Articles | Volume 20, issue 7
Hydrol. Earth Syst. Sci., 20, 2573–2587, 2016
https://doi.org/10.5194/hess-20-2573-2016

Special issue: Catchment co-evolution: space–time patterns and functional...

Hydrol. Earth Syst. Sci., 20, 2573–2587, 2016
https://doi.org/10.5194/hess-20-2573-2016
Research article
04 Jul 2016
Research article | 04 Jul 2016

Dominant climatic factors driving annual runoff changes at the catchment scale across China

Zhongwei Huang et al.

Related authors

Long-term reconstruction of satellite-based precipitation, soil moisture, and snow water equivalent in China
Wencong Yang, Hanbo Yang, Changming Li, Taihua Wang, Ziwei Liu, Qingfang Hu, and Dawen Yang
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2022-135,https://doi.org/10.5194/hess-2022-135, 2022
Preprint under review for HESS
Short summary
CAMELE: Collocation-Analyzed Multi-source Ensembled Land Evapotranspiration Data
Changming Li, Hanbo Yang, Wencong Yang, Ziwei Liu, Yao Jia, Sien Li, and Dawen Yang
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2021-456,https://doi.org/10.5194/essd-2021-456, 2022
Revised manuscript under review for ESSD
Short summary
Low and contrasting impacts of vegetation CO2 fertilization on global terrestrial runoff over 1982–2010: accounting for aboveground and belowground vegetation–CO2 effects
Yuting Yang, Tim R. McVicar, Dawen Yang, Yongqiang Zhang, Shilong Piao, Shushi Peng, and Hylke E. Beck
Hydrol. Earth Syst. Sci., 25, 3411–3427, https://doi.org/10.5194/hess-25-3411-2021,https://doi.org/10.5194/hess-25-3411-2021, 2021
Short summary
Causal effects of dams and land cover changes on flood changes in mainland China
Wencong Yang, Hanbo Yang, Dawen Yang, and Aizhong Hou
Hydrol. Earth Syst. Sci., 25, 2705–2720, https://doi.org/10.5194/hess-25-2705-2021,https://doi.org/10.5194/hess-25-2705-2021, 2021
Short summary
Comparing Palmer Drought Severity Index drought assessments using the traditional offline approach with direct climate model outputs
Yuting Yang, Shulei Zhang, Michael L. Roderick, Tim R. McVicar, Dawen Yang, Wenbin Liu, and Xiaoyan Li
Hydrol. Earth Syst. Sci., 24, 2921–2930, https://doi.org/10.5194/hess-24-2921-2020,https://doi.org/10.5194/hess-24-2921-2020, 2020
Short summary

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Mathematical applications
A data-driven method for estimating the composition of end-members from stream water chemistry time series
Esther Xu Fei and Ciaran Joseph Harman
Hydrol. Earth Syst. Sci., 26, 1977–1991, https://doi.org/10.5194/hess-26-1977-2022,https://doi.org/10.5194/hess-26-1977-2022, 2022
Short summary
Technical note: PMR – a proxy metric to assess hydrological model robustness in a changing climate
Paul Royer-Gaspard, Vazken Andréassian, and Guillaume Thirel
Hydrol. Earth Syst. Sci., 25, 5703–5716, https://doi.org/10.5194/hess-25-5703-2021,https://doi.org/10.5194/hess-25-5703-2021, 2021
Short summary
Causal effects of dams and land cover changes on flood changes in mainland China
Wencong Yang, Hanbo Yang, Dawen Yang, and Aizhong Hou
Hydrol. Earth Syst. Sci., 25, 2705–2720, https://doi.org/10.5194/hess-25-2705-2021,https://doi.org/10.5194/hess-25-2705-2021, 2021
Short summary
Can the two-parameter recursive digital filter baseflow separation method really be calibrated by the conductivity mass balance method?
Weifei Yang, Changlai Xiao, Zhihao Zhang, and Xiujuan Liang
Hydrol. Earth Syst. Sci., 25, 1747–1760, https://doi.org/10.5194/hess-25-1747-2021,https://doi.org/10.5194/hess-25-1747-2021, 2021
Short summary
Simultaneously determining global sensitivities of model parameters and model structure
Juliane Mai, James R. Craig, and Bryan A. Tolson
Hydrol. Earth Syst. Sci., 24, 5835–5858, https://doi.org/10.5194/hess-24-5835-2020,https://doi.org/10.5194/hess-24-5835-2020, 2020

Cited articles

Allen, R., Pereira, L., Raes, D., and Smith, M.: Crop evapotranspiration: guidelines for computing crop water requirements. FAO Irrigation and Drainage Paper 56, FAO, Rome, 300, D05109, 1998.
Angström, A.: Solar and terrestrial radiation, Q. J. Roy. Meteorol. Soc., 50, 121–126, 1924.
Arnold, J. G. and Fohrer, N.: SWAT2000: current capabilities and research opportunities in applied watershed modelling, Hydrol. Process., 19, 563–572, https://doi.org/10.1002/hyp.5611, 2005.
Arnold, J. G., Srinivasan, R., Muttiah, R. R., and Williams, J. R.: Large hydrologic modeling and assessment Part 1: Model development, J. Am. Water Resour. Assoc, 34, 73–89, https://doi.org/10.1111/j.1752-1688.1998.tb05961.x, 1998.
Arora, V. K.: The use of the aridity index to assess climate change effect on annual runoff, J. Hydrol., 265, 164–177, https://doi.org/10.1007/BF02873094, 2002.
Download
Short summary
The hydrologic processes have been influenced by different climatic factors. However, the dominant climatic factor driving annual runoff change is still unknown in many catchments in China. By using the climate elasticity method proposed by Yang and Yang (2011), the elasticity of runoff to climatic factors was estimated, and the dominant climatic factors driving annual runoff change were detected at catchment scale over China.