Articles | Volume 20, issue 8
https://doi.org/10.5194/hess-20-3361-2016
https://doi.org/10.5194/hess-20-3361-2016
Research article
 | 
23 Aug 2016
Research article |  | 23 Aug 2016

Comparing the Normalized Difference Infrared Index (NDII) with root zone storage in a lumped conceptual model

Nutchanart Sriwongsitanon, Hongkai Gao, Hubert H. G. Savenije, Ekkarin Maekan, Sirikanya Saengsawang, and Sansarith Thianpopirug

Related authors

Using NDII patterns to constrain semi-distributed rainfall-runoff models in tropical nested catchments
Nutchanart Sriwongsitanon, Wasana Jandang, Thienchart Suwawong, and Hubert H. G. Savenije
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-598,https://doi.org/10.5194/hess-2021-598, 2021
Revised manuscript accepted for HESS
Short summary
Using NDII pattern for a semi-distributed rainfall-runoff model in tropical nested catchments
Nutchanart Sriwongsitanon, Wasana Jandang, Thienchart Suwawong, and Hubert H.~G. Savenije
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2020-82,https://doi.org/10.5194/hess-2020-82, 2020
Manuscript not accepted for further review
Short summary

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Remote Sensing and GIS
Monitoring the extreme flood events in the Yangtze River basin based on GRACE and GRACE-FO satellite data
Jingkai Xie, Yue-Ping Xu, Hongjie Yu, Yan Huang, and Yuxue Guo
Hydrol. Earth Syst. Sci., 26, 5933–5954, https://doi.org/10.5194/hess-26-5933-2022,https://doi.org/10.5194/hess-26-5933-2022, 2022
Short summary
Predicting soil moisture conditions across a heterogeneous boreal catchment using terrain indices
Johannes Larson, William Lidberg, Anneli M. Ågren, and Hjalmar Laudon
Hydrol. Earth Syst. Sci., 26, 4837–4851, https://doi.org/10.5194/hess-26-4837-2022,https://doi.org/10.5194/hess-26-4837-2022, 2022
Short summary
A combined use of in situ and satellite-derived observations to characterize surface hydrology and its variability in the Congo River basin
Benjamin Kitambo, Fabrice Papa, Adrien Paris, Raphael M. Tshimanga, Stephane Calmant, Ayan Santos Fleischmann, Frederic Frappart, Melanie Becker, Mohammad J. Tourian, Catherine Prigent, and Johary Andriambeloson
Hydrol. Earth Syst. Sci., 26, 1857–1882, https://doi.org/10.5194/hess-26-1857-2022,https://doi.org/10.5194/hess-26-1857-2022, 2022
Short summary
Monitoring surface water dynamics in the Prairie Pothole Region of North Dakota using dual-polarised Sentinel-1 synthetic aperture radar (SAR) time series
Stefan Schlaffer, Marco Chini, Wouter Dorigo, and Simon Plank
Hydrol. Earth Syst. Sci., 26, 841–860, https://doi.org/10.5194/hess-26-841-2022,https://doi.org/10.5194/hess-26-841-2022, 2022
Short summary
Watershed zonation through hillslope clustering for tractably quantifying above- and below-ground watershed heterogeneity and functions
Haruko M. Wainwright, Sebastian Uhlemann, Maya Franklin, Nicola Falco, Nicholas J. Bouskill, Michelle E. Newcomer, Baptiste Dafflon, Erica R. Siirila-Woodburn, Burke J. Minsley, Kenneth H. Williams, and Susan S. Hubbard
Hydrol. Earth Syst. Sci., 26, 429–444, https://doi.org/10.5194/hess-26-429-2022,https://doi.org/10.5194/hess-26-429-2022, 2022
Short summary

Cited articles

Albergel, C., Rüdiger, C., Pellarin, T., Calvet, J.-C., Fritz, N., Froissard, F., Suquia, D., Petitpa, A., Piguet, B., and Martin, E.: From near-surface to root-zone soil moisture using an exponential filter: an assessment of the method based on in-situ observations and model simulations, Hydrol. Earth Syst. Sci., 12, 1323–1337, https://doi.org/10.5194/hess-12-1323-2008, 2008.
Beven, K. J. and Kirkby, M. J.: A physically based, variable contributing area model of basin hydrology, Hydrol. Sci. Bull., 24, 43–69, 1979.
Ceccato, P., Flasse, S., and Grégoire, J. M.: Designing a spectral index to estimate vegetation water content from remote sensing data: Part 2, Validations and applications, Remote Sens. Environ., 82, 198–207, https://doi.org/10.1016/S0034-4257(02)00036-6, 2002.
Ceccato, P., Flasse, S., Tarantola, S., Jacquemoud, S., and Grégoire, J. M.: Detecting vegetation leaf water content using reflectance in the optical domain, Remote Sens. Environ., 77, 22–33, https://doi.org/10.1016/S0034-4257(01)00191-2, 2001.
Cheng, Y. B., Zarco-Tejada, P. J., Riaño, D., Rueda, C. A., and Ustin, S. L.: Estimating vegetation water content with hyperspectral data for different canopy scenarios: Relationships between AVIRIS and MODIS indexes, Remote Sens. Environ., 105, 354–366, https://doi.org/10.1016/j.rse.2006.07.005, 2006.
Download
Short summary
We demonstrated that the readily available NDII remote sensing product is a very useful proxy for moisture storage in the root zone of vegetation. We compared the temporal variation of the NDII with the root zone storage in a hydrological model of eight catchments in the Upper Ping River in Thailand, yielding very good results. Having a reliable NDII product that can help us to estimate the actual moisture storage in catchments is a major contribution to prediction in ungauged basins.