained large uncertainties; the climate projections were the largest source of uncertainty overall but hydrological modelling uncertainties were considerable in some regions.
Guangxuan Li, Xi Chen, Zhicai Zhang, Lichun Wang, and Chris Soulsby
Hydrol. Earth Syst. Sci., 26, 5515–5534, https://doi.org/10.5194/hess-26-5515-2022, https://doi.org/10.5194/hess-26-5515-2022, 2022
Short summary
Short summary
We developed a coupled flow–tracer model to understand the effects of passive storage on modeling hydrological function and isotope dynamics in a karst flow system. Models with passive storages show improvement in matching isotope dynamics performance, and the improved performance also strongly depends on the number and location of passive storages. Our results also suggested that the solute transport is primarily controlled by advection and hydrodynamic dispersion in the steep hillslope unit.
Grey S. Nearing, Daniel Klotz, Jonathan M. Frame, Martin Gauch, Oren Gilon, Frederik Kratzert, Alden Keefe Sampson, Guy Shalev, and Sella Nevo
Hydrol. Earth Syst. Sci., 26, 5493–5513, https://doi.org/10.5194/hess-26-5493-2022, https://doi.org/10.5194/hess-26-5493-2022, 2022
Short summary
Short summary
When designing flood forecasting models, it is necessary to use all available data to achieve the most accurate predictions possible. This manuscript explores two basic ways of ingesting near-real-time streamflow data into machine learning streamflow models. The point we want to make is that when working in the context of machine learning (instead of traditional hydrology models that are based on
bio-geophysics), it is not necessary to use complex statistical methods for injecting sparse data.
Xiongpeng Tang, Guobin Fu, Silong Zhang, Chao Gao, Guoqing Wang, Zhenxin Bao, Yanli Liu, Cuishan Liu, and Junliang Jin
Hydrol. Earth Syst. Sci., 26, 5315–5339, https://doi.org/10.5194/hess-26-5315-2022, https://doi.org/10.5194/hess-26-5315-2022, 2022
Short summary
Short summary
In this study, we proposed a new framework that considered the uncertainties of model simulations in quantifying the contribution rate of climate change and human activities to streamflow changes. Then, the Lancang River basin was selected for the case study. The results of quantitative analysis using the new framework showed that the reason for the decrease in the streamflow at Yunjinghong station was mainly human activities.
Bin Yi, Lu Chen, Hansong Zhang, Vijay P. Singh, Ping Jiang, Yizhuo Liu, Hexiang Guo, and Hongya Qiu
Hydrol. Earth Syst. Sci., 26, 5269–5289, https://doi.org/10.5194/hess-26-5269-2022, https://doi.org/10.5194/hess-26-5269-2022, 2022
Short summary
Short summary
An improved GIS-derived distributed unit hydrograph routing method considering time-varying soil moisture was proposed for flow routing. The method considered the changes of time-varying soil moisture and rainfall intensity. The response of underlying surface to the soil moisture content was considered an important factor in this study. The SUH, DUH, TDUH and proposed routing methods (TDUH-MC) were used for flood forecasts, and the simulated results were compared and discussed.
Audrey Douinot, Jean François Iffly, Cyrille Tailliez, Claude Meisch, and Laurent Pfister
Hydrol. Earth Syst. Sci., 26, 5185–5206, https://doi.org/10.5194/hess-26-5185-2022, https://doi.org/10.5194/hess-26-5185-2022, 2022
Short summary
Short summary
The objective of the paper is to highlight the seasonal and singular shift of the transfer time distributions of two catchments (≅10 km2).
Based on 2 years of rainfall and discharge observations, we compare variations in the properties of TTDs with the physiographic characteristics of catchment areas and the eco-hydrological cycle. The paper eventually aims to deduce several factors conducive to particularly rapid and concentrated water transfers, which leads to flash floods.
Alexander Y. Sun, Peishi Jiang, Zong-Liang Yang, Yangxinyu Xie, and Xingyuan Chen
Hydrol. Earth Syst. Sci., 26, 5163–5184, https://doi.org/10.5194/hess-26-5163-2022, https://doi.org/10.5194/hess-26-5163-2022, 2022
Short summary
Short summary
High-resolution river modeling is of great interest to local governments and stakeholders for flood-hazard mitigation. This work presents a physics-guided, machine learning (ML) framework for combining the strengths of high-resolution process-based river network models with a graph-based ML model capable of modeling spatiotemporal processes. Results show that the ML model can approximate the dynamics of the process model with high fidelity, and data fusion further improves the forecasting skill.
Marvin Höge, Andreas Scheidegger, Marco Baity-Jesi, Carlo Albert, and Fabrizio Fenicia
Hydrol. Earth Syst. Sci., 26, 5085–5102, https://doi.org/10.5194/hess-26-5085-2022, https://doi.org/10.5194/hess-26-5085-2022, 2022
Short summary
Short summary
Neural ODEs fuse physics-based models with deep learning: neural networks substitute terms in differential equations that represent the mechanistic structure of the system. The approach combines the flexibility of machine learning with physical constraints for inter- and extrapolation. We demonstrate that neural ODE models achieve state-of-the-art predictive performance while keeping full interpretability of model states and processes in hydrologic modelling over multiple catchments.
Jing Tian, Zhengke Pan, Shenglian Guo, Jiabo Yin, Yanlai Zhou, and Jun Wang
Hydrol. Earth Syst. Sci., 26, 4853–4874, https://doi.org/10.5194/hess-26-4853-2022, https://doi.org/10.5194/hess-26-4853-2022, 2022
Short summary
Short summary
Most of the literature has focused on the runoff response to climate change, while neglecting the impacts of the potential variation in the active catchment water storage capacity (ACWSC) that plays an essential role in the transfer of climate inputs to the catchment runoff. This study aims to systematically identify the response of the ACWSC to a long-term meteorological drought and asymptotic climate change.
Riccardo Rigon, Giuseppe Formetta, Marialaura Bancheri, Niccolò Tubini, Concetta D'Amato, Olaf David, and Christian Massari
Hydrol. Earth Syst. Sci., 26, 4773–4800, https://doi.org/10.5194/hess-26-4773-2022, https://doi.org/10.5194/hess-26-4773-2022, 2022
Short summary
Short summary
The
Digital Earth(DE) metaphor is very useful for both end users and hydrological modelers. We analyse different categories of models, with the view of making them part of a Digital eARth Twin Hydrology system (called DARTH). We also stress the idea that DARTHs are not models in and of themselves, rather they need to be built on an appropriate information technology infrastructure. It is remarked that DARTHs have to, by construction, support the open-science movement and its ideas.
Hapu Arachchige Prasantha Hapuarachchi, Mohammed Abdul Bari, Aynul Kabir, Mohammad Mahadi Hasan, Fitsum Markos Woldemeskel, Nilantha Gamage, Patrick Daniel Sunter, Xiaoyong Sophie Zhang, David Ewen Robertson, James Clement Bennett, and Paul Martinus Feikema
Hydrol. Earth Syst. Sci., 26, 4801–4821, https://doi.org/10.5194/hess-26-4801-2022, https://doi.org/10.5194/hess-26-4801-2022, 2022
Short summary
Short summary
Methodology for developing an operational 7-day ensemble streamflow forecasting service for Australia is presented. The methodology is tested for 100 catchments to learn the characteristics of different NWP rainfall forecasts, the effect of post-processing, and the optimal ensemble size and bootstrapping parameters. Forecasts are generated using NWP rainfall products post-processed by the CHyPP model, the GR4H hydrologic model, and the ERRIS streamflow post-processor inbuilt in the SWIFT package
Chenhao Chai, Lei Wang, Deliang Chen, Jing Zhou, Hu Liu, Jingtian Zhang, Yuanwei Wang, Tao Chen, and Ruishun Liu
Hydrol. Earth Syst. Sci., 26, 4657–4683, https://doi.org/10.5194/hess-26-4657-2022, https://doi.org/10.5194/hess-26-4657-2022, 2022
Short summary
Short summary
This work quantifies future snow changes and their impacts on hydrology in the upper Salween River (USR) under SSP126 and SSP585 using a cryosphere–hydrology model. Future warm–wet climate is not conducive to the development of snow. The rain–snow-dominated pattern of runoff will shift to a rain-dominated pattern after the 2040s under SSP585 but is unchanged under SSP126. The findings improve our understanding of cryosphere–hydrology processes and can assist water resource management in the USR.
Remko C. Nijzink and Stanislaus J. Schymanski
Hydrol. Earth Syst. Sci., 26, 4575–4585, https://doi.org/10.5194/hess-26-4575-2022, https://doi.org/10.5194/hess-26-4575-2022, 2022
Short summary
Short summary
Most catchments plot close to the empirical Budyko curve, which allows for the estimation of the long-term mean annual evaporation and runoff. The Budyko curve can be defined as a function of a wetness index or a dryness index. We found that differences can occur and that there is an uncertainty due to the different formulations.
Anna Msigwa, Celray James Chawanda, Hans C. Komakech, Albert Nkwasa, and Ann van Griensven
Hydrol. Earth Syst. Sci., 26, 4447–4468, https://doi.org/10.5194/hess-26-4447-2022, https://doi.org/10.5194/hess-26-4447-2022, 2022
Short summary
Short summary
Studies using agro-hydrological models, like the Soil and Water Assessment Tool (SWAT), to map evapotranspiration (ET) do not account for cropping seasons. A comparison between the default SWAT+ set-up (with static land use representation) and a dynamic SWAT+ model set-up (with seasonal land use representation) is made by spatial mapping of the ET. The results show that ET with seasonal representation is closer to remote sensing estimates, giving better performance than ET with static land use.
Jerom P. M. Aerts, Rolf W. Hut, Nick C. van de Giesen, Niels Drost, Willem J. van Verseveld, Albrecht H. Weerts, and Pieter Hazenberg
Hydrol. Earth Syst. Sci., 26, 4407–4430, https://doi.org/10.5194/hess-26-4407-2022, https://doi.org/10.5194/hess-26-4407-2022, 2022
Short summary
Short summary
In recent years gridded hydrological modelling moved into the realm of hyper-resolution modelling (<10 km). In this study, we investigate the effect of varying grid-cell sizes for the wflow_sbm hydrological model. We used a large sample of basins from the CAMELS data set to test the effect that varying grid-cell sizes has on the simulation of streamflow at the basin outlet. Results show that there is no single best grid-cell size for modelling streamflow throughout the domain.
Taher Chegini and Hong-Yi Li
Hydrol. Earth Syst. Sci., 26, 4279–4300, https://doi.org/10.5194/hess-26-4279-2022, https://doi.org/10.5194/hess-26-4279-2022, 2022
Short summary
Short summary
Belowground urban stormwater networks (BUSNs) play a critical and irreplaceable role in preventing or mitigating urban floods. However, they are often not available for urban flood modeling at regional or larger scales. We develop a novel algorithm to estimate existing BUSNs using ubiquitously available aboveground data at large scales based on graph theory. The algorithm has been validated in different urban areas; thus, it is well transferable.
Simon Ricard, Philippe Lucas-Picher, Antoine Thiboult, and François Anctil
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2022-264, https://doi.org/10.5194/hess-2022-264, 2022
Revised manuscript accepted for HESS
Short summary
Short summary
A simplified hydroclimatic modelling workflow is proposed to quantify the impact of climate change on water discharge without resorting to meteorological observations. Results confirm the proposed workflow produces equivalent projections of the seasonal mean flows in comparison to a conventional hydroclimatic modelling approach. The proposed approach supports the participation of end-users in interpreting the impact of climate change on water resources.
Yi Nan, Zhihua He, Fuqiang Tian, Zhongwang Wei, and Lide Tian
Hydrol. Earth Syst. Sci., 26, 4147–4167, https://doi.org/10.5194/hess-26-4147-2022, https://doi.org/10.5194/hess-26-4147-2022, 2022
Short summary
Short summary
Tracer-aided hydrological models are useful tool to reduce uncertainty of hydrological modeling in cold basins, but there is little guidance on the sampling strategy for isotope analysis, which is important for large mountainous basins. This study evaluated the reliance of the tracer-aided modeling performance on the availability of isotope data in the Yarlung Tsangpo river basin, and provides implications for collecting water isotope data for running tracer-aided hydrological models.
Dapeng Feng, Hylke Beck, Kathryn Lawson, and Chaopeng Shen
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2022-245, https://doi.org/10.5194/hess-2022-245, 2022
Revised manuscript accepted for HESS
Short summary
Short summary
Hybrid models (we call δ models) that embrace the fundamental learning capability of AI but can explain all the physical processes can be powerful. In this paper we assess how they perform when applied in regions not in the training data. δ models rivaled the accuracy of state-of-the-art AI models under the data-dense scenario and even surpassed them for the data-sparse one. They generalize well due to the physical structure. δ models could be ideal candidates for global hydrologic assessments.
Sella Nevo, Efrat Morin, Adi Gerzi Rosenthal, Asher Metzger, Chen Barshai, Dana Weitzner, Dafi Voloshin, Frederik Kratzert, Gal Elidan, Gideon Dror, Gregory Begelman, Grey Nearing, Guy Shalev, Hila Noga, Ira Shavitt, Liora Yuklea, Moriah Royz, Niv Giladi, Nofar Peled Levi, Ofir Reich, Oren Gilon, Ronnie Maor, Shahar Timnat, Tal Shechter, Vladimir Anisimov, Yotam Gigi, Yuval Levin, Zach Moshe, Zvika Ben-Haim, Avinatan Hassidim, and Yossi Matias
Hydrol. Earth Syst. Sci., 26, 4013–4032, https://doi.org/10.5194/hess-26-4013-2022, https://doi.org/10.5194/hess-26-4013-2022, 2022
Short summary
Short summary
Early flood warnings are one of the most effective tools to save lives and goods. Machine learning (ML) models can improve flood prediction accuracy but their use in operational frameworks is limited. The paper presents a flood warning system, operational in India and Bangladesh, that uses ML models for forecasting river stage and flood inundation maps and discusses the models' performances. In 2021, more than 100 million flood alerts were sent to people near rivers over an area of 470 000 km2.
Matthias Sprenger, Pilar Llorens, Francesc Gallart, Paolo Benettin, Scott T. Allen, and Jérôme Latron
Hydrol. Earth Syst. Sci., 26, 4093–4107, https://doi.org/10.5194/hess-26-4093-2022, https://doi.org/10.5194/hess-26-4093-2022, 2022
Short summary
Short summary
Our catchment-scale transit time modeling study shows that including stable isotope data on evapotranspiration in addition to the commonly used stream water isotopes helps constrain the model parametrization and reveals that the water taken up by plants has resided longer in the catchment storage than the water leaving the catchment as stream discharge. This finding is important for our understanding of how water is stored and released, which impacts the water availability for plants and humans.
Lorenzo Alfieri, Francesco Avanzi, Fabio Delogu, Simone Gabellani, Giulia Bruno, Lorenzo Campo, Andrea Libertino, Christian Massari, Angelica Tarpanelli, Dominik Rains, Diego G. Miralles, Raphael Quast, Mariette Vreugdenhil, Huan Wu, and Luca Brocca
Hydrol. Earth Syst. Sci., 26, 3921–3939, https://doi.org/10.5194/hess-26-3921-2022, https://doi.org/10.5194/hess-26-3921-2022, 2022
Short summary
Short summary
This work shows advances in high-resolution satellite data for hydrology. We performed hydrological simulations for the Po River basin using various satellite products, including precipitation, evaporation, soil moisture, and snow depth. Evaporation and snow depth improved a simulation based on high-quality ground observations. Interestingly, a model calibration relying on satellite data skillfully reproduces observed discharges, paving the way to satellite-driven hydrological applications.
Bruno Majone, Diego Avesani, Patrick Zulian, Aldo Fiori, and Alberto Bellin
Hydrol. Earth Syst. Sci., 26, 3863–3883, https://doi.org/10.5194/hess-26-3863-2022, https://doi.org/10.5194/hess-26-3863-2022, 2022
Short summary
Short summary
In this work, we introduce a methodology for devising reliable future high streamflow scenarios from climate change simulations. The calibration of a hydrological model is carried out to maximize the probability that the modeled and observed high flow extremes belong to the same statistical population. Application to the Adige River catchment (southeastern Alps, Italy) showed that this procedure produces reliable quantiles of the annual maximum streamflow for use in assessment studies.
Pedro V. G. Batista, Peter Fiener, Simon Scheper, and Christine Alewell
Hydrol. Earth Syst. Sci., 26, 3753–3770, https://doi.org/10.5194/hess-26-3753-2022, https://doi.org/10.5194/hess-26-3753-2022, 2022
Short summary
Short summary
Patchy agricultural landscapes have a large number of small fields, which are separated by linear features such as roads and field borders. When eroded sediments are transported out of the agricultural fields by surface runoff, these features can influence sediment connectivity. By use of measured data and a simulation model, we demonstrate how a dense road network (and its drainage system) facilitates sediment transport from fields to water courses in a patchy Swiss agricultural catchment.
Juliane Mai, Hongren Shen, Bryan A. Tolson, Étienne Gaborit, Richard Arsenault, James R. Craig, Vincent Fortin, Lauren M. Fry, Martin Gauch, Daniel Klotz, Frederik Kratzert, Nicole O'Brien, Daniel G. Princz, Sinan Rasiya Koya, Tirthankar Roy, Frank Seglenieks, Narayan K. Shrestha, André G. T. Temgoua, Vincent Vionnet, and Jonathan W. Waddell
Hydrol. Earth Syst. Sci., 26, 3537–3572, https://doi.org/10.5194/hess-26-3537-2022, https://doi.org/10.5194/hess-26-3537-2022, 2022
Short summary
Short summary
Model intercomparison studies are carried out to test various models and compare the quality of their outputs over the same domain. In this study, 13 diverse model setups using the same input data are evaluated over the Great Lakes region. Various model outputs – such as streamflow, evaporation, soil moisture, and amount of snow on the ground – are compared using standardized methods and metrics. The basin-wise model outputs and observations are made available through an interactive website.
Aurélien Beaufort, Jacob S. Diamond, Eric Sauquet, and Florentina Moatar
Hydrol. Earth Syst. Sci., 26, 3477–3495, https://doi.org/10.5194/hess-26-3477-2022, https://doi.org/10.5194/hess-26-3477-2022, 2022
Short summary
Short summary
We developed one of the largest stream temperature databases to calculate a simple, ecologically relevant metric – the thermal peak – that captures the magnitude of summer thermal extremes. Using statistical models, we extrapolated the thermal peak to nearly every stream in France, finding the hottest thermal peaks along large rivers without forested riparian zones and groundwater inputs. Air temperature was a poor proxy for the thermal peak, highlighting the need to grow monitoring networks.
Ulises M. Sepúlveda, Pablo A. Mendoza, Naoki Mizukami, and Andrew J. Newman
Hydrol. Earth Syst. Sci., 26, 3419–3445, https://doi.org/10.5194/hess-26-3419-2022, https://doi.org/10.5194/hess-26-3419-2022, 2022
Short summary
Short summary
This paper characterizes parameter sensitivities across more than 5500 grid cells for a commonly used macroscale hydrological model, including a suite of eight performance metrics and 43 soil, vegetation and snow parameters. The results show that the model is highly overparameterized and, more importantly, help to provide guidance on the most relevant parameters for specific target processes across diverse climatic types.
Jonathan M. Frame, Frederik Kratzert, Daniel Klotz, Martin Gauch, Guy Shalev, Oren Gilon, Logan M. Qualls, Hoshin V. Gupta, and Grey S. Nearing
Hydrol. Earth Syst. Sci., 26, 3377–3392, https://doi.org/10.5194/hess-26-3377-2022, https://doi.org/10.5194/hess-26-3377-2022, 2022
Short summary
Short summary
The most accurate rainfall–runoff predictions are currently based on deep learning. There is a concern among hydrologists that deep learning models may not be reliable in extrapolation or for predicting extreme events. This study tests that hypothesis. The deep learning models remained relatively accurate in predicting extreme events compared with traditional models, even when extreme events were not included in the training set.
Sebastian A. Krogh, Lucia Scaff, James W. Kirchner, Beatrice Gordon, Gary Sterle, and Adrian Harpold
Hydrol. Earth Syst. Sci., 26, 3393–3417, https://doi.org/10.5194/hess-26-3393-2022, https://doi.org/10.5194/hess-26-3393-2022, 2022
Short summary
Short summary
We present a new way to detect snowmelt using daily cycles in streamflow driven by solar radiation. Results show that warmer sites have earlier and more intermittent snowmelt than colder sites, and the timing of early snowmelt events is strongly correlated with the timing of streamflow volume. A space-for-time substitution shows greater sensitivity of streamflow timing to climate change in colder rather than in warmer places, which is then contrasted with land surface simulations.
Wouter J. M. Knoben and Diana Spieler
Hydrol. Earth Syst. Sci., 26, 3299–3314, https://doi.org/10.5194/hess-26-3299-2022, https://doi.org/10.5194/hess-26-3299-2022, 2022
Short summary
Short summary
This paper introduces educational materials that can be used to teach students about model structure uncertainty in hydrological modelling. There are many different hydrological models and differences between these models impact their usefulness in different places. Such models are often used to support decision making about water resources and to perform hydrological science, and it is thus important for students to understand that model choice matters.
Leonie Kiewiet, Ernesto Trujillo, Andrew Hedrick, Scott Havens, Katherine Hale, Mark Seyfried, Stephanie Kampf, and Sarah E. Godsey
Hydrol. Earth Syst. Sci., 26, 2779–2796, https://doi.org/10.5194/hess-26-2779-2022, https://doi.org/10.5194/hess-26-2779-2022, 2022
Short summary
Short summary
Climate change affects precipitation phase, which can propagate into changes in streamflow timing and magnitude. This study examines how variations in rainfall and snowmelt affect discharge. We found that annual discharge and stream cessation depended on the magnitude and timing of rainfall and snowmelt and on the snowpack melt-out date. This highlights the importance of precipitation timing and emphasizes the need for spatiotemporally distributed simulations of snowpack and rainfall dynamics.
Cited articles
Abily, M., Bertrand, N., Delestre, O., Gourbesville, P., and Duluc, C.-M.: Spatial global sensitivity analysis of high resolution classified topographic data use in 2-D urban flood modelling, Environ. Modell. Softw., 77, 183–195, https://doi.org/10.1016/j.envsoft.2015.12.002, 2016.
Alvarado, L. and Alfaro, E.: Frecuencia de los ciclones tropicales que afectaron a Costa Rica durante el siglo XX, Tópicos Meteorológicos y Oceanográficos, 10, 1–11, 2003.
Amador, J. A., Alfaro, E. J., Lizano, O. G., and Magaña, V. O.: Atmospheric forcing of the eastern tropical Pacific: a review, Prog. Oceanogr., 69, 101–142, https://doi.org/10.1016/j.pocean.2006.03.007, 2006.
Angel, S., Bartley, K., Derr, M., Malur, A., Mejía, J., Nuka, P., Perlin, M., Sahai, S., Torrens, M., and Vargas, M.: Rapid urbanization in Tegucigalpa, Honduras. Preparing for the doubling of the city's population in the next twenty-five years, Woodrow Wilson School of Public and International Affairs, Princenton, available at: http://ch.tool-alfa.com/LinkClick.aspx?fileticket=62r4HGSTAdw%3D&tabid=72&mid=421 (last access: 13 July 2017) 2004.
Aronica, G., Hankin, B., and Beven, K.: Uncertainty and equifinality in calibrating distributed roughness coefficients in a flood propagation model with limited data, Adv. Water Resour., 22, 349–365, https://doi.org/10.1016/S0309-1708(98)00017-7, 1998.
Bates, P. D., Horritt, M. S., and Fewtrell, T. J.: A simple inertial formulation of the shallow water equations for efficient two-dimensional flood inundation modelling, J. Hydrol., 387, 33–45, https://doi.org/10.1016/j.jhydrol.2010.03.027, 2010.
Benson, M. A. and Dalrymple, T.: General field and office procedures for indirect discharge measurements, in: Techniques of Water- Resources Investigations of the United States Geological Survey, available at: http://pubs.usgs.gov/twri/twri3-a1/html/pdf.html (last access: 13 July 2017) 1967.
Beven, K.: Linking parameters across scales: subgrid parameterizations and scale dependent hydrological models, Hydrol. Process., 9, 507–525, https://doi.org/10.1002/hyp.3360090504, 1995.
Beven, K.: TOPMODEL: a critique, Hydrol. Process., 11, 1069–1085, https://doi.org/10.1002/(SICI)1099-1085(199707)11:9<1069::AID-HYP545>3.0.CO;2-O, 1997.
Beven, K.: Rainfall–Runoff Modelling: the Primer, 2nd edn., John Wiley & Sons, Chichester, West Sussex; Hoboken, NJ, 2012.
Beven, K.: Facets of uncertainty: epistemic uncertainty, non-stationarity, likelihood, hypothesis testing, and communication, Hydrolog. Sci. J., 61, 1652–1665, https://doi.org/10.1080/02626667.2015.1031761, 2016.
Beven, K., Gilman, K., and Newson, M.: Flow and flow routing in uplands channel networks, Hydrol. Sci. Bull., 24, 303–325, 1979.
Beven, K., Leedal, D., McCarthy, S., Hunter, N. M., Keef, C., Bates, P. D., Neal, J., and Wicks, J.: Framework for assessing uncertainty in fluvial flood risk mapping, FRMRC Research Report SWP1.7, 2011.
Beven, K. J.: Environmental Modelling: an Uncertain Future? An Introduction to Techniques for Uncertainty Estimation in Environmental Prediction, Routledge, London, 2009.
Beven, K. J. and Binley, A.: The future of distributed models: model calibration and uncertainty prediction, Hydrol. Process., 6, 279–298, 1992.
Beven, K. J. and Kirkby, M. J.: A physically based, variable contributing area model of basin hydrology/Un modèle à base physique de zone d'appel variable de l'hydrologie du bassin versant, Hydrol. Sci. Bull., 24, 43–69, https://doi.org/10.1080/02626667909491834, 1979.
Bonnifait, L., Delrieu, G., Lay, M. L., Boudevillain, B., Masson, A., Belleudy, P., Gaume, E., and Saulnier, G.-M.: Distributed hydrologic and hydraulic modelling with radar rainfall input: reconstruction of the 8–9 September 2002 catastrophic flood event in the Gard region, France, Adv. Water Resour., 32, 1077–1089, https://doi.org/10.1016/j.advwatres.2009.03.007, 2009.
Borga, M., Gaume, E., Creutin, J. D., and Marchi, L.: Surveying flash floods: gauging the ungauged extremes, Hydrol. Process., 22, 3883–3885, https://doi.org/10.1002/hyp.7111, 2008.
Bozzi, S., Passoni, G., Bernardara, P., Goutal, N., and Arnaud, A.: Roughness and discharge uncertainty in 1-D water level calculations, Environ. Model. Assess., 20, 343–353, https://doi.org/10.1007/s10666-014-9430-6, 2015.
Brandimarte, L. and Di Baldassarre, G.: Uncertainty in design flood profiles derived by hydraulic modelling, Hydrol. Res., 43, 753–761, https://doi.org/10.2166/nh.2011.086, 2012.
Brunner, G.: HEC-RAS river analysis system, Hydraulic Reference Manual, available at: http://www.hec.usace.army.mil/software/hec-ras/documents/HEC-RAS_4.1_Reference_Manual.pdf (last access: 9 September 2014), 2001.
Castellarin, A.: Probabilistic envelope curves for design flood estimation at ungauged sites, Water Resour. Res., 43, W04406, https://doi.org/10.1029/2005WR004384, 2007.
Castellarin, A., Baldassarre, G. D., Bates, P. D., and Brath, A.: Optimal cross-sectional spacing in Preissmann Scheme 1-D hydrodynamic models, J. Hydraul. Eng., 135, 96–105, https://doi.org/10.1061/(ASCE)0733-9429(2009)135:2(96), 2009.
CIAT: Land Use in Honduras, International Center for tropical agriculture, Francisco Morazán, Honduras, 2007.
Ciervo, F., Papa, M. N., Medina, V., and Bateman, A.: Simulation of flash floods in ungauged basins using post-event surveys and numerical modelling, J. Flood Risk Manag., 8, 343–355, https://doi.org/10.1111/jfr3.12103, 2015.
Cœur, D. and Lang, M.: Use of documentary sources on past flood events for flood risk management and land planning, Comptes Rendus Geosci., 340, 644–650, https://doi.org/10.1016/j.crte.2008.03.001, 2008.
Dalrymple, T. and Benson, M. A.: Measurement of peak discharge by the slope-area method, in: Techniques of Water-Resources Investigations of the United States Geological Survey, available at: http://pubs.usgs.gov/twri/twri3-a2/pdf/twri_3-A2_a.pdf (last access: 13 July 2017), 1968.
de Almeida, G. A. M., Bates, P., Freer, J. E., and Souvignet, M.: Improving the stability of a simple formulation of the shallow water equations for 2-D flood modeling, Water Resour. Res., 48, W05528, https://doi.org/10.1029/2011WR011570, 2012.
Delrieu, G., Nicol, J., Yates, E., Kirstetter, P.-E., Creutin, J.-D., Anquetin, S., Obled, C., Saulnier, G.-M., Ducrocq, V., Gaume, E., Payrastre, O., Andrieu, H., Ayral, P.-A., Bouvier, C., Neppel, L., Livet, M., Lang, M., du-Châtelet, J. P., Walpersdorf, A., and Wobrock, W.: The catastrophic flash-flood event of 8–9 September 2002 in the Gard Region, France: a first case study for the Cévennes–Vivarais Mediterranean Hydrometeorological Observatory, J. Hydrometeorol., 6, 34–52, https://doi.org/10.1175/JHM-400.1, 2005.
DHI: A Modelling System for Rivers and Channels: reference Manual, Danish Hydraulic Institute, Hørsholm, Denmark, 2000.
Di Baldassarre, G., Schumann, G., Bates, P. D., Freer, J. E., and Beven, K. J.: Flood-plain mapping: a critical discussion of deterministic and probabilistic approaches, Hydrolog. Sci. J., 55, 364–376, https://doi.org/10.1080/02626661003683389, 2010.
Dimitriadis, P., Tegos, A., Oikonomou, A., Pagana, V., Koukouvinos, A., Mamassis, N., Koutsoyiannis, D., and Efstratiadis, A.: Comparative evaluation of 1-D and quasi-2-D hydraulic models based on benchmark and real-world applications for uncertainty assessment in flood mapping, J. Hydrol., 534, 478–492, https://doi.org/10.1016/j.jhydrol.2016.01.020, 2016.
Fewtrell, T. J., Neal, J. C., Bates, P. D., and Harrison, P. J.: Geometric and structural river channel complexity and the prediction of urban inundation, Hydrol. Process., 25, 3173–3186, https://doi.org/10.1002/hyp.8035, 2011.
Fraternali, P., Castelletti, A., Soncini-Sessa, R., Vaca Ruiz, C., and Rizzoli, A. E.: Putting humans in the loop: social computing for water resources management, Environ. Modell. Softw., 37, 68–77, https://doi.org/10.1016/j.envsoft.2012.03.002, 2012.
Fuentes-Andino, D., Beven, K., Kauffeldt, A., Xu, C.-Y., Halldin, S., and Baldassarre, G. D.: Event and model dependent rainfall adjustments to improve discharge predictions, Hydrolog. Sci. J., 62, 232–245, https://doi.org/10.1080/02626667.2016.1183775, 2017.
Gaume, E. and Borga, M.: Post-flood field investigations in upland catchments after major flash floods: proposal of a methodology and illustrations, J. Flood Risk Manag., 1, 175–189, https://doi.org/10.1111/j.1753-318X.2008.00023.x, 2008.
Gaume, E., Bain, V., Bernardara, P., Newinger, O., Barbuc, M., Bateman, A., Blaškovičová, L., Blöschl, G., Borga, M., Dumitrescu, A., Daliakopoulos, I., Garcia, J., Irimescu, A., Kohnova, S., Koutroulis, A., Marchi, L., Matreata, S., Medina, V., Preciso, E., Sempere-Torres, D., Stancalie, G., Szolgay, J., Tsanis, I., Velasco, D., and Viglione, A.: A compilation of data on European flash floods, J. Hydrol., 367, 70–78, https://doi.org/10.1016/j.jhydrol.2008.12.028, 2009.
Grimaldi, S., Petroselli, A., Alonso, G., and Nardi, F.: Flow time estimation with spatially variable hillslope velocity in ungauged basins, Adv. Water Resour., 33, 1216–1223, https://doi.org/10.1016/j.advwatres.2010.06.003, 2010.
Guerrero, J.-L., Westerberg, I. K., Halldin, S., Xu, C.-Y., and Lundin, L.-C.: Temporal variability in stage–discharge relationships, J. Hydrol., 446–447, 90–102, https://doi.org/10.1016/j.jhydrol.2012.04.031, 2012.
Haile, A. and Rientjes, T. H. M.: Effects of lidar DEM resolution in flood modelling: a model sensitivity study for the city of Tegucigalpa, Honduras, ISPRS WG III3 III4 V3 Workshop Laser Scanning 2005, Enschede, the Netherlands, 12–14 September, 6, 2005.
Hall, J. W., Manning, L. J., and Hankin, R. K. S.: Bayesian calibration of a flood inundation model using spatial data, Water Resour. Res., 47, W05529, https://doi.org/10.1029/2009WR008541, 2011.
Horritt, M. S. and Bates, P. D.: Evaluation of 1-D and 2-D numerical models for predicting river flood inundation, J. Hydrol., 268, 87–99, https://doi.org/10.1016/S0022-1694(02)00121-X, 2002.
Horritt, M. S., Bates, P. D., Fewtrell, T. J., Mason, D. C., and Wilson, M. D.: Modelling the hydraulics of the Carlisle 2005 flood event, Proc. Inst. Civ. Eng. – Water Manag., 163, 273–281, https://doi.org/10.1680/wama.2010.163.6.273, 2010.
ING: Mapa hydrogeológico de la zona Central de Honduras (The hydrogeological map of the center zone of Honduras), Francisco Morazán, Honduras, 1996.
Iooss, B. and Lemaître, P.: A review on global sensitivity analysis methods, in: Uncertainty Management in Simulation–Optimization of Complex Systems, edited by: Dellino, G. and Meloni, C., Springer US, Boston,Mass, USA, 101–122, 2015.
Jarrett, R.: Hydrologie and hydraulic research in mountain rivers, Water Resour. Bull., 26, 419–429, 1990.
Jarrett, R. D.: Errors in slope-area computations of peak discharges in mountain streams, J. Hydrol., 96, 53–67, https://doi.org/10.1016/0022-1694(87)90143-0, 1987.
JICA: On flood control and landslide prevention in Tegucigalpa metropolitan area of the republic of Honduras, Pacific consultants International and Nikken consultants, Tegucigalpa, Honduras, available at: http://libopac.jica.go.jp/ (last access: 20 January 2017), 2002.
Kirkby, M. J.: Tests of the random network model, and its application to basin hydrology, Earth Surf. Proces., 1, 197–212, https://doi.org/10.1002/esp.3290010302, 1976.
Kirkby, M. J.: TOPMODEL: a personal view, Hydrol. Process., 11, 1087–1097, https://doi.org/10.1002/(SICI)1099-1085(199707)11:9<1087::AID-HYP546>3.0.CO;2-P, 1997.
Kuiper, N. H.: Tests concerning random points on a circle, Indag. Math. Proc., 63, 38–47, https://doi.org/10.1016/S1385-7258(60)50006-0, 1960.
Le Boursicaud, R., Pénard, L., Hauet, A., Thollet, F., and Le Coz, J.: Gauging extreme floods on YouTube: application of LSPIV to home movies for the post-event determination of stream discharges, Hydrol. Process., 30, 90–105, https://doi.org/10.1002/hyp.10532, 2016.
Lloyd, S.: Least squares quantization in PCM, IEEE Trans. Inf. Theor., 28, 129–137, https://doi.org/10.1109/TIT.1982.1056489, 2006.
Madhulatha, T. S.: An overview on clustering methods, ArXiv12051117 Cs, available at: http://arxiv.org/abs/1205.1117 (last access: 18 July 2016), 2012.
Mård Karlsson, J., Skelton, A., Sandén, M., Ioualalen, M., Kaewbanjak, N., Pophet, N., Asavanant, J., and von Matern, A.: Reconstructions of the coastal impact of the 2004 Indian Ocean tsunami in the Khao Lak area, Thailand, J. Geophys. Res.-Oceans, 114, C10023, https://doi.org/10.1029/2009JC005516, 2009.
Mastin, M.: Flood-hazard mapping in Honduras in response to Hurricane Mitch, US Geological Survey, Tacoma, Washington, available at: http://pubs.usgs.gov/wri/wri014277/pdf/WRIR01-4277.pdf (last access: 15 January 2017), 2002.
Mastin, M. and Olsen, T.: Fifty-year flood-inundation maps for Tegucigalpa, Honduras, US Geological Survey, Tacoma, Washington, 2002.
Mathworks: MATLAB Documentation, MathWorks Nordic, available at: https://se.mathworks.com/help/matlab/ (last access: 4 January 2017), 2011.
Matthai, H. F.: Measurement of peak discharge at width contractions by indirect methods, in: Techniques of Water-Resources Investigations of the United States Geological Survey, available at: http://pubs.usgs.gov/twri/twri3-a4/pdf/twri_3-A4_a.pdf (last access: 13 July 2017), 1968.
McCown, S., Ross, T., and Lott, N.: Mitch: the deadliest Atlantic hurricane since 1780, Natl. Ocean. Atmospheric Adm. NOAA, available at: ftp://ftp.ncdc.noaa.gov/pub/data/extremeevents/specialreports/Hurricane-Mitch-1998.pdf (last access: 11 July 2017), 1999.
McDonnell, J. J. and Beven, K.: Debates – the future of hydrological sciences: a (common) path forward? A call to action aimed at understanding velocities, celerities and residence time distributions of the headwater hydrograph, Water Resour. Res., 50, 5342–5350, https://doi.org/10.1002/2013WR015141, 2014.
Montanari, M., Hostache, R., Matgen, P., Schumann, G., Pfister, L., and Hoffmann, L.: Calibration and sequential updating of a coupled hydrologic-hydraulic model using remote sensing-derived water stages, Hydrol. Earth Syst. Sci., 13, 367–380, https://doi.org/10.5194/hess-13-367-2009, 2009.
Neal, J., Schumann, G., and Bates, P.: A subgrid channel model for simulating river hydraulics and floodplain inundation over large and data sparse areas, Water Resour. Res., 48, W11506, https://doi.org/10.1029/2012WR012514, 2012a.
Neal, J., Villanueva, I., Wright, N., Willis, T., Fewtrell, T., and Bates, P.: How much physical complexity is needed to model flood inundation?, Hydrol. Process., 26, 2264–2282, https://doi.org/10.1002/hyp.8339, 2012b.
Neal, J. C., Bates, P. D., Fewtrell, T. J., Hunter, N. M., Wilson, M. D., and Horritt, M. S.: Distributed whole city water level measurements from the Carlisle 2005 urban flood event and comparison with hydraulic model simulations, J. Hydrol., 368, 42–55, https://doi.org/10.1016/j.jhydrol.2009.01.026, 2009.
Pappenberger, F., Beven, K. J., Hunter, N. M., Bates, P. D., Gouweleeuw, B. T., Thielen, J., and de Roo, A. P. J.: Cascading model uncertainty from medium range weather forecasts (10 days) through a rainfall-runoff model to flood inundation predictions within the European Flood Forecasting System (EFFS), Hydrol. Earth Syst. Sci., 9, 381–393, https://doi.org/10.5194/hess-9-381-2005, 2005a.
Pappenberger, F., Beven, K., Horritt, M., and Blazkova, S.: Uncertainty in the calibration of effective roughness parameters in HEC-RAS using inundation and downstream level observations, J. Hydrol., 302, 46–69, https://doi.org/10.1016/j.jhydrol.2004.06.036, 2005b.
Pappenberger, F., Matgen, P., Beven, K. J., Henry, J.-B., Pfister, L., and de Fraipont, P.: Influence of uncertain boundary conditions and model structure on flood inundation predictions, Adv. Water Resour., 29, 1430–1449, https://doi.org/10.1016/j.advwatres.2005.11.012, 2006.
Pappenberger, F., Beven, K., Frodsham, K., Romanowicz, R., and Matgen, P.: Grasping the unavoidable subjectivity in calibration of flood inundation models: a vulnerability weighted approach, J. Hydrol., 333, 275–287, https://doi.org/10.1016/j.jhydrol.2006.08.017, 2007.
Renard, B., Kuczera, G., Kavetski, D., Thyer, M., and Franks, S.: Bayesian total error analysis for hydrologic models: quantifying uncertainties arising from input, output and structural errors, Proc. Water, 2008, 608–619, 2008.
Reuter, H. I., Nelson, A., and Jarvis, A.: An evaluation of void-filling interpolation methods for SRTM data, Int. J. Geogr. Inf. Sci., 21, 983–1008, https://doi.org/10.1080/13658810601169899, 2007.
Romanowicz, R. and Beven, K.: Dynamic real-time prediction of flood inundation probabilities, Hydrolog. Sci. J., 43, 181–196, https://doi.org/10.1080/02626669809492117, 1998.
Romanowicz, R. and Beven, K.: Estimation of flood inundation probabilities as conditioned on event inundation maps, Water Resour. Res., 39, https://doi.org/10.1029/2001WR001056, 2003.
Sarrazin, F., Pianosi, F., and Wagener, T.: Global sensitivity analysis of environmental models: convergence and validation, Environ. Modell. Softw., 79, 135–152, https://doi.org/10.1016/j.envsoft.2016.02.005, 2016.
Schanze, J.: Flood risk management – a basic framework, in: Flood Risk Management: hazards, Vulnerability and Mitigation Measures, Springer Netherlands, Ostrov, Czech Republic, available at: http://www.springerlink.com/content/u27867381875884l/references/ (last access: 13 May 2016), 2006.
Smith, A. F. M. and Roberts, G. O.: Bayesian computation via the Gibbs Sampler and related Markov Chain Monte Carlo methods, J. Roy. Stat. Soc. B Met., 55, 3–23, 1993.
Smith, M., Phillips, J., and Spahr, N.: Hurricane Mitch: peak discharge for selected river reaches in Honduras, US Geological Survey, available at: http://pdf.usaid.gov/pdf_docs/Pnacp984.pdf (last access: 13 July 2017), 2002.
Smith, R. A. E., Bates, P. D., and Hayes, C.: Evaluation of a coastal flood inundation model using hard and soft data, Environ. Modell. Softw., 30, 35–46, https://doi.org/10.1016/j.envsoft.2011.11.008, 2012.
Strobl, E.: The macroeconomic impact of natural disasters in developing countries: evidence from Hurricane Strikes in the Central American and Caribbean region, Proceedings of the German Development Economics Conference, Frankfurt a. M. 2009, Verein für Socialpolitik, Research Committee Development Economics, available at: https://ideas.repec.org/p/zbw/gdec09/35.html (last access: 18 February 2017), 2009.
Surkan, A. J.: Synthetic hydrographs: effects of network geometry, Water Resour. Res., 5, 112–128, https://doi.org/10.1029/WR005i001p00112, 1969.
Tewolde, M. H. and Smithers, J. C.: Flood routing in ungauged catchments using Muskingum methods, Water SA, 32, 379–388, https://doi.org/10.4314/wsa.v32i3.5263, 2007.
Todini, E.: A mass conservative and water storage consistent variable parameter Muskingum–Cunge approach, Hydrol. Earth Syst. Sci., 11, 1645–1659, https://doi.org/10.5194/hess-11-1645-2007, 2007.
Triglav-Čekada, M. and Radovan, D.: Using volunteered geographical information to map the November 2012 floods in Slovenia, Nat. Hazards Earth Syst. Sci., 13, 2753–2762, https://doi.org/10.5194/nhess-13-2753-2013, 2013.
UN/ISDR: Disaster Statistics – UNISDR, available at: https://www.unisdr.org/we/inform/disaster-statistics (last access: 7 September 2016), 2016.
Valyrakis, M., Solley, M., and Koursari, E.: Flood risk modeling of urbanized estuarine areas under uncertainty: a case study for Whitesands, UK, Br. J. Environ. Clim. Change, 5, 147–161, https://doi.org/10.9734/BJECC/2015/12915, 2015.
Warmink, J. J. and Booij, M. J.: Uncertainty analysis in river modelling, in: Rivers – Physical, Fluvial and Environmental Processes, edited by: Rowiński, P. and Radecki-Pawlik, A., Springer International Publishing, Cham, Switzerland, 255–277, 2015.
Westerberg, I., Walther, A., Guerrero, J.-L., Coello, Z., Halldin, S., Xu, C.-Y., Chen, D., and Lundin, L.-C.: Precipitation data in a mountainous catchment in Honduras: quality assessment and spatiotemporal characteristics, Theor. Appl. Climatol., 101, 381–396, https://doi.org/10.1007/s00704-009-0222-x, 2010.
Wohl, E.: Uncertainty in flood estimates associated with roughness coefficient, J. Hydraul. Eng., 124, 219–223, https://doi.org/10.1061/(ASCE)0733-9429(1998)124:2(219), 1998.
Short summary
Reproduction of past floods requires information on discharge and flood extent, commonly unavailable or uncertain during extreme events. We explored the possibility of reproducing an extreme flood disaster using rainfall and post-event hydrometric information by combining a rainfall-runoff and hydraulic modelling tool within an uncertainty analysis framework. Considering the uncertainty in post–event data, it was possible to reasonably reproduce the extreme event.
Reproduction of past floods requires information on discharge and flood extent, commonly...