Articles | Volume 20, issue 7
Hydrol. Earth Syst. Sci., 20, 2573–2587, 2016
https://doi.org/10.5194/hess-20-2573-2016

Special issue: Catchment co-evolution: space–time patterns and functional...

Hydrol. Earth Syst. Sci., 20, 2573–2587, 2016
https://doi.org/10.5194/hess-20-2573-2016

Research article 04 Jul 2016

Research article | 04 Jul 2016

Dominant climatic factors driving annual runoff changes at the catchment scale across China

Zhongwei Huang et al.

Related authors

Low and contrasting impacts of vegetation CO2 fertilization on global terrestrial runoff over 1982–2010: accounting for aboveground and belowground vegetation–CO2 effects
Yuting Yang, Tim R. McVicar, Dawen Yang, Yongqiang Zhang, Shilong Piao, Shushi Peng, and Hylke E. Beck
Hydrol. Earth Syst. Sci., 25, 3411–3427, https://doi.org/10.5194/hess-25-3411-2021,https://doi.org/10.5194/hess-25-3411-2021, 2021
Short summary
Causal effects of dams and land cover changes on flood changes in mainland China
Wencong Yang, Hanbo Yang, Dawen Yang, and Aizhong Hou
Hydrol. Earth Syst. Sci., 25, 2705–2720, https://doi.org/10.5194/hess-25-2705-2021,https://doi.org/10.5194/hess-25-2705-2021, 2021
Short summary
Comparing Palmer Drought Severity Index drought assessments using the traditional offline approach with direct climate model outputs
Yuting Yang, Shulei Zhang, Michael L. Roderick, Tim R. McVicar, Dawen Yang, Wenbin Liu, and Xiaoyan Li
Hydrol. Earth Syst. Sci., 24, 2921–2930, https://doi.org/10.5194/hess-24-2921-2020,https://doi.org/10.5194/hess-24-2921-2020, 2020
Short summary
Decadal variation in CO2 fluxes and its budget in a wheat and maize rotation cropland over the North China Plain
Quan Zhang, Huimin Lei, Dawen Yang, Lihua Xiong, Pan Liu, and Beijing Fang
Biogeosciences, 17, 2245–2262, https://doi.org/10.5194/bg-17-2245-2020,https://doi.org/10.5194/bg-17-2245-2020, 2020
Short summary
Towards understanding the mean annual water-energy balance equation based on an Ohms-type approach
Xu Shan, Xingdong Li, and Hanbo Yang
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2019-283,https://doi.org/10.5194/hess-2019-283, 2019
Manuscript not accepted for further review
Short summary

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Mathematical applications
Causal effects of dams and land cover changes on flood changes in mainland China
Wencong Yang, Hanbo Yang, Dawen Yang, and Aizhong Hou
Hydrol. Earth Syst. Sci., 25, 2705–2720, https://doi.org/10.5194/hess-25-2705-2021,https://doi.org/10.5194/hess-25-2705-2021, 2021
Short summary
Can the two-parameter recursive digital filter baseflow separation method really be calibrated by the conductivity mass balance method?
Weifei Yang, Changlai Xiao, Zhihao Zhang, and Xiujuan Liang
Hydrol. Earth Syst. Sci., 25, 1747–1760, https://doi.org/10.5194/hess-25-1747-2021,https://doi.org/10.5194/hess-25-1747-2021, 2021
Short summary
Simultaneously determining global sensitivities of model parameters and model structure
Juliane Mai, James R. Craig, and Bryan A. Tolson
Hydrol. Earth Syst. Sci., 24, 5835–5858, https://doi.org/10.5194/hess-24-5835-2020,https://doi.org/10.5194/hess-24-5835-2020, 2020
Technical note: Calculation scripts for ensemble hydrograph separation
James W. Kirchner and Julia L. A. Knapp
Hydrol. Earth Syst. Sci., 24, 5539–5558, https://doi.org/10.5194/hess-24-5539-2020,https://doi.org/10.5194/hess-24-5539-2020, 2020
Short summary
Specific climate classification for Mediterranean hydrology and future evolution under Med-CORDEX regional climate model scenarios
Antoine Allam, Roger Moussa, Wajdi Najem, and Claude Bocquillon
Hydrol. Earth Syst. Sci., 24, 4503–4521, https://doi.org/10.5194/hess-24-4503-2020,https://doi.org/10.5194/hess-24-4503-2020, 2020
Short summary

Cited articles

Allen, R., Pereira, L., Raes, D., and Smith, M.: Crop evapotranspiration: guidelines for computing crop water requirements. FAO Irrigation and Drainage Paper 56, FAO, Rome, 300, D05109, 1998.
Angström, A.: Solar and terrestrial radiation, Q. J. Roy. Meteorol. Soc., 50, 121–126, 1924.
Arnold, J. G. and Fohrer, N.: SWAT2000: current capabilities and research opportunities in applied watershed modelling, Hydrol. Process., 19, 563–572, https://doi.org/10.1002/hyp.5611, 2005.
Arnold, J. G., Srinivasan, R., Muttiah, R. R., and Williams, J. R.: Large hydrologic modeling and assessment Part 1: Model development, J. Am. Water Resour. Assoc, 34, 73–89, https://doi.org/10.1111/j.1752-1688.1998.tb05961.x, 1998.
Arora, V. K.: The use of the aridity index to assess climate change effect on annual runoff, J. Hydrol., 265, 164–177, https://doi.org/10.1007/BF02873094, 2002.
Download
Short summary
The hydrologic processes have been influenced by different climatic factors. However, the dominant climatic factor driving annual runoff change is still unknown in many catchments in China. By using the climate elasticity method proposed by Yang and Yang (2011), the elasticity of runoff to climatic factors was estimated, and the dominant climatic factors driving annual runoff change were detected at catchment scale over China.