Articles | Volume 20, issue 9
https://doi.org/10.5194/hess-20-3527-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/hess-20-3527-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
The transformed-stationary approach: a generic and simplified methodology for non-stationary extreme value analysis
Lorenzo Mentaschi
CORRESPONDING AUTHOR
European Commission, Joint Research Centre (JRC), Institute for Environment and Sustainability (IES), Climate Risk Management Unit, via Enrico Fermi 2749, 21027 Ispra, Italy
Università di Genova, Dipartimento di Ingegneria Chimica, Civile ed Ambientale, via Montallegro 1, 16145 Genova, Italy
Michalis Vousdoukas
European Commission, Joint Research Centre (JRC), Institute for Environment and Sustainability (IES), Climate Risk Management Unit, via Enrico Fermi 2749, 21027 Ispra, Italy
Department of Marine Sciences, University of the Aegean, University Hill, 81100 Mytilene, Lesbos, Greece
Evangelos Voukouvalas
European Commission, Joint Research Centre (JRC), Institute for Environment and Sustainability (IES), Climate Risk Management Unit, via Enrico Fermi 2749, 21027 Ispra, Italy
Ludovica Sartini
Università di Genova, Dipartimento di Ingegneria Chimica, Civile ed Ambientale, via Montallegro 1, 16145 Genova, Italy
Ifremer, Unité de recherche Recherches et Développements Technologiques, Laboratoire Comportement des Structures en Mer (CSM), Pointe du Diable, 29280 Plouzané, France
Luc Feyen
European Commission, Joint Research Centre (JRC), Institute for Environment and Sustainability (IES), Climate Risk Management Unit, via Enrico Fermi 2749, 21027 Ispra, Italy
Giovanni Besio
Università di Genova, Dipartimento di Ingegneria Chimica, Civile ed Ambientale, via Montallegro 1, 16145 Genova, Italy
Lorenzo Alfieri
European Commission, Joint Research Centre (JRC), Institute for Environment and Sustainability (IES), Climate Risk Management Unit, via Enrico Fermi 2749, 21027 Ispra, Italy
Related authors
Carmelo Cammalleri, Gustavo Naumann, Lorenzo Mentaschi, Bernard Bisselink, Emiliano Gelati, Ad De Roo, and Luc Feyen
Hydrol. Earth Syst. Sci., 24, 5919–5935, https://doi.org/10.5194/hess-24-5919-2020, https://doi.org/10.5194/hess-24-5919-2020, 2020
Short summary
Short summary
Climate change is anticipated to alter the demand and supply of water at the earth's surface. This study shows how hydrological droughts will change across Europe with increasing global warming levels, showing that at 3 K global warming an additional 11 million people and 4.5 ×106 ha of agricultural land will be exposed to droughts every year, on average. These effects are mostly located in the Mediterranean and Atlantic regions of Europe.
Michalis I. Vousdoukas, Dimitrios Bouziotas, Alessio Giardino, Laurens M. Bouwer, Lorenzo Mentaschi, Evangelos Voukouvalas, and Luc Feyen
Nat. Hazards Earth Syst. Sci., 18, 2127–2142, https://doi.org/10.5194/nhess-18-2127-2018, https://doi.org/10.5194/nhess-18-2127-2018, 2018
Short summary
Short summary
We examine sources of epistemic uncertainty in coastal flood risk models. We find that uncertainty from sea level estimations can be higher than that related to greenhouse gas emissions or climate prediction errors. Of comparable importance is information on coastal protection levels and the topography. In the absence of large datasets with sufficient resolution and accuracy, the last two factors are the main bottlenecks in terms of estimating coastal flood risks at large scales.
Giovanni Besio, Riccardo Briganti, Alessandro Romano, Lorenzo Mentaschi, and Paolo De Girolamo
Nat. Hazards Earth Syst. Sci., 17, 505–514, https://doi.org/10.5194/nhess-17-505-2017, https://doi.org/10.5194/nhess-17-505-2017, 2017
Short summary
Short summary
Results of 36-years of hindcast in the Mediterranean Sea are analysed to detect time clustering of wave storms using the Allan factor. The analysis reveals that some areas of the basin are characterized by storm clustering for timescales t < 50 days, while seasonality is dominant at large scales. The findings highlight a deviation from the Poisson distribution in some sub-basins of the Mediterranean Sea. Implications for coastal erosion/flooding need to be studied further.
Michalis I. Vousdoukas, Evangelos Voukouvalas, Lorenzo Mentaschi, Francesco Dottori, Alessio Giardino, Dimitrios Bouziotas, Alessandra Bianchi, Peter Salamon, and Luc Feyen
Nat. Hazards Earth Syst. Sci., 16, 1841–1853, https://doi.org/10.5194/nhess-16-1841-2016, https://doi.org/10.5194/nhess-16-1841-2016, 2016
Short summary
Short summary
Coastal flooding has severe socioeconomic impacts that are projected to increase under the changing climate. The present contribution reports on efforts towards a new methodology for mapping coastal flood hazard at European scale, combining the contribution of waves, improved inundation modeling and an open, physics-based framework which can be constantly upgraded whenever new and more accurate data become available.
Andrea Lira Loarca and Giovanni Besio
EGUsphere, https://doi.org/10.5194/egusphere-2024-2947, https://doi.org/10.5194/egusphere-2024-2947, 2024
Short summary
Short summary
A new method improves the accuracy of climate models by adjusting wave spectra simulations in the Mediterranean Sea. It corrects biases and accounts for changes in wave patterns due to climate change, such as shifts in direction and frequency. This technique was applied to multiple climate models, assessing future wave conditions for mid and end-of-century scenarios. The results underline the importance of precise corrections to better predict how waves may evolve as the climate changes.
Dominik Paprotny, Belinda Rhein, Michalis I. Vousdoukas, Paweł Terefenko, Francesco Dottori, Simon Treu, Jakub Śledziowski, Luc Feyen, and Heidi Kreibich
Hydrol. Earth Syst. Sci., 28, 3983–4010, https://doi.org/10.5194/hess-28-3983-2024, https://doi.org/10.5194/hess-28-3983-2024, 2024
Short summary
Short summary
Long-term trends in flood losses are regulated by multiple factors, including climate variation, population and economic growth, land-use transitions, reservoir construction, and flood risk reduction measures. Here, we reconstruct the factual circumstances in which almost 15 000 potential riverine, coastal and compound floods in Europe occurred between 1950 and 2020. About 10 % of those events are reported to have caused significant socioeconomic impacts.
Viet Dung Nguyen, Jeroen Aerts, Max Tesselaar, Wouter Botzen, Heidi Kreibich, Lorenzo Alfieri, and Bruno Merz
Nat. Hazards Earth Syst. Sci., 24, 2923–2937, https://doi.org/10.5194/nhess-24-2923-2024, https://doi.org/10.5194/nhess-24-2923-2024, 2024
Short summary
Short summary
Our study explored how seasonal flood forecasts could enhance insurance premium accuracy. Insurers traditionally rely on historical data, yet climate fluctuations influence flood risk. We employed a method that predicts seasonal floods to adjust premiums accordingly. Our findings showed significant year-to-year variations in flood risk and premiums, underscoring the importance of adaptability. Despite limitations, this research aids insurers in preparing for evolving risks.
Panagiotis Athanasiou, Ap van Dongeren, Maarten Pronk, Alessio Giardino, Michalis Vousdoukas, and Roshanka Ranasinghe
Earth Syst. Sci. Data, 16, 3433–3452, https://doi.org/10.5194/essd-16-3433-2024, https://doi.org/10.5194/essd-16-3433-2024, 2024
Short summary
Short summary
The shape of the coast, the intensity of waves, the height of the water levels, the presence of people or critical infrastructure, and the land use are important information to assess the vulnerability of the coast to coastal hazards. Here, we provide 80 indicators of this kind at consistent locations along the global ice-free coastline using open-access global datasets. These can be valuable for quick assessments of the vulnerability of the coast and at data-poor locations.
Marc Igigabel, Marissa Yates, Michalis Vousdoukas, and Youssef Diab
Nat. Hazards Earth Syst. Sci., 24, 1951–1974, https://doi.org/10.5194/nhess-24-1951-2024, https://doi.org/10.5194/nhess-24-1951-2024, 2024
Short summary
Short summary
Changes in sea levels alone do not determine the evolution of coastal hazards. Coastal hazard changes should be assessed using additional factors describing geomorphological configurations, metocean event types (storms, cyclones, long swells, and tsunamis), and the marine environment (e.g., coral reef state and sea ice extent). The assessment completed here, at regional scale including the coasts of mainland and overseas France, highlights significant differences in hazard changes.
Rodrigo Campos-Caba, Lorenzo Mentaschi, Jacopo Alessandri, Paula Camus, Andrea Mazzino, Franceso Ferrari, Ivan Federico, Michalis Vousdoukas, and Massimo Tondello
EGUsphere, https://doi.org/10.5194/egusphere-2024-1415, https://doi.org/10.5194/egusphere-2024-1415, 2024
Short summary
Short summary
Development of high-resolution simulations of storm surge in the Northern Adriatic Sea, employing different atmospheric forcing data and physical configurations. Traditional metrics like Pearson correlation and RMSE favor a simulation forced by a coarser database and employing a less sophisticated setup (2D, barotropic). Closer examination allows to identify a baroclinic (3D) model forced by a high-resolution dataset as better able to capture the variability and peak values of the storm surge.
Lorenzo Alfieri, Andrea Libertino, Lorenzo Campo, Francesco Dottori, Simone Gabellani, Tatiana Ghizzoni, Alessandro Masoero, Lauro Rossi, Roberto Rudari, Nicola Testa, Eva Trasforini, Ahmed Amdihun, Jully Ouma, Luca Rossi, Yves Tramblay, Huan Wu, and Marco Massabò
Nat. Hazards Earth Syst. Sci., 24, 199–224, https://doi.org/10.5194/nhess-24-199-2024, https://doi.org/10.5194/nhess-24-199-2024, 2024
Short summary
Short summary
This work describes Flood-PROOFS East Africa, an impact-based flood forecasting system for the Greater Horn of Africa. It is based on hydrological simulations, inundation mapping, and estimation of population and assets exposed to upcoming river floods. The system supports duty officers in African institutions in the daily monitoring of hydro-meteorological disasters. A first evaluation shows the system performance for the catastrophic floods in the Nile River basin in summer 2020.
Roderik S. W. van de Wal, Angélique Melet, Debora Bellafiore, Michalis Vousdoukas, Paula Camus, Christian Ferrarin, Gualbert Oude Essink, Ivan D. Haigh, Piero Lionello, Arjen Luijendijk, Alexandra Toimil, and Joanna Staneva
State Planet Discuss., https://doi.org/10.5194/sp-2023-38, https://doi.org/10.5194/sp-2023-38, 2023
Revised manuscript accepted for SP
Short summary
Short summary
Sea level rise has major impacts in Europe which vary from place to place and in time depending on the source of the impacts. Flooding, erosion and saltwater intrusion lead via different pathways to various consequences in coastal regions across Europe. It causes damage to assets, environment and people for all three categories of impacts discussed in this paper. The paper provides an overview of the various impacts in Europe.
Giulia Bruno, Doris Duethmann, Francesco Avanzi, Lorenzo Alfieri, Andrea Libertino, and Simone Gabellani
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2022-416, https://doi.org/10.5194/hess-2022-416, 2022
Manuscript not accepted for further review
Short summary
Short summary
Hydrological models often have issues during droughts. We used the distributed Continuum model over the Po river basin and independent datasets of streamflow (Q), evapotranspiration (ET), and storage. Continuum simulated Q well during wet years and moderate droughts. Performances declined for a severe drought and we explained this drop with an increased uncertainty in ET anomalies in human-affected croplands. These findings provide guidelines for assessments of model robustness during droughts.
Panagiotis Athanasiou, Ap van Dongeren, Alessio Giardino, Michalis Vousdoukas, Jose A. A. Antolinez, and Roshanka Ranasinghe
Nat. Hazards Earth Syst. Sci., 22, 3897–3915, https://doi.org/10.5194/nhess-22-3897-2022, https://doi.org/10.5194/nhess-22-3897-2022, 2022
Short summary
Short summary
Sandy dunes protect the hinterland from coastal flooding during storms. Thus, models that can efficiently predict dune erosion are critical for coastal zone management and early warning systems. Here we develop such a model for the Dutch coast based on machine learning techniques, allowing for dune erosion estimations in a matter of seconds relative to available computationally expensive models. Validation of the model against benchmark data and observations shows good agreement.
Eva Sebok, Hans Jørgen Henriksen, Ernesto Pastén-Zapata, Peter Berg, Guillaume Thirel, Anthony Lemoine, Andrea Lira-Loarca, Christiana Photiadou, Rafael Pimentel, Paul Royer-Gaspard, Erik Kjellström, Jens Hesselbjerg Christensen, Jean Philippe Vidal, Philippe Lucas-Picher, Markus G. Donat, Giovanni Besio, María José Polo, Simon Stisen, Yvan Caballero, Ilias G. Pechlivanidis, Lars Troldborg, and Jens Christian Refsgaard
Hydrol. Earth Syst. Sci., 26, 5605–5625, https://doi.org/10.5194/hess-26-5605-2022, https://doi.org/10.5194/hess-26-5605-2022, 2022
Short summary
Short summary
Hydrological models projecting the impact of changing climate carry a lot of uncertainty. Thus, these models usually have a multitude of simulations using different future climate data. This study used the subjective opinion of experts to assess which climate and hydrological models are the most likely to correctly predict climate impacts, thereby easing the computational burden. The experts could select more likely hydrological models, while the climate models were deemed equally probable.
Andrea Taramelli, Margherita Righini, Emiliana Valentini, Lorenzo Alfieri, Ignacio Gatti, and Simone Gabellani
Nat. Hazards Earth Syst. Sci., 22, 3543–3569, https://doi.org/10.5194/nhess-22-3543-2022, https://doi.org/10.5194/nhess-22-3543-2022, 2022
Short summary
Short summary
This work aims to support decision-making processes to prioritize effective interventions for flood risk reduction and mitigation for the implementation of flood risk management concepts in urban areas. Our findings provide new insights into vulnerability spatialization of urban flood events for the residential sector, demonstrating that the nature of flood pathways varies spatially and is influenced by landscape characteristics, as well as building features.
Lorenzo Alfieri, Francesco Avanzi, Fabio Delogu, Simone Gabellani, Giulia Bruno, Lorenzo Campo, Andrea Libertino, Christian Massari, Angelica Tarpanelli, Dominik Rains, Diego G. Miralles, Raphael Quast, Mariette Vreugdenhil, Huan Wu, and Luca Brocca
Hydrol. Earth Syst. Sci., 26, 3921–3939, https://doi.org/10.5194/hess-26-3921-2022, https://doi.org/10.5194/hess-26-3921-2022, 2022
Short summary
Short summary
This work shows advances in high-resolution satellite data for hydrology. We performed hydrological simulations for the Po River basin using various satellite products, including precipitation, evaporation, soil moisture, and snow depth. Evaporation and snow depth improved a simulation based on high-quality ground observations. Interestingly, a model calibration relying on satellite data skillfully reproduces observed discharges, paving the way to satellite-driven hydrological applications.
Francesco Dottori, Lorenzo Alfieri, Alessandra Bianchi, Jon Skoien, and Peter Salamon
Earth Syst. Sci. Data, 14, 1549–1569, https://doi.org/10.5194/essd-14-1549-2022, https://doi.org/10.5194/essd-14-1549-2022, 2022
Short summary
Short summary
We present a set of hazard maps for river flooding for Europe and the Mediterranean basin. The maps depict inundation extent and depth for flood probabilities for up to 1-in-500-year flood hazards and are based on hydrological and hydrodynamic models driven by observed climatology. The maps can identify two-thirds of the flood extent reported by official flood maps, with increasing skill for higher-magnitude floods. The maps are used for evaluating present and future impacts of river floods.
Piero Lionello, David Barriopedro, Christian Ferrarin, Robert J. Nicholls, Mirko Orlić, Fabio Raicich, Marco Reale, Georg Umgiesser, Michalis Vousdoukas, and Davide Zanchettin
Nat. Hazards Earth Syst. Sci., 21, 2705–2731, https://doi.org/10.5194/nhess-21-2705-2021, https://doi.org/10.5194/nhess-21-2705-2021, 2021
Short summary
Short summary
In this review we describe the factors leading to the extreme water heights producing the floods of Venice. We discuss the different contributions, their relative importance, and the resulting compound events. We highlight the role of relative sea level rise and the observed past and very likely future increase in extreme water heights, showing that they might be up to 160 % higher at the end of the 21st century than presently.
Carmelo Cammalleri, Gustavo Naumann, Lorenzo Mentaschi, Bernard Bisselink, Emiliano Gelati, Ad De Roo, and Luc Feyen
Hydrol. Earth Syst. Sci., 24, 5919–5935, https://doi.org/10.5194/hess-24-5919-2020, https://doi.org/10.5194/hess-24-5919-2020, 2020
Short summary
Short summary
Climate change is anticipated to alter the demand and supply of water at the earth's surface. This study shows how hydrological droughts will change across Europe with increasing global warming levels, showing that at 3 K global warming an additional 11 million people and 4.5 ×106 ha of agricultural land will be exposed to droughts every year, on average. These effects are mostly located in the Mediterranean and Atlantic regions of Europe.
Shaun Harrigan, Ervin Zsoter, Lorenzo Alfieri, Christel Prudhomme, Peter Salamon, Fredrik Wetterhall, Christopher Barnard, Hannah Cloke, and Florian Pappenberger
Earth Syst. Sci. Data, 12, 2043–2060, https://doi.org/10.5194/essd-12-2043-2020, https://doi.org/10.5194/essd-12-2043-2020, 2020
Short summary
Short summary
A new river discharge reanalysis dataset is produced operationally by coupling ECMWF's latest global atmospheric reanalysis, ERA5, with the hydrological modelling component of the Global Flood Awareness System (GloFAS). The GloFAS-ERA5 reanalysis is a global gridded dataset with a horizontal resolution of 0.1° at a daily time step and is freely available from 1979 until near real time. The evaluation against observations shows that the GloFAS-ERA5 reanalysis was skilful in 86 % of catchments.
Emanuele Bevacqua, Michalis I. Vousdoukas, Theodore G. Shepherd, and Mathieu Vrac
Nat. Hazards Earth Syst. Sci., 20, 1765–1782, https://doi.org/10.5194/nhess-20-1765-2020, https://doi.org/10.5194/nhess-20-1765-2020, 2020
Short summary
Short summary
Coastal compound flooding (CF), caused by interacting storm surges and high water runoff, is typically studied based on concurring storm surge extremes with either precipitation or river discharge extremes. Globally, these two approaches show similar CF spatial patterns, especially where the CF potential is the highest. Deviations between the two approaches increase with the catchment size. The precipitation-based analysis allows for considering
local-rainfall-driven CF and CF in small rivers.
Francesco De Leo, Sebastián Solari, and Giovanni Besio
Nat. Hazards Earth Syst. Sci., 20, 1233–1246, https://doi.org/10.5194/nhess-20-1233-2020, https://doi.org/10.5194/nhess-20-1233-2020, 2020
Maria Cortès, Marco Turco, Philip Ward, Josep A. Sánchez-Espigares, Lorenzo Alfieri, and Maria Carmen Llasat
Nat. Hazards Earth Syst. Sci., 19, 2855–2877, https://doi.org/10.5194/nhess-19-2855-2019, https://doi.org/10.5194/nhess-19-2855-2019, 2019
Short summary
Short summary
The main objective of this paper is to estimate changes in the probability of damaging flood events with global warming of 1.5, 2 and 3 °C above pre-industrial levels and taking into account different socioeconomic scenarios in two western Mediterranean regions. The results show a general increase in the probability of a damaging event, with larger increments when higher warming is considered. Moreover, this increase is higher when both climate and population change are included.
Panagiotis Athanasiou, Ap van Dongeren, Alessio Giardino, Michalis Vousdoukas, Sandra Gaytan-Aguilar, and Roshanka Ranasinghe
Earth Syst. Sci. Data, 11, 1515–1529, https://doi.org/10.5194/essd-11-1515-2019, https://doi.org/10.5194/essd-11-1515-2019, 2019
Short summary
Short summary
This dataset provides the spatial distribution of nearshore slopes at a resolution of 1 km along the global coastline. The calculation was based on available global topo-bathymetric datasets and ocean wave reanalysis. The calculated slopes show skill in capturing the spatial variability of the nearshore slopes when compared against local observations. The importance of this variability is presented with a global coastal retreat assessment for an arbitrary sea level rise scenario.
Francesco De Leo, Giovanni Besio, Guido Zolezzi, and Marco Bezzi
Nat. Hazards Earth Syst. Sci., 19, 287–298, https://doi.org/10.5194/nhess-19-287-2019, https://doi.org/10.5194/nhess-19-287-2019, 2019
Short summary
Short summary
This paper reviews the computation of vulnerability levels (VLs) of a coast to inundation with a known model. We refer to the original proposal, detailing the VL computation through an accurate investigation of the local wave climate. We prove that the resulting vulnerability is very sensitive due to the wave features taken into account, which have to be properly assessed. The research is the follow-up of a wider project set along the Bay of Lalzit (Albania).
Michalis I. Vousdoukas, Dimitrios Bouziotas, Alessio Giardino, Laurens M. Bouwer, Lorenzo Mentaschi, Evangelos Voukouvalas, and Luc Feyen
Nat. Hazards Earth Syst. Sci., 18, 2127–2142, https://doi.org/10.5194/nhess-18-2127-2018, https://doi.org/10.5194/nhess-18-2127-2018, 2018
Short summary
Short summary
We examine sources of epistemic uncertainty in coastal flood risk models. We find that uncertainty from sea level estimations can be higher than that related to greenhouse gas emissions or climate prediction errors. Of comparable importance is information on coastal protection levels and the topography. In the absence of large datasets with sufficient resolution and accuracy, the last two factors are the main bottlenecks in terms of estimating coastal flood risks at large scales.
Dominik Paprotny, Michalis I. Vousdoukas, Oswaldo Morales-Nápoles, Sebastiaan N. Jonkman, and Luc Feyen
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2018-132, https://doi.org/10.5194/hess-2018-132, 2018
Preprint withdrawn
Francesco Dottori, Milan Kalas, Peter Salamon, Alessandra Bianchi, Lorenzo Alfieri, and Luc Feyen
Nat. Hazards Earth Syst. Sci., 17, 1111–1126, https://doi.org/10.5194/nhess-17-1111-2017, https://doi.org/10.5194/nhess-17-1111-2017, 2017
Short summary
Short summary
We present a method to use river flow forecasts to estimate the impacts of flood events in terms of flood-prone areas, economic damage, cities and population at risk. We tested our method by simulating the catastrophic floods occurred in May 2014 in Southern Europe. Comparison with observed data shows that our simulations can predict flooded areas and flood impacts well in advance. The method is now being used for real-time risk forecasts to help emergency response and management.
Giovanni Besio, Riccardo Briganti, Alessandro Romano, Lorenzo Mentaschi, and Paolo De Girolamo
Nat. Hazards Earth Syst. Sci., 17, 505–514, https://doi.org/10.5194/nhess-17-505-2017, https://doi.org/10.5194/nhess-17-505-2017, 2017
Short summary
Short summary
Results of 36-years of hindcast in the Mediterranean Sea are analysed to detect time clustering of wave storms using the Allan factor. The analysis reveals that some areas of the basin are characterized by storm clustering for timescales t < 50 days, while seasonality is dominant at large scales. The findings highlight a deviation from the Poisson distribution in some sub-basins of the Mediterranean Sea. Implications for coastal erosion/flooding need to be studied further.
Isavela N. Monioudi, Adonis F. Velegrakis, Antonis E. Chatzipavlis, Anastasios Rigos, Theophanis Karambas, Michalis I. Vousdoukas, Thomas Hasiotis, Nikoletta Koukourouvli, Pascal Peduzzi, Eva Manoutsoglou, Serafim E. Poulos, and Michael B. Collins
Nat. Hazards Earth Syst. Sci., 17, 449–466, https://doi.org/10.5194/nhess-17-449-2017, https://doi.org/10.5194/nhess-17-449-2017, 2017
Short summary
Short summary
This work constitutes the first comprehensive attempt to record the spatial characteristics of the Aegean island beaches (Greece) and assess the long-term and episodic sea level rise (SLR) impacts under different scenarios. Results suggest that Aegean beaches may be particularly vulnerable to SLRs, where severe impacts which could be devastating are projected by 2100. Appropriate coastal "setback zone" policies should be adopted, as they form a significant environmental and economic resource.
Michalis I. Vousdoukas, Evangelos Voukouvalas, Lorenzo Mentaschi, Francesco Dottori, Alessio Giardino, Dimitrios Bouziotas, Alessandra Bianchi, Peter Salamon, and Luc Feyen
Nat. Hazards Earth Syst. Sci., 16, 1841–1853, https://doi.org/10.5194/nhess-16-1841-2016, https://doi.org/10.5194/nhess-16-1841-2016, 2016
Short summary
Short summary
Coastal flooding has severe socioeconomic impacts that are projected to increase under the changing climate. The present contribution reports on efforts towards a new methodology for mapping coastal flood hazard at European scale, combining the contribution of waves, improved inundation modeling and an open, physics-based framework which can be constantly upgraded whenever new and more accurate data become available.
Lorenzo Alfieri, Luc Feyen, Peter Salamon, Jutta Thielen, Alessandra Bianchi, Francesco Dottori, and Peter Burek
Nat. Hazards Earth Syst. Sci., 16, 1401–1411, https://doi.org/10.5194/nhess-16-1401-2016, https://doi.org/10.5194/nhess-16-1401-2016, 2016
Short summary
Short summary
This work couples recent advances in large scale flood hazard mapping into a pan-European flood risk model to estimate the impact of river floods in a seamless simulation, covering more than two decades.
Results of this research are an important contribution in the reconstruction of a complete dataset of flood impact data. Also, it has direct implications in the area of flood early warning with regard to the rapid risk assessment of flood impacts.
W. Greuell, J. C. M. Andersson, C. Donnelly, L. Feyen, D. Gerten, F. Ludwig, G. Pisacane, P. Roudier, and S. Schaphoff
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hessd-12-10289-2015, https://doi.org/10.5194/hessd-12-10289-2015, 2015
Revised manuscript has not been submitted
Short summary
Short summary
The main aims of this paper are the evaluation of five large-scale hydrological models across Europe and the assessment of the suitability of the models for making projections under climate change. While we found large inter-model differences in biases, the skill to simulate interannual variability in discharge did not differ much between the models. Assuming that the skill of a model to simulate interannual variability provides a measure for the model’s ability to make projections under climate
L. Alfieri, P. Burek, L. Feyen, and G. Forzieri
Hydrol. Earth Syst. Sci., 19, 2247–2260, https://doi.org/10.5194/hess-19-2247-2015, https://doi.org/10.5194/hess-19-2247-2015, 2015
Short summary
Short summary
This work presents, to our best knowledge, the first pan-European assessment of the future hydro-meteorological hazard based on an ensemble of the new EURO-CORDEX regional climate scenarios.
We propose a novel approach, which shows how the change in the frequency of future floods in Europe is likely to have a larger impact on the overall flood hazard as compared to the change in their magnitude.
A consistent method is proposed to evaluate the agreement of ensemble projections.
P. Roudier, A. Ducharne, and L. Feyen
Hydrol. Earth Syst. Sci., 18, 2789–2801, https://doi.org/10.5194/hess-18-2789-2014, https://doi.org/10.5194/hess-18-2789-2014, 2014
L. Alfieri, F. Pappenberger, and F. Wetterhall
Nat. Hazards Earth Syst. Sci., 14, 1505–1515, https://doi.org/10.5194/nhess-14-1505-2014, https://doi.org/10.5194/nhess-14-1505-2014, 2014
G. Forzieri, L. Feyen, R. Rojas, M. Flörke, F. Wimmer, and A. Bianchi
Hydrol. Earth Syst. Sci., 18, 85–108, https://doi.org/10.5194/hess-18-85-2014, https://doi.org/10.5194/hess-18-85-2014, 2014
L. Alfieri, P. Burek, E. Dutra, B. Krzeminski, D. Muraro, J. Thielen, and F. Pappenberger
Hydrol. Earth Syst. Sci., 17, 1161–1175, https://doi.org/10.5194/hess-17-1161-2013, https://doi.org/10.5194/hess-17-1161-2013, 2013
B. Jongman, H. Kreibich, H. Apel, J. I. Barredo, P. D. Bates, L. Feyen, A. Gericke, J. Neal, J. C. J. H. Aerts, and P. J. Ward
Nat. Hazards Earth Syst. Sci., 12, 3733–3752, https://doi.org/10.5194/nhess-12-3733-2012, https://doi.org/10.5194/nhess-12-3733-2012, 2012
Related subject area
Subject: Global hydrology | Techniques and Approaches: Mathematical applications
Projecting end-of-century climate extremes and their impacts on the hydrology of a representative California watershed
Integrating process-related information into an artificial neural network for root-zone soil moisture prediction
Coherence of global hydroclimate classification systems
Design flood estimation for global river networks based on machine learning models
Attributing correlation skill of dynamical GCM precipitation forecasts to statistical ENSO teleconnection using a set-theory-based approach
The spatial extent of hydrological and landscape changes across the mountains and prairies of Canada in the Mackenzie and Nelson River basins based on data from a warm-season time window
Averaging over spatiotemporal heterogeneity substantially biases evapotranspiration rates in a mechanistic large-scale land evaporation model
Rainfall Estimates on a Gridded Network (REGEN) – a global land-based gridded dataset of daily precipitation from 1950 to 2016
A framework for deriving drought indicators from the Gravity Recovery and Climate Experiment (GRACE)
Hydrological effects of climate variability and vegetation dynamics on annual fluvial water balance in global large river basins
Spatial patterns and characteristics of flood seasonality in Europe
Derived Optimal Linear Combination Evapotranspiration (DOLCE): a global gridded synthesis ET estimate
Effects of different reference periods on drought index (SPEI) estimations from 1901 to 2014
Global trends in extreme precipitation: climate models versus observations
A global water cycle reanalysis (2003–2012) merging satellite gravimetry and altimetry observations with a hydrological multi-model ensemble
A generic method for hydrological drought identification across different climate regions
Simplifying a hydrological ensemble prediction system with a backward greedy selection of members – Part 1: Optimization criteria
Simplifying a hydrological ensemble prediction system with a backward greedy selection of members – Part 2: Generalization in time and space
Fadji Z. Maina, Alan Rhoades, Erica R. Siirila-Woodburn, and Peter-James Dennedy-Frank
Hydrol. Earth Syst. Sci., 26, 3589–3609, https://doi.org/10.5194/hess-26-3589-2022, https://doi.org/10.5194/hess-26-3589-2022, 2022
Short summary
Short summary
In this work, we assess the effects of end-of-century extreme dry and wet conditions on the hydrology of California. Our results, derived from cutting-edge and high-resolution climate and hydrologic models, highlight that (1) water storage will be larger and increase earlier in the year, yet the summer streamflow will decrease as a result of high evapotranspiration rates, and that (2) groundwater and lower-order streams are very sensitive to decreases in snowmelt and higher evapotranspiration.
Roiya Souissi, Mehrez Zribi, Chiara Corbari, Marco Mancini, Sekhar Muddu, Sat Kumar Tomer, Deepti B. Upadhyaya, and Ahmad Al Bitar
Hydrol. Earth Syst. Sci., 26, 3263–3297, https://doi.org/10.5194/hess-26-3263-2022, https://doi.org/10.5194/hess-26-3263-2022, 2022
Short summary
Short summary
In this study, we investigate the combination of surface soil moisture information with process-related features, namely, evaporation efficiency, soil water index and normalized difference vegetation index, using artificial neural networks to predict root-zone soil moisture. The joint use of process-related features yielded more accurate predictions in the case of arid and semiarid conditions. However, they have no to little added value in temperate to tropical conditions.
Kathryn L. McCurley Pisarello and James W. Jawitz
Hydrol. Earth Syst. Sci., 25, 6173–6183, https://doi.org/10.5194/hess-25-6173-2021, https://doi.org/10.5194/hess-25-6173-2021, 2021
Short summary
Short summary
Climate classification systems divide the Earth into zones of similar climates. We compared the within-zone hydroclimate similarity and zone shape complexity of a suite of climate classification systems, including new ones formed in this study. The most frequently used system had high similarity but high complexity. We propose the Water-Energy Clustering framework, which also had high similarity but lower complexity. This new system is therefore proposed for future hydroclimate assessments.
Gang Zhao, Paul Bates, Jeffrey Neal, and Bo Pang
Hydrol. Earth Syst. Sci., 25, 5981–5999, https://doi.org/10.5194/hess-25-5981-2021, https://doi.org/10.5194/hess-25-5981-2021, 2021
Short summary
Short summary
Design flood estimation is a fundamental task in hydrology. We propose a machine- learning-based approach to estimate design floods anywhere on the global river network. This approach shows considerable improvement over the index-flood-based method, and the average bias in estimation is less than 18 % for 10-, 20-, 50- and 100-year design floods. This approach is a valid method to estimate design floods globally, improving our prediction of flood hazard, especially in ungauged areas.
Tongtiegang Zhao, Haoling Chen, Quanxi Shao, Tongbi Tu, Yu Tian, and Xiaohong Chen
Hydrol. Earth Syst. Sci., 25, 5717–5732, https://doi.org/10.5194/hess-25-5717-2021, https://doi.org/10.5194/hess-25-5717-2021, 2021
Short summary
Short summary
This paper develops a novel approach to attributing correlation skill of dynamical GCM forecasts to statistical El Niño–Southern Oscillation (ENSO) teleconnection using the coefficient of determination. Three cases of attribution are effectively facilitated, which are significantly positive anomaly correlation attributable to positive ENSO teleconnection, attributable to negative ENSO teleconnection and not attributable to ENSO teleconnection.
Paul H. Whitfield, Philip D. A. Kraaijenbrink, Kevin R. Shook, and John W. Pomeroy
Hydrol. Earth Syst. Sci., 25, 2513–2541, https://doi.org/10.5194/hess-25-2513-2021, https://doi.org/10.5194/hess-25-2513-2021, 2021
Short summary
Short summary
Using only warm season streamflow records, regime and change classifications were produced for ~ 400 watersheds in the Nelson and Mackenzie River basins, and trends in water storage and vegetation were detected from satellite imagery. Three areas show consistent changes: north of 60° (increased streamflow and basin greenness), in the western Boreal Plains (decreased streamflow and basin greenness), and across the Prairies (three different patterns of increased streamflow and basin wetness).
Elham Rouholahnejad Freund, Massimiliano Zappa, and James W. Kirchner
Hydrol. Earth Syst. Sci., 24, 5015–5025, https://doi.org/10.5194/hess-24-5015-2020, https://doi.org/10.5194/hess-24-5015-2020, 2020
Short summary
Short summary
Evapotranspiration (ET) is the largest flux from the land to the atmosphere and thus contributes to Earth's energy and water balance. Due to its impact on atmospheric dynamics, ET is a key driver of droughts and heatwaves. In this paper, we demonstrate how averaging over land surface heterogeneity contributes to substantial overestimates of ET fluxes. We also demonstrate how one can correct for the effects of small-scale heterogeneity without explicitly representing it in land surface models.
Steefan Contractor, Markus G. Donat, Lisa V. Alexander, Markus Ziese, Anja Meyer-Christoffer, Udo Schneider, Elke Rustemeier, Andreas Becker, Imke Durre, and Russell S. Vose
Hydrol. Earth Syst. Sci., 24, 919–943, https://doi.org/10.5194/hess-24-919-2020, https://doi.org/10.5194/hess-24-919-2020, 2020
Short summary
Short summary
This paper provides the documentation of the REGEN dataset, a global land-based daily observational precipitation dataset from 1950 to 2016 at a gridded resolution of 1° × 1°. REGEN is currently the longest-running global dataset of daily precipitation and is expected to facilitate studies looking at changes and variability in several aspects of daily precipitation distributions, extremes and measures of hydrological intensity.
Helena Gerdener, Olga Engels, and Jürgen Kusche
Hydrol. Earth Syst. Sci., 24, 227–248, https://doi.org/10.5194/hess-24-227-2020, https://doi.org/10.5194/hess-24-227-2020, 2020
Short summary
Short summary
GRACE-derived drought indicators enable us to detect hydrological droughts based on changes observed in all storages. By performing synthetic experiments, we find that droughts identified by existing and modified indicators are biased by trends and GRACE-based spatial noise. A modified version of the Zhao et al. (2017) indicator is found to be particularly robust against spatial noise and is therefore applied to real GRACE data over South Africa.
Jianyu Liu, Qiang Zhang, Vijay P. Singh, Changqing Song, Yongqiang Zhang, Peng Sun, and Xihui Gu
Hydrol. Earth Syst. Sci., 22, 4047–4060, https://doi.org/10.5194/hess-22-4047-2018, https://doi.org/10.5194/hess-22-4047-2018, 2018
Short summary
Short summary
Considering effective precipitation (Pe), the Budyko framework was extended to the annual water balance analysis. To reflect the mismatch between water supply (precipitation, P) and energy (potential evapotranspiration,
E0), a climate seasonality and asynchrony index (SAI) were proposed in terms of both phase and amplitude mismatch between P and E0.
Julia Hall and Günter Blöschl
Hydrol. Earth Syst. Sci., 22, 3883–3901, https://doi.org/10.5194/hess-22-3883-2018, https://doi.org/10.5194/hess-22-3883-2018, 2018
Sanaa Hobeichi, Gab Abramowitz, Jason Evans, and Anna Ukkola
Hydrol. Earth Syst. Sci., 22, 1317–1336, https://doi.org/10.5194/hess-22-1317-2018, https://doi.org/10.5194/hess-22-1317-2018, 2018
Short summary
Short summary
We present a new global ET dataset and associated uncertainty with monthly temporal resolution for 2000–2009 and 0.5 grid cell size. Six existing gridded ET products are combined using a weighting approach trained by observational datasets from 159 FLUXNET sites. We confirm that point-based estimates of flux towers provide information at the grid scale of these products. We also show that the weighted product performs better than 10 different existing global ET datasets in a range of metrics.
Myoung-Jin Um, Yeonjoo Kim, Daeryong Park, and Jeongbin Kim
Hydrol. Earth Syst. Sci., 21, 4989–5007, https://doi.org/10.5194/hess-21-4989-2017, https://doi.org/10.5194/hess-21-4989-2017, 2017
Short summary
Short summary
This study aims to understand how different reference periods (i.e., calibration periods) of climate data for estimating the drought index influence regional drought assessments. Specifically, we investigate the influence of different reference periods on historical drought characteristics such as trends, frequency, intensity and spatial extents using the Standard Precipitation Evapotranspiration Index (SPEI) estimated from the two widely used global datasets.
B. Asadieh and N. Y. Krakauer
Hydrol. Earth Syst. Sci., 19, 877–891, https://doi.org/10.5194/hess-19-877-2015, https://doi.org/10.5194/hess-19-877-2015, 2015
Short summary
Short summary
We present a systematic comparison of changes in historical extreme precipitation in station observations (HadEX2) and 15 climate models from the CMIP5 (as the largest and most recent sets of available observational and modeled data sets), on global and continental scales for 1901-2010, using both parametric (linear regression) and non-parametric (the Mann-Kendall as well as Sen’s slope estimator) methods, taking care to sample observations and models spatially and temporally in comparable ways.
A. I. J. M. van Dijk, L. J. Renzullo, Y. Wada, and P. Tregoning
Hydrol. Earth Syst. Sci., 18, 2955–2973, https://doi.org/10.5194/hess-18-2955-2014, https://doi.org/10.5194/hess-18-2955-2014, 2014
M. H. J. van Huijgevoort, P. Hazenberg, H. A. J. van Lanen, and R. Uijlenhoet
Hydrol. Earth Syst. Sci., 16, 2437–2451, https://doi.org/10.5194/hess-16-2437-2012, https://doi.org/10.5194/hess-16-2437-2012, 2012
D. Brochero, F. Anctil, and C. Gagné
Hydrol. Earth Syst. Sci., 15, 3307–3325, https://doi.org/10.5194/hess-15-3307-2011, https://doi.org/10.5194/hess-15-3307-2011, 2011
D. Brochero, F. Anctil, and C. Gagné
Hydrol. Earth Syst. Sci., 15, 3327–3341, https://doi.org/10.5194/hess-15-3327-2011, https://doi.org/10.5194/hess-15-3327-2011, 2011
Cited articles
Akaike, H.: Information theory and an extension of the maximum likelihood principle, Selected Papers of Hirotugu Akaike, Springer New York, 199–213, https://doi.org/10.1007/978-1-4612-1694-0_15, 1973.
Alfieri, L., Burek, P., Feyen, L., and Forzieri, G.: Global warming increases the frequency of river floods in Europe, Hydrol. Earth Syst. Sci., 19, 2247–2260, https://doi.org/10.5194/hess-19-2247-2015, 2015.
Arguez, A. and Vose, R. S.: The definition of the standard WMO climate normal: The key to deriving alternative climate normals, B. Am. Meteorol. Soc., 92, 699–704, 2011.
Barnard, P. L., Short, A. D., Harley, M. D., Splinter, K. D., Vitousek, S., Turner, I. L., Allan, J., Banno, M., Bryan, K. R., Doria, A., Hansen, J. E., Kato, S., Kuriyama, Y., Randall-Goodwin, E., Ruggiero, P., Walker, I. J., and Heathfield, D. K.: Coastal vulnerability across the Pacific dominated by El Niño/Southern Oscillation, Nat. Geosci., 8, 801–807, https://doi.org/10.1038/ngeo2539, 2015.
Boccotti, P.: Wave mechanics for ocean engineering, Elsevier Oceanography Series, Vol. 64, Elsevier, Amsterdam, 2000.
Brierley, C. M. and Fedorov, A. V.: Relative importance of meridional and zonal sea surface temperature gradients for the onset of the ice ages and Pliocene–Pleistocene climate evolution, Paleoceanography, 25, 1–16, https://doi.org/10.1029/2009PA001809, 2010
Caers, J., Vynckier, P., Beirlant, J., and Rombouts, L.: Extreme value analysis of diamond-size distributions, Math. Geol., 28, 25–43, 1996.
Cheng, L., AghaKouchak, A., Gilleland, E., and Katz, R. W.: Non-stationary extreme value analysis in a changing climate, Climatic Change, 127, 353–369, https://doi.org/10.1007/s10584-014-1254-5, 2014.
Coles, S.: An Introduction to Statistical Modeling of Extreme Values, in: Wear, Springer Series in Statistics, Springer, London, https://doi.org/10.1007/978-1-4471-3675-0, 2001.
Davison, A. C. and Smith, R. L.: Models for exceedances over high thresholds (with Discussion), J. Roy. Stat. Soc. B, 52, 393–442, 1990.
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B., Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P., Köhler, M., Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J.-J., Park, B.-K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J.-N., and Vitart, F.: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system, Q. J. Roy. Meteorol. Soc., 137, 553–597, https://doi.org/10.1002/qj.828, 2011.
Dodet, G., Bertin, X., and Taborda, R.: Wave climate variability in the North-East Atlantic Ocean over the last six decades, Ocean Model., 31, 120–131, https://doi.org/10.1016/j.ocemod.2009.10.010, 2010.
Dunne, J. P., John, J. G., Adcroft, A. J., Griffies, S. M., Hallberg, R. W., Shevliakova, S., Stouffer, R. J., Cooke, W., Dunne, K. A., Harrison, M. J., Krasting, J. P., Malyshev, S. L., Milly, P. C. D., Phillipps, P. J., Sentman, L. T., Samuels, B. L., Spelman, M. J., Winton, M., Wittenberg, A. T., and Zadeh, N.: GFDL's ESM2 Global Coupled Climate-Carbon Earth System Models. Part I: Physical Formulation and Baseline Simulation Characteristics, J. Climate, 25, 6646–6665, https://doi.org/10.1175/JCLI-D-11-00560.1, 2012.
Feuerverger, A. and Hall, P.: Estimating a tail exponent by modelling departure from a Pareto distribution, Ann. Stat., 27, 760–781, 1999.
Forzieri, G., Feyen, L., Rojas, R., Flörke, M., Wimmer, F., and Bianchi, A.: Ensemble projections of future streamflow droughts in Europe, Hydrol. Earth Syst. Sci., 18, 85–108, https://doi.org/10.5194/hess-18-85-2014, 2014.
Gençay, R. and Selçuk, F.: Extreme value theory and Value-at-Risk: Relative performance in emerging markets, Int. J. Forecast., 20, 287–303, https://doi.org/10.1016/j.ijforecast.2003.09.005, 2004.
Gilleland, E. and Katz, R. W.: Extremes 2.0: an extreme value analysis package in r, J. Stat. Softw., submitted, 2016.
Gilleland, E. and Ribatet, M.: Reinsurance and Extremal Events, in: Computational Actuarial Science with R, edited by: Charpentier, A., CRC Press, Boca Raton, Florida, 257–286, 2014.
GitHub, Inc.: Implementation of the TS methodology, available at: https://github.com/menta78/tsEva/, last access: August 2016.
Goda, Y.: Random Seas and Design of Maritime Structures, World Scientific, New York, 1988.
Hamdi, Y., Bardet, L., Duluc, C.-M., and Rebour, V.: Extreme storm surges: a comparative study of frequency analysis approaches, Nat. Hazards Earth Syst. Sci., 14, 2053–2067, https://doi.org/10.5194/nhess-14-2053-2014, 2014.
Hirabayashi, Y., Mahendran, R., Koirala, S., Konoshima, L., Yamazaki, D., Watanabe, S., Kim, H., and Kanae, S.: Global flood risk under climate change, Nat. Clim. Change, 3, 816–821, https://doi.org/10.1038/nclimate1911, 2013.
Hirsch, R. and Archfield, S.: Flood trends: Not hither but more often, Nat. Clim. Change, 5, 198–199, https://doi.org/10.1038/nclimate2551, 2015.
Hüsler, J.: Extremes and related properties of random sequences and processes, Metrika, 31, p. 98, https://doi.org/10.1007/BF01915190, 1984.
Izaguirre, C., Méndez, F. J., Menéndez, M., and Losada, I. J.: Global extreme wave height variability based on satellite data, Geophys. Res. Lett., 38, 1–6, https://doi.org/10.1029/2011GL047302, 2011.
Jongman, B., Hochrainer-stigler, S., Feyen, L., Aerts, J. C. J. H., Mechler, R., Botzen, W. J. W., Bouwer, L. M., Pflug, G., Rojas R., and Ward, P. J.: Increasing stress on disaster-risk finance due to large floods, Nat. Clim. Change, 4, 1–5, https://doi.org/10.1038/NCLIMATE2124, 2014.
Leadbetter, M. R.: Extremes and local dependence in stationary sequences, Z. Wahrscheinlichkeitstheor. Verw. Geb., 65, 291–306, https://doi.org/10.1007/BF00532484, 1983.
Méndez, F. J., Menéndez, M., Luceño, A., and Losada, I. J.: Estimation of the long-term variability of extreme significant wave height using a time-dependent Peak Over Threshold (POT) model, J. Geophys. Res.-Oceans, 111, 1–13, https://doi.org/10.1029/2005JC003344, 2006.
Menéndez, M., Méndez, F. J., Izaguirre, C., Luceño, A., and Losada, I. J.: The influence of seasonality on estimating return values of significant wave height, Coast. Eng., 56, 211–219, https://doi.org/10.1016/j.coastaleng.2008.07.004, 2009.
Menendez, M., Mendez, F. J., and Losada, I. J.: Forecasting seasonal to interannual variability in extreme sea levels, ICES J. Mar. Sci., 66, 1490–1496, https://doi.org/10.1093/icesjms/fsp095, 2009.
Mentaschi, L., Besio, G., Cassola, F., and Mazzino, A.: Performance evaluation of WavewatchIII in the Mediterranean Sea, Ocean Model., 90, 82–94, 2015.
Mentaschi, L., Vousdoukas, M., and Voukouvalas, E.: TS EVA: a generic and simplified methodology for non-stationary extreme value analysis. Code and Examples, https://doi.org/10.5281/zenodo.60493, 2016.
Mudersbach, C. and Jensen, J.: Nonstationary extreme value analysis of annual maximum water levels for designing coastal structures on the German North Sea coastline, J. Flood Risk Manage., 3, 52–62, https://doi.org/10.1111/j.1753-318X.2009.01054.x, 2010.
Plomaritis, T. A., Benavente, J., Laiz, I., and Del Rio, L.: Variability in storm climate along the Gulf of Cadiz: the role of large scale atmospheric forcing and implications to coastal hazards, Clim. Dynam., 45, 2499–2514, 2015.
Resio, D. and Irish, J.: Tropical Cyclone Storm Surge Risk, Curr. Clim. Change Rep., 1, 74–84, 2015.
Ruggiero, P., Komar, P. D., and Allan, J. C.: Increasing wave heights and extreme value projections: The wave climate of the U.S. Pacific Northwest, Coast. Eng., 57, 539–552, https://doi.org/10.1016/j.coastaleng.2009.12.005, 2010.
Russo, S., Dosio, A., Graversen, R. G., Sillmann, J., Carrao, H., Dunbar, M. B., Singleton, A., Montagna, P., Barbola, P., and Vogt, J. V.: Magnitude of extreme heat waves in present climate and their projection in a warming world, J. Geophys. Res.-Atmos., 119, 12500–12512, https://doi.org/10.1002/2014JD022098, 2014.
Russo, S., Pagano, A., and Cariboni, J.: Copula-based joint distributions of extreme bank losses: Single country versus European Union, 8th International Conference of the ERCIM WG on Computational and Methodological Statistics, London, UK, December 2015.
Sartini, L., Cassola, F., and Besio, G.: Extreme waves seasonality analysis: An application in the Mediterranean Sea, J. Geophys. Res., 120, 6266–6288, https://doi.org/10.1002/2015JC011061, 2015.
Serafin, K. A. and Ruggiero, P.: Simulating extreme total water levels using a time-dependent, extreme value approach, J. Geophys. Res.-Oceans, 119, 6305–6329, https://doi.org/10.1002/2014JC010093, 2014.
Tolman, H. L.: User manual and system documentation of WAVEWATCH III version 4.18, Tech. Note 316, NOAA/NWS/NCEP/MMAB, 2014.
van Vuuren, D. P., Edmonds, J., Kainuma, M., Riahi, K., Thomson, A., Hibbard, K., Hurtt, G. C., Kram, T., Krey, V., Lamarque, J.-F., Masui, T., Meinshausen, M., Nakicenovic, N., Smith, S. J., and Rose, S. K.: The representative concentration pathways: An overview, Climatic Change, 109, 5–31, https://doi.org/10.1007/s10584-011-0148-z, 2011.
Vousdoukas, M. I., Voukouvalas, E., Annunziato, A., Giardino, A., and Feyen, L.: Projections of extreme storm surge levels along Europe, Clim. Dynam., 20 pp., https://doi.org/10.1007/s00382-016-3019-5, online first, 2016a.
Vousdoukas, M. I., Voukouvalas, E., Mentaschi, L., Dottori, F., Giardino, A., Bouziotas, D., Bianchi, A., Salamon, P., and Feyen, L.: Developments in large-scale coastal flood hazard mapping, Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2016-124, in review, 2016b.
Williams, R.: An extreme-value function model of the species incidence and species–area relations, Ecology, 76, 2607–2616, 1995.
Short summary
The climate is subject to variations which must be considered
studying the intensity and frequency of extreme events.
We introduce in this paper a new methodology
for the study of variable extremes, which consists in detecting
the pattern of variability of a time series, and applying these patterns
to the analysis of the extreme events.
This technique comes with advantages with respect to the previous ones
in terms of accuracy, simplicity, and robustness.
The climate is subject to variations which must be considered
studying the intensity and...