Articles | Volume 20, issue 7
https://doi.org/10.5194/hess-20-2573-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/hess-20-2573-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Dominant climatic factors driving annual runoff changes at the catchment scale across China
Zhongwei Huang
State Key Laboratory of Hydro-Science and Engineering, Department of Hydraulic Engineering, Tsinghua University, Beijing 100084, China
Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
University of Chinese Academy of Sciences, Beijing 100049, China
State Key Laboratory of Hydro-Science and Engineering, Department of Hydraulic Engineering, Tsinghua University, Beijing 100084, China
Dawen Yang
State Key Laboratory of Hydro-Science and Engineering, Department of Hydraulic Engineering, Tsinghua University, Beijing 100084, China
Related authors
No articles found.
Changming Li, Ziwei Liu, Wencong Yang, Zhuoyi Tu, Juntai Han, Sien Li, and Hanbo Yang
Earth Syst. Sci. Data, 16, 1811–1846, https://doi.org/10.5194/essd-16-1811-2024, https://doi.org/10.5194/essd-16-1811-2024, 2024
Short summary
Short summary
Using a collocation-based approach, we developed a reliable global land evapotranspiration product (CAMELE) by merging multi-source datasets. The CAMELE product outperformed individual input datasets and showed satisfactory performance compared to reference data. It also demonstrated superiority for different plant functional types. Our study provides a promising solution for data fusion. The CAMELE dataset allows for detailed research and a better understanding of land–atmosphere interactions.
Ziwei Liu, Hanbo Yang, Changming Li, and Taihua Wang
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-17, https://doi.org/10.5194/hess-2024-17, 2024
Revised manuscript accepted for HESS
Short summary
Short summary
The determination of the coefficient (α) in the PT equation is always on the empirical side. Here based on an atmospheric boundary layer model, we derived a physically clear expression to investigate the behavior of α. We pointed out that the temperature dominates changes in α and emphasized that the variation of α to temperature should be well considered for long-term hydrological predictions. Our works advance and promote the most classical models in the field.
Wencong Yang, Hanbo Yang, Changming Li, Taihua Wang, Ziwei Liu, Qingfang Hu, and Dawen Yang
Hydrol. Earth Syst. Sci., 26, 6427–6441, https://doi.org/10.5194/hess-26-6427-2022, https://doi.org/10.5194/hess-26-6427-2022, 2022
Short summary
Short summary
We produced a daily 0.1° dataset of precipitation, soil moisture, and snow water equivalent in 1981–2017 across China via reconstructions. The dataset used global background data and local on-site data as forcing input and satellite-based data as reconstruction benchmarks. This long-term high-resolution national hydrological dataset is valuable for national investigations of hydrological processes.
Changming Li, Hanbo Yang, Wencong Yang, Ziwei Liu, Yao Jia, Sien Li, and Dawen Yang
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2021-456, https://doi.org/10.5194/essd-2021-456, 2022
Revised manuscript not accepted
Short summary
Short summary
A long-term (1980–2020) global ET product is generated based on a collocation-based merging method. The produced Collocation-Analyzed Multi-source Ensembled Land Evapotranspiration Data (CAMELE) performed well over different vegetation coverage against in-situ data. For global comparison, the spatial distribution of multi-year average and annual variation were in consistent with inputs.The CAMELE products is freely available at https://doi.org/10.5281/zenodo.6283239 (Li et al., 2021).
Yuting Yang, Tim R. McVicar, Dawen Yang, Yongqiang Zhang, Shilong Piao, Shushi Peng, and Hylke E. Beck
Hydrol. Earth Syst. Sci., 25, 3411–3427, https://doi.org/10.5194/hess-25-3411-2021, https://doi.org/10.5194/hess-25-3411-2021, 2021
Short summary
Short summary
This study developed an analytical ecohydrological model that considers three aspects of vegetation response to eCO2 (i.e., stomatal response, LAI response, and rooting depth response) to detect the impact of eCO2 on continental runoff over the past 3 decades globally. Our findings suggest a minor role of eCO2 on the global runoff changes, yet highlight the negative runoff–eCO2 response in semiarid and arid regions which may further threaten the limited water resource there.
Wencong Yang, Hanbo Yang, Dawen Yang, and Aizhong Hou
Hydrol. Earth Syst. Sci., 25, 2705–2720, https://doi.org/10.5194/hess-25-2705-2021, https://doi.org/10.5194/hess-25-2705-2021, 2021
Short summary
Short summary
This study quantified the causal effects of land cover changes and dams on the changes in annual maximum discharges (Q) in 757 catchments of China using panel regressions. We found that a 1 % point increase in urban areas causes a 3.9 % increase in Q, and a 1 unit increase in reservoir index causes a 21.4 % decrease in Q for catchments with no dam before. This study takes the first step to explain the human-caused flood changes on a national scale in China.
Yuting Yang, Shulei Zhang, Michael L. Roderick, Tim R. McVicar, Dawen Yang, Wenbin Liu, and Xiaoyan Li
Hydrol. Earth Syst. Sci., 24, 2921–2930, https://doi.org/10.5194/hess-24-2921-2020, https://doi.org/10.5194/hess-24-2921-2020, 2020
Short summary
Short summary
Many previous studies using offline drought indices report that future warming will increase worldwide drought. However, this contradicts observations/projections of vegetation greening and increased runoff. We resolved this paradox by re-calculating the same drought indices using direct climate model outputs and find no increase in future drought as the climate warms. We also find that accounting for the impact of CO2 on plant transpiration avoids the previous overestimation of drought.
Quan Zhang, Huimin Lei, Dawen Yang, Lihua Xiong, Pan Liu, and Beijing Fang
Biogeosciences, 17, 2245–2262, https://doi.org/10.5194/bg-17-2245-2020, https://doi.org/10.5194/bg-17-2245-2020, 2020
Short summary
Short summary
Research into climate change has been popular over the past few decades. Greenhouse gas emissions are found to be responsible for climate change. Among all the ecosystems, cropland is the main food source for mankind, therefore its carbon cycle and contribution to the global carbon balance interest us. Our evaluation of the typical wheat–maize rotation cropland over the North China Plain shows it is a net CO2 emission to the atmosphere and that emissions will continue to rise in the future.
Xu Shan, Xingdong Li, and Hanbo Yang
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2019-283, https://doi.org/10.5194/hess-2019-283, 2019
Manuscript not accepted for further review
Short summary
Short summary
The Budyko hypothesis has been generally used to quantify how much precipitation transforms into evaporation in one catchment. To approach this hypothesis, previous studies proposed analytical formulas derived based on mathematic reasoning. Differently, this study drew a new derivation for this hypothesis based on fundamental physical principles. It clearly reveals the underlying assumptions in the previous mathematic reasoning and promotes hydrologic understanding on this hypothesis.
Xu Shan, Xindong Li, and Hanbo Yang
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2018-598, https://doi.org/10.5194/hess-2018-598, 2018
Manuscript not accepted for further review
Short summary
Short summary
The Budyko hypothesis has been generally used to quantify how much precipitation transforms into evaporation in one catchment. To approach this hypothesis, previous studies proposed analytical formulas derived based on mathematic reasoning. Differently, this study drew a new derivation for this hypothesis based on fundamental physical principles. It clearly reveals the underlying assumptions in the previous mathematic reasoning and promotes hydrologic understanding on this hypothesis.
Bing Gao, Dawen Yang, Yue Qin, Yuhan Wang, Hongyi Li, Yanlin Zhang, and Tingjun Zhang
The Cryosphere, 12, 657–673, https://doi.org/10.5194/tc-12-657-2018, https://doi.org/10.5194/tc-12-657-2018, 2018
Short summary
Short summary
This study developed a distributed hydrological model coupled with cryospherical processes and applied it in order to simulate the long-term change of frozen ground and its effect on hydrology in the upper Heihe basin. Results showed that the permafrost area shrank by 8.8%, and the frozen depth of seasonally frozen ground decreased. Runoff in cold seasons and annual liquid soil moisture increased due to frozen soils change. Groundwater recharge was enhanced due to the degradation of permafrost.
Zhongwang Chen, Huimin Lei, Hanbo Yang, Dawen Yang, and Yongqiang Cao
Hydrol. Earth Syst. Sci., 21, 2233–2248, https://doi.org/10.5194/hess-21-2233-2017, https://doi.org/10.5194/hess-21-2233-2017, 2017
Short summary
Short summary
The significant climate changes remind us to characterize the hydrological response to it. Based on the long-term observed hydrological and meteorological data in 291 catchments across China, we find a pattern of the response stating that
drier regions are more likely to become drier, whereas wetter regions are more likely to become wetter. We also reveal that the precipitation changes play the most significant role in this process.
Tingting Gong, Huimin Lei, Dawen Yang, Yang Jiao, and Hanbo Yang
Hydrol. Earth Syst. Sci., 21, 863–877, https://doi.org/10.5194/hess-21-863-2017, https://doi.org/10.5194/hess-21-863-2017, 2017
Short summary
Short summary
Seasonal and inter-annual features of ET were analyzed over four periods. A normalization method was adopted to exclude the effects of potential evapotranspiration and soil water stress on ET. During the land degradation process, when natural vegetation (including leaves and branches), sand dunes, dry sand layers, and BSCs were all bulldozed, ET was observed to increase at a mild rate. In a vegetation rehabilitation process with sufficient groundwater, ET also increased at a faster rate.
Bing Gao, Dawen Yang, Yue Qin, Yuhan Wang, Hongyi Li, Yanlin Zhang, and Tingjun Zhang
The Cryosphere Discuss., https://doi.org/10.5194/tc-2016-289, https://doi.org/10.5194/tc-2016-289, 2017
Revised manuscript not accepted
Short summary
Short summary
This study developed a distributed hydrological model coupled with cryospherical processes and used it to simulate the long-term change of frozen ground and hydrological impacts in the upper Heihe basin. Results showed that the permafrost area shrank by 9.5 %, and frozen depth of seasonally frozen ground decreased at a rate of 4.1 cm/10 yr. Runoff increased in cold season due to the increase in liquid soil moisture. Groundwater recharge was enhanced due to the degradation of permafrost.
Quan Zhang, Hui-Min Lei, Da-Wen Yang, Lihua Xiong, and Beijing Fang
Biogeosciences Discuss., https://doi.org/10.5194/bg-2016-484, https://doi.org/10.5194/bg-2016-484, 2016
Revised manuscript not accepted
Short summary
Short summary
With the increasing concern about global warming, investigating carbon cycle becomes imperative to predict future climate trend. As cropland has great potentials in mitigating carbon emissions, therefore we designed a comprehensive carbon budget assessment in a typical cropland in North China Plain, the results indicate the high groundwater table contributes to carbon sink of this cropland. The conclusion confirms that field management has profound effect on cropland carbon cycle.
D. Zhang, Z. Cong, G. Ni, D. Yang, and S. Hu
Hydrol. Earth Syst. Sci., 19, 1977–1992, https://doi.org/10.5194/hess-19-1977-2015, https://doi.org/10.5194/hess-19-1977-2015, 2015
Short summary
Short summary
1. Catchments with higher snow ratio tend to have larger runoff index.
2. A modified Budyko method is proposed to illustrate the snow effect on runoff.
3. Snow ratio change has a significant contribution to runoff change, according to historical observations and projected future climate scenarios, especially in northwestern mountainous and northern high-latitude areas of China.
T. T. Gong, H. M. Lei, D. W. Yang, Y. Jiao, and H. B. Yang
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hessd-11-13571-2014, https://doi.org/10.5194/hessd-11-13571-2014, 2014
Revised manuscript not accepted
Related subject area
Subject: Catchment hydrology | Techniques and Approaches: Mathematical applications
A national-scale hybrid model for enhanced streamflow estimation – consolidating a physically based hydrological model with long short-term memory (LSTM) networks
Inferring heavy tails of flood distributions through hydrograph recession analysis
Landscape structures regulate the contrasting response of recession along rainfall amounts
Hydrological objective functions and ensemble averaging with the Wasserstein distance
Spatial variability in Alpine reservoir regulation: deriving reservoir operations from streamflow using generalized additive models
Regional significance of historical trends and step changes in Australian streamflow
River flooding mechanisms and their changes in Europe revealed by explainable machine learning
Changes in nonlinearity and stability of streamflow recession characteristics under climate warming in a large glaciated basin of the Tibetan Plateau
A data-driven method for estimating the composition of end-members from stream water chemistry time series
Evaporation loss estimation of the river-lake continuum of arid inland river: Evidence from stable isotopes
Technical note: PMR – a proxy metric to assess hydrological model robustness in a changing climate
Causal effects of dams and land cover changes on flood changes in mainland China
Can the two-parameter recursive digital filter baseflow separation method really be calibrated by the conductivity mass balance method?
Simultaneously determining global sensitivities of model parameters and model structure
Technical note: Calculation scripts for ensemble hydrograph separation
Specific climate classification for Mediterranean hydrology and future evolution under Med-CORDEX regional climate model scenarios
A line-integral-based method to partition climate and catchment effects on runoff
Technical note: A two-sided affine power scaling relationship to represent the concentration–discharge relationship
On the flood peak distributions over China
New water fractions and transit time distributions at Plynlimon, Wales, estimated from stable water isotopes in precipitation and streamflow
Does the weighting of climate simulations result in a better quantification of hydrological impacts?
A 50-year analysis of hydrological trends and processes in a Mediterranean catchment
Technical Note: On the puzzling similarity of two water balance formulas – Turc–Mezentsev vs. Tixeront–Fu
Climate or land cover variations: what is driving observed changes in river peak flows? A data-based attribution study
Quantifying new water fractions and transit time distributions using ensemble hydrograph separation: theory and benchmark tests
Land cover effects on hydrologic services under a precipitation gradient
Technical note: Long-term persistence loss of urban streams as a metric for catchment classification
Responses of runoff to historical and future climate variability over China
Characterization and evaluation of controls on post-fire streamflow response across western US watersheds
Analysis and modelling of a 9.3 kyr palaeoflood record: correlations, clustering, and cycles
Climate change impacts on Yangtze River discharge at the Three Gorges Dam
Can assimilation of crowdsourced data in hydrological modelling improve flood prediction?
Delineation of homogenous regions using hydrological variables predicted by projection pursuit regression
Multivariate hydrological data assimilation of soil moisture and groundwater head
On the propagation of diel signals in river networks using analytic solutions of flow equations
Data assimilation in integrated hydrological modelling in the presence of observation bias
Recent changes in climate, hydrology and sediment load in the Wadi Abd, Algeria (1970–2010)
Technical Note: Testing an improved index for analysing storm discharge–concentration hysteresis
Estimating spatially distributed soil water content at small watershed scales based on decomposition of temporal anomaly and time stability analysis
Improving flood forecasting capability of physically based distributed hydrological models by parameter optimization
Time series analysis of the long-term hydrologic impacts of afforestation in the Águeda watershed of north-central Portugal
Data assimilation in integrated hydrological modeling using ensemble Kalman filtering: evaluating the effect of ensemble size and localization on filter performance
Attribution of high resolution streamflow trends in Western Austria – an approach based on climate and discharge station data
A constraint-based search algorithm for parameter identification of environmental models
Hydrologic landscape classification evaluates streamflow vulnerability to climate change in Oregon, USA
Teleconnection analysis of runoff and soil moisture over the Pearl River basin in southern China
Assessing the predictive capability of randomized tree-based ensembles in streamflow modelling
Streamflow input to Lake Athabasca, Canada
Flood-initiating catchment conditions: a spatio-temporal analysis of large-scale soil moisture patterns in the Elbe River basin
Multivariate return periods in hydrology: a critical and practical review focusing on synthetic design hydrograph estimation
Jun Liu, Julian Koch, Simon Stisen, Lars Troldborg, and Raphael J. M. Schneider
Hydrol. Earth Syst. Sci., 28, 2871–2893, https://doi.org/10.5194/hess-28-2871-2024, https://doi.org/10.5194/hess-28-2871-2024, 2024
Short summary
Short summary
We developed hybrid schemes to enhance national-scale streamflow predictions, combining long short-term memory (LSTM) with a physically based hydrological model (PBM). A comprehensive evaluation of hybrid setups across Denmark indicates that LSTM models forced by climate data and catchment attributes perform well in many regions but face challenges in groundwater-dependent basins. The hybrid schemes supported by PBMs perform better in reproducing long-term streamflow behavior and extreme events.
Hsing-Jui Wang, Ralf Merz, Soohyun Yang, and Stefano Basso
Hydrol. Earth Syst. Sci., 27, 4369–4384, https://doi.org/10.5194/hess-27-4369-2023, https://doi.org/10.5194/hess-27-4369-2023, 2023
Short summary
Short summary
Accurately assessing heavy-tailed flood behavior with limited data records is challenging and can lead to inaccurate hazard estimates. Our research introduces a new index that uses hydrograph recession to identify heavy-tailed flood behavior, compare severity, and produce reliable results with short data records. This index overcomes the limitations of current metrics, which lack physical meaning and require long records. It thus provides valuable insight into the flood hazard of river basins.
Jun-Yi Lee, Ci-Jian Yang, Tsung-Ren Peng, Tsung-Yu Lee, and Jr-Chuan Huang
Hydrol. Earth Syst. Sci., 27, 4279–4294, https://doi.org/10.5194/hess-27-4279-2023, https://doi.org/10.5194/hess-27-4279-2023, 2023
Short summary
Short summary
Streamflow recession, shaped by landscape and rainfall, is not well understood. This study examines their combined impact using data from 19 mountainous rivers. Longer, gentler hillslopes promote flow and reduce nonlinearity, while larger catchments with more rainfall show increased landscape heterogeneity. In small catchments, the exponent decreases with rainfall, indicating less landscape and runoff variation. Further research is needed to validate these findings across diverse regions.
Jared C. Magyar and Malcolm Sambridge
Hydrol. Earth Syst. Sci., 27, 991–1010, https://doi.org/10.5194/hess-27-991-2023, https://doi.org/10.5194/hess-27-991-2023, 2023
Short summary
Short summary
Measuring the similarity of distributions of water is a useful tool for model calibration and assessment. We provide a new way of measuring this similarity for streamflow time series. It is derived from the concept of the amount of
workrequired to rearrange one mass distribution into the other. We also use similar mathematical techniques for defining a type of
averagebetween water distributions.
Manuela Irene Brunner and Philippe Naveau
Hydrol. Earth Syst. Sci., 27, 673–687, https://doi.org/10.5194/hess-27-673-2023, https://doi.org/10.5194/hess-27-673-2023, 2023
Short summary
Short summary
Reservoir regulation affects various streamflow characteristics. Still, information on when water is stored in and released from reservoirs is hardly available. We develop a statistical model to reconstruct reservoir operation signals from observed streamflow time series. By applying this approach to 74 catchments in the Alps, we find that reservoir management varies by catchment elevation and that seasonal redistribution from summer to winter is strongest in high-elevation catchments.
Gnanathikkam Emmanuel Amirthanathan, Mohammed Abdul Bari, Fitsum Markos Woldemeskel, Narendra Kumar Tuteja, and Paul Martinus Feikema
Hydrol. Earth Syst. Sci., 27, 229–254, https://doi.org/10.5194/hess-27-229-2023, https://doi.org/10.5194/hess-27-229-2023, 2023
Short summary
Short summary
We used statistical tests to detect annual and seasonal streamflow trends and step changes across Australia. The Murray–Darling Basin and other rivers in the southern and north-eastern areas showed decreasing trends. Only rivers in the Timor Sea region in northern Australia showed significant increasing trends. Our results assist with infrastructure planning and management of water resources. This study was undertaken by the Bureau of Meteorology with its responsibility under the Water Act 2007.
Shijie Jiang, Emanuele Bevacqua, and Jakob Zscheischler
Hydrol. Earth Syst. Sci., 26, 6339–6359, https://doi.org/10.5194/hess-26-6339-2022, https://doi.org/10.5194/hess-26-6339-2022, 2022
Short summary
Short summary
Using a novel explainable machine learning approach, we investigated the contributions of precipitation, temperature, and day length to different peak discharges, thereby uncovering three primary flooding mechanisms widespread in European catchments. The results indicate that flooding mechanisms have changed in numerous catchments over the past 70 years. The study highlights the potential of artificial intelligence in revealing complex changes in extreme events related to climate change.
Jiarong Wang, Xi Chen, Man Gao, Qi Hu, and Jintao Liu
Hydrol. Earth Syst. Sci., 26, 3901–3920, https://doi.org/10.5194/hess-26-3901-2022, https://doi.org/10.5194/hess-26-3901-2022, 2022
Short summary
Short summary
The accelerated climate warming in the Tibetan Plateau after 1997 has strong consequences for hydrology, geography, and social wellbeing. In hydrology, the change in streamflow as a result of changes in dynamic water storage originating from glacier melt and permafrost thawing in a warming climate directly affects the available water resources for societies of some of the most populated nations in the world.
Esther Xu Fei and Ciaran Joseph Harman
Hydrol. Earth Syst. Sci., 26, 1977–1991, https://doi.org/10.5194/hess-26-1977-2022, https://doi.org/10.5194/hess-26-1977-2022, 2022
Short summary
Short summary
Water in streams is a mixture of water from many sources. It is sometimes possible to identify the chemical fingerprint of each source and track the time-varying contribution of that source to the total flow rate. But what if you do not know the chemical fingerprint of each source? Can you simultaneously identify the sources (called end-members), and separate the water into contributions from each, using only samples of water from the stream? Here we suggest a method for doing just that.
Guofeng Zhu, Zhigang Sun, Yuanxiao Xu, Yuwei Liu, Zhuanxia Zhang, Liyuan Sang, and Lei Wang
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2022-75, https://doi.org/10.5194/hess-2022-75, 2022
Revised manuscript not accepted
Short summary
Short summary
We analyzed the stable isotopic composition of surface water and estimated its evaporative loss in the Shiyang River Basin. The characteristics of stable isotopes in surface water show a gradual enrichment from mountainous areas to deserts, and the evaporation loss of surface water also shows a gradually increasing trend from upstream to downstream. The study of evaporative losses in the river-lake continuum contributes to the sustainable use of water resources.
Paul Royer-Gaspard, Vazken Andréassian, and Guillaume Thirel
Hydrol. Earth Syst. Sci., 25, 5703–5716, https://doi.org/10.5194/hess-25-5703-2021, https://doi.org/10.5194/hess-25-5703-2021, 2021
Short summary
Short summary
Most evaluation studies based on the differential split-sample test (DSST) endorse the consensus that rainfall–runoff models lack climatic robustness. In this technical note, we propose a new performance metric to evaluate model robustness without applying the DSST and which can be used with a single hydrological model calibration. Our work makes it possible to evaluate the temporal transferability of any hydrological model, including uncalibrated models, at a very low computational cost.
Wencong Yang, Hanbo Yang, Dawen Yang, and Aizhong Hou
Hydrol. Earth Syst. Sci., 25, 2705–2720, https://doi.org/10.5194/hess-25-2705-2021, https://doi.org/10.5194/hess-25-2705-2021, 2021
Short summary
Short summary
This study quantified the causal effects of land cover changes and dams on the changes in annual maximum discharges (Q) in 757 catchments of China using panel regressions. We found that a 1 % point increase in urban areas causes a 3.9 % increase in Q, and a 1 unit increase in reservoir index causes a 21.4 % decrease in Q for catchments with no dam before. This study takes the first step to explain the human-caused flood changes on a national scale in China.
Weifei Yang, Changlai Xiao, Zhihao Zhang, and Xiujuan Liang
Hydrol. Earth Syst. Sci., 25, 1747–1760, https://doi.org/10.5194/hess-25-1747-2021, https://doi.org/10.5194/hess-25-1747-2021, 2021
Short summary
Short summary
This study analyzed the effectiveness of the conductivity mass balance (CMB) method for correcting the Eckhardt method. The results showed that the approach of calibrating the Eckhardt method against the CMB method provides a
falsecalibration of total baseflow by offsetting the inherent biases in the baseflow sequences generated by the two methods. The reason for this phenomenon is the baseflow series generated by the two methods containing different transient water sources.
Juliane Mai, James R. Craig, and Bryan A. Tolson
Hydrol. Earth Syst. Sci., 24, 5835–5858, https://doi.org/10.5194/hess-24-5835-2020, https://doi.org/10.5194/hess-24-5835-2020, 2020
James W. Kirchner and Julia L. A. Knapp
Hydrol. Earth Syst. Sci., 24, 5539–5558, https://doi.org/10.5194/hess-24-5539-2020, https://doi.org/10.5194/hess-24-5539-2020, 2020
Short summary
Short summary
Ensemble hydrograph separation is a powerful new tool for measuring the age distribution of streamwater. However, the calculations are complex and may be difficult for researchers to implement on their own. Here we present scripts that perform these calculations in either MATLAB or R so that researchers do not need to write their own codes. We explain how these scripts work and how to use them. We demonstrate several potential applications using a synthetic catchment data set.
Antoine Allam, Roger Moussa, Wajdi Najem, and Claude Bocquillon
Hydrol. Earth Syst. Sci., 24, 4503–4521, https://doi.org/10.5194/hess-24-4503-2020, https://doi.org/10.5194/hess-24-4503-2020, 2020
Short summary
Short summary
With serious concerns about global change rising in the Mediterranean, we established a new climatic classification to follow hydrological and ecohydrological activities. The classification coincided with a geographical distribution ranging from the most seasonal and driest class in the south to the least seasonal and most humid in the north. RCM scenarios showed that northern classes evolve to southern ones with shorter humid seasons and earlier snowmelt which might affect hydrologic regimes.
Mingguo Zheng
Hydrol. Earth Syst. Sci., 24, 2365–2378, https://doi.org/10.5194/hess-24-2365-2020, https://doi.org/10.5194/hess-24-2365-2020, 2020
Short summary
Short summary
This paper developed a mathematically precise method to partition climate and catchment effects on streamflow. The method reveals that both the change magnitude and pathway (timing of change), not the magnitude alone, dictate the partition unless for a linear system. The method has wide relevance. For example, it suggests that the global warming effect of carbon emission is path dependent, and an optimal pathway would facilitate a higher global budget of carbon emission.
José Manuel Tunqui Neira, Vazken Andréassian, Gaëlle Tallec, and Jean-Marie Mouchel
Hydrol. Earth Syst. Sci., 24, 1823–1830, https://doi.org/10.5194/hess-24-1823-2020, https://doi.org/10.5194/hess-24-1823-2020, 2020
Short summary
Short summary
This paper deals with the mathematical representation of concentration–discharge relationships. We propose a two-sided affine power scaling relationship (2S-APS) as an alternative to the classic one-sided power scaling relationship (commonly known as
power law). We also discuss the identification of the parameters of the proposed relationship, using an appropriate numerical criterion, based on high-frequency chemical time series of the Orgeval-ORACLE observatory.
Long Yang, Lachun Wang, Xiang Li, and Jie Gao
Hydrol. Earth Syst. Sci., 23, 5133–5149, https://doi.org/10.5194/hess-23-5133-2019, https://doi.org/10.5194/hess-23-5133-2019, 2019
Julia L. A. Knapp, Colin Neal, Alessandro Schlumpf, Margaret Neal, and James W. Kirchner
Hydrol. Earth Syst. Sci., 23, 4367–4388, https://doi.org/10.5194/hess-23-4367-2019, https://doi.org/10.5194/hess-23-4367-2019, 2019
Short summary
Short summary
We describe, present, and make publicly available two extensive data sets of stable water isotopes in streamwater and precipitation at Plynlimon, Wales, consisting of measurements at 7-hourly intervals for 17 months and at weekly intervals for 4.25 years. We use these data to calculate new water fractions and transit time distributions for different discharge rates and seasons, thus quantifying the contribution of recent precipitation to streamflow under different conditions.
Hui-Min Wang, Jie Chen, Chong-Yu Xu, Hua Chen, Shenglian Guo, Ping Xie, and Xiangquan Li
Hydrol. Earth Syst. Sci., 23, 4033–4050, https://doi.org/10.5194/hess-23-4033-2019, https://doi.org/10.5194/hess-23-4033-2019, 2019
Short summary
Short summary
When using large ensembles of global climate models in hydrological impact studies, there are pragmatic questions on whether it is necessary to weight climate models and how to weight them. We use eight methods to weight climate models straightforwardly, based on their performances in hydrological simulations, and investigate the influences of the assigned weights. This study concludes that using bias correction and equal weighting is likely viable and sufficient for hydrological impact studies.
Nathalie Folton, Eric Martin, Patrick Arnaud, Pierre L'Hermite, and Mathieu Tolsa
Hydrol. Earth Syst. Sci., 23, 2699–2714, https://doi.org/10.5194/hess-23-2699-2019, https://doi.org/10.5194/hess-23-2699-2019, 2019
Short summary
Short summary
The long-term study of precipitation, flows, flood or drought mechanisms, in the Réal Collobrier research Watershed, located in South-East France, in the Mediterranean forest, improves knowledge of the water cycle and is unique tool for understanding of how catchments function. This study shows a small decrease in rainfall and a marked tendency towards a decrease in the water resources of the catchment in response to climate trends, with a consistent increase in drought severity and duration.
Vazken Andréassian and Tewfik Sari
Hydrol. Earth Syst. Sci., 23, 2339–2350, https://doi.org/10.5194/hess-23-2339-2019, https://doi.org/10.5194/hess-23-2339-2019, 2019
Short summary
Short summary
In this Technical Note, we present two water balance formulas: the Turc–Mezentsev and Tixeront–Fu formulas. These formulas have a puzzling numerical similarity, which we discuss in detail and try to interpret mathematically and hydrologically.
Jan De Niel and Patrick Willems
Hydrol. Earth Syst. Sci., 23, 871–882, https://doi.org/10.5194/hess-23-871-2019, https://doi.org/10.5194/hess-23-871-2019, 2019
James W. Kirchner
Hydrol. Earth Syst. Sci., 23, 303–349, https://doi.org/10.5194/hess-23-303-2019, https://doi.org/10.5194/hess-23-303-2019, 2019
Short summary
Short summary
How long does it take for raindrops to become streamflow? Here I propose a new approach to this old problem. I show how we can use time series of isotope data to measure the average fraction of same-day rainfall appearing in streamflow, even if this fraction varies greatly from rainstorm to rainstorm. I show that we can quantify how this fraction changes from small rainstorms to big ones, and from high flows to low flows, and how it changes with the lag time between rainfall and streamflow.
Ane Zabaleta, Eneko Garmendia, Petr Mariel, Ibon Tamayo, and Iñaki Antigüedad
Hydrol. Earth Syst. Sci., 22, 5227–5241, https://doi.org/10.5194/hess-22-5227-2018, https://doi.org/10.5194/hess-22-5227-2018, 2018
Short summary
Short summary
This study establishes relationships between land cover and river discharge. Using discharge data from 20 catchments of the Bay of Biscay findings showed the influence of land cover on discharge changes with the amount of precipitation, with lower annual water resources associated with the greater presence of forests. Results obtained illustrate the relevance of land planning to the management of water resources and the opportunity to consider it in future climate-change adaptation strategies.
Dusan Jovanovic, Tijana Jovanovic, Alfonso Mejía, Jon Hathaway, and Edoardo Daly
Hydrol. Earth Syst. Sci., 22, 3551–3559, https://doi.org/10.5194/hess-22-3551-2018, https://doi.org/10.5194/hess-22-3551-2018, 2018
Short summary
Short summary
A relationship between the Hurst (H) exponent (a long-term correlation coefficient) within a flow time series and various catchment characteristics for a number of catchments in the USA and Australia was investigated. A negative relationship with imperviousness was identified, which allowed for an efficient catchment classification, thus making the H exponent a useful metric to quantitatively assess the impact of catchment imperviousness on streamflow regime.
Chuanhao Wu, Bill X. Hu, Guoru Huang, Peng Wang, and Kai Xu
Hydrol. Earth Syst. Sci., 22, 1971–1991, https://doi.org/10.5194/hess-22-1971-2018, https://doi.org/10.5194/hess-22-1971-2018, 2018
Short summary
Short summary
China has suffered some of the effects of global warming, and one of the potential implications of climate warming is the alteration of the temporal–spatial patterns of water resources. In this paper, the Budyko-based elasticity method was used to investigate the responses of runoff to historical and future climate variability over China at both grid and catchment scales. The results help to better understand the hydrological effects of climate change and adapt to a changing environment.
Samuel Saxe, Terri S. Hogue, and Lauren Hay
Hydrol. Earth Syst. Sci., 22, 1221–1237, https://doi.org/10.5194/hess-22-1221-2018, https://doi.org/10.5194/hess-22-1221-2018, 2018
Short summary
Short summary
We investigate the impact of wildfire on watershed flow regimes, examining responses across the western United States. On a national scale, our results confirm the work of prior studies: that low, high, and peak flows typically increase following a wildfire. Regionally, results are more variable and sometimes contradictory. Our results may be significant in justifying the calibration of watershed models and in contributing to the overall observational analysis of post-fire streamflow response.
Annette Witt, Bruce D. Malamud, Clara Mangili, and Achim Brauer
Hydrol. Earth Syst. Sci., 21, 5547–5581, https://doi.org/10.5194/hess-21-5547-2017, https://doi.org/10.5194/hess-21-5547-2017, 2017
Short summary
Short summary
Here we present a unique 9.5 m palaeo-lacustrine record of 771 palaeofloods which occurred over a period of 10 000 years in the Piànico–Sèllere basin (southern Alps) during an interglacial period in the Pleistocene (sometime between 400 000 and 800 000 years ago). We analyse the palaeoflood series correlation, clustering, and cyclicity properties, finding a long-range cyclicity with a period of about 2030 years superimposed onto a fractional noise.
Steve J. Birkinshaw, Selma B. Guerreiro, Alex Nicholson, Qiuhua Liang, Paul Quinn, Lili Zhang, Bin He, Junxian Yin, and Hayley J. Fowler
Hydrol. Earth Syst. Sci., 21, 1911–1927, https://doi.org/10.5194/hess-21-1911-2017, https://doi.org/10.5194/hess-21-1911-2017, 2017
Short summary
Short summary
The Yangtze River basin in China is home to more than 400 million people and susceptible to major floods. We used projections of future precipitation and temperature from 35 of the most recent global climate models and applied this to a hydrological model of the Yangtze. Changes in the annual discharge varied between a 29.8 % decrease and a 16.0 % increase. The main reason for the difference between the models was the predicted expansion of the summer monsoon north and and west into the basin.
Maurizio Mazzoleni, Martin Verlaan, Leonardo Alfonso, Martina Monego, Daniele Norbiato, Miche Ferri, and Dimitri P. Solomatine
Hydrol. Earth Syst. Sci., 21, 839–861, https://doi.org/10.5194/hess-21-839-2017, https://doi.org/10.5194/hess-21-839-2017, 2017
Short summary
Short summary
This study assesses the potential use of crowdsourced data in hydrological modeling, which are characterized by irregular availability and variable accuracy. We show that even data with these characteristics can improve flood prediction if properly integrated into hydrological models. This study provides technological support to citizen observatories of water, in which citizens can play an active role in capturing information, leading to improved model forecasts and better flood management.
Martin Durocher, Fateh Chebana, and Taha B. M. J. Ouarda
Hydrol. Earth Syst. Sci., 20, 4717–4729, https://doi.org/10.5194/hess-20-4717-2016, https://doi.org/10.5194/hess-20-4717-2016, 2016
Short summary
Short summary
For regional flood frequency, it is challenging to identify regions with similar hydrological properties. Therefore, previous works have mainly proposed to use regions with similar physiographical properties. This research proposes instead to nonlinearly predict the desired hydrological properties before using them for delineation. The presented method is applied to a case study in Québec, Canada, and leads to hydrologically relevant regions, while enhancing predictions made inside them.
Donghua Zhang, Henrik Madsen, Marc E. Ridler, Jacob Kidmose, Karsten H. Jensen, and Jens C. Refsgaard
Hydrol. Earth Syst. Sci., 20, 4341–4357, https://doi.org/10.5194/hess-20-4341-2016, https://doi.org/10.5194/hess-20-4341-2016, 2016
Short summary
Short summary
We present a method to assimilate observed groundwater head and soil moisture profiles into an integrated hydrological model. The study uses the ensemble transform Kalman filter method and the MIKE SHE hydrological model code. The proposed method is shown to be more robust and provide better results for two cases in Denmark, and is also validated using real data. The hydrological model with assimilation overall improved performance compared to the model without assimilation.
Morgan Fonley, Ricardo Mantilla, Scott J. Small, and Rodica Curtu
Hydrol. Earth Syst. Sci., 20, 2899–2912, https://doi.org/10.5194/hess-20-2899-2016, https://doi.org/10.5194/hess-20-2899-2016, 2016
Short summary
Short summary
We design and implement a theoretical experiment to show that, under low-flow conditions, observed streamflow discrepancies between early and late summer can be attributed to different flow velocities in the river network. By developing an analytic solution to represent flow along a given river network, we emphasize the dependence of streamflow amplitude and time delay on the geomorphology of the network. We also simulate using a realistic river network to highlight the effects of scale.
Jørn Rasmussen, Henrik Madsen, Karsten Høgh Jensen, and Jens Christian Refsgaard
Hydrol. Earth Syst. Sci., 20, 2103–2118, https://doi.org/10.5194/hess-20-2103-2016, https://doi.org/10.5194/hess-20-2103-2016, 2016
Short summary
Short summary
In the paper, observations are assimilated into a hydrological model in order to improve the model performance. Two methods for detecting and correcting systematic errors (bias) in groundwater head observations are used leading to improved results compared to standard assimilation methods which ignores any bias. This is demonstrated using both synthetic (user generated) observations and real-world observations.
Mohammed Achite and Sylvain Ouillon
Hydrol. Earth Syst. Sci., 20, 1355–1372, https://doi.org/10.5194/hess-20-1355-2016, https://doi.org/10.5194/hess-20-1355-2016, 2016
Short summary
Short summary
Changes of T, P, Q and sediment fluxes in a semi-arid basin little affected by human activities are analyzed from 40 years of measurements. T increased, P decreased, an earlier onset of first summer rains occurred. The flow regime shifted from perennial to intermittent. Sediment flux almost doubled every decade. The sediment regime shifted from two equivalent seasons of sediment delivery to a single major season regime. The C–Q rating curve ability declined due to enhanced hysteresis effects.
C. E. M. Lloyd, J. E. Freer, P. J. Johnes, and A. L. Collins
Hydrol. Earth Syst. Sci., 20, 625–632, https://doi.org/10.5194/hess-20-625-2016, https://doi.org/10.5194/hess-20-625-2016, 2016
Short summary
Short summary
This paper examines the current methodologies for quantifying storm behaviour through hysteresis analysis, and explores a new method. Each method is systematically tested and the impact on the results is examined. Recommendations are made regarding the most effective method of calculating a hysteresis index. This new method allows storm hysteresis behaviour to be directly compared between storms, parameters, and catchments, meaning it has wide application potential in water quality research.
W. Hu and B. C. Si
Hydrol. Earth Syst. Sci., 20, 571–587, https://doi.org/10.5194/hess-20-571-2016, https://doi.org/10.5194/hess-20-571-2016, 2016
Short summary
Short summary
Spatiotemporal SWC was decomposed into into three terms (spatial forcing, temporal forcing, and interactions between spatial and temporal forcing) for near surface and root zone; Empirical orthogonal function indicated that underlying patterns exist in the interaction term at small watershed scales; Estimation of spatially distributed SWC benefits from decomposition of the interaction term; The suggested decomposition of SWC with time stability analysis has potential in SWC downscaling.
Y. Chen, J. Li, and H. Xu
Hydrol. Earth Syst. Sci., 20, 375–392, https://doi.org/10.5194/hess-20-375-2016, https://doi.org/10.5194/hess-20-375-2016, 2016
Short summary
Short summary
Parameter optimization is necessary to improve the flood forecasting capability of physically based distributed hydrological model. A method for parameter optimization with particle swam optimization (PSO) algorithm has been proposed for physically based distributed hydrological model in catchment flood forecasting and validated in southern China. It has found that the appropriate particle number and maximum evolution number of PSO algorithm are 20 and 30 respectively.
D. Hawtree, J. P. Nunes, J. J. Keizer, R. Jacinto, J. Santos, M. E. Rial-Rivas, A.-K. Boulet, F. Tavares-Wahren, and K.-H. Feger
Hydrol. Earth Syst. Sci., 19, 3033–3045, https://doi.org/10.5194/hess-19-3033-2015, https://doi.org/10.5194/hess-19-3033-2015, 2015
J. Rasmussen, H. Madsen, K. H. Jensen, and J. C. Refsgaard
Hydrol. Earth Syst. Sci., 19, 2999–3013, https://doi.org/10.5194/hess-19-2999-2015, https://doi.org/10.5194/hess-19-2999-2015, 2015
C. Kormann, T. Francke, M. Renner, and A. Bronstert
Hydrol. Earth Syst. Sci., 19, 1225–1245, https://doi.org/10.5194/hess-19-1225-2015, https://doi.org/10.5194/hess-19-1225-2015, 2015
S. Gharari, M. Shafiei, M. Hrachowitz, R. Kumar, F. Fenicia, H. V. Gupta, and H. H. G. Savenije
Hydrol. Earth Syst. Sci., 18, 4861–4870, https://doi.org/10.5194/hess-18-4861-2014, https://doi.org/10.5194/hess-18-4861-2014, 2014
S. G. Leibowitz, R. L. Comeleo, P. J. Wigington Jr., C. P. Weaver, P. E. Morefield, E. A. Sproles, and J. L. Ebersole
Hydrol. Earth Syst. Sci., 18, 3367–3392, https://doi.org/10.5194/hess-18-3367-2014, https://doi.org/10.5194/hess-18-3367-2014, 2014
J. Niu, J. Chen, and B. Sivakumar
Hydrol. Earth Syst. Sci., 18, 1475–1492, https://doi.org/10.5194/hess-18-1475-2014, https://doi.org/10.5194/hess-18-1475-2014, 2014
S. Galelli and A. Castelletti
Hydrol. Earth Syst. Sci., 17, 2669–2684, https://doi.org/10.5194/hess-17-2669-2013, https://doi.org/10.5194/hess-17-2669-2013, 2013
K. Rasouli, M. A. Hernández-Henríquez, and S. J. Déry
Hydrol. Earth Syst. Sci., 17, 1681–1691, https://doi.org/10.5194/hess-17-1681-2013, https://doi.org/10.5194/hess-17-1681-2013, 2013
M. Nied, Y. Hundecha, and B. Merz
Hydrol. Earth Syst. Sci., 17, 1401–1414, https://doi.org/10.5194/hess-17-1401-2013, https://doi.org/10.5194/hess-17-1401-2013, 2013
B. Gräler, M. J. van den Berg, S. Vandenberghe, A. Petroselli, S. Grimaldi, B. De Baets, and N. E. C. Verhoest
Hydrol. Earth Syst. Sci., 17, 1281–1296, https://doi.org/10.5194/hess-17-1281-2013, https://doi.org/10.5194/hess-17-1281-2013, 2013
Cited articles
Allen, R., Pereira, L., Raes, D., and Smith, M.: Crop evapotranspiration: guidelines for computing crop water requirements. FAO Irrigation and Drainage Paper 56, FAO, Rome, 300, D05109, 1998.
Angström, A.: Solar and terrestrial radiation, Q. J. Roy. Meteorol. Soc., 50, 121–126, 1924.
Arnold, J. G. and Fohrer, N.: SWAT2000: current capabilities and research opportunities in applied watershed modelling, Hydrol. Process., 19, 563–572, https://doi.org/10.1002/hyp.5611, 2005.
Arnold, J. G., Srinivasan, R., Muttiah, R. R., and Williams, J. R.: Large hydrologic modeling and assessment Part 1: Model development, J. Am. Water Resour. Assoc, 34, 73–89, https://doi.org/10.1111/j.1752-1688.1998.tb05961.x, 1998.
Arora, V. K.: The use of the aridity index to assess climate change effect on annual runoff, J. Hydrol., 265, 164–177, https://doi.org/10.1007/BF02873094, 2002.
Bai, J. and Xu, X.: Atmospheric hydrological budget with its effects over Tibetan plateau, J. Geograph. Sci., 14, 81–86, https://doi.org/10.1080/00385417.1961.10770761, 2004.
Budyko, M. I.: The Heat Balance of the Earth's Surface, Soviet Geograph., 2, 3–13, 1961.
Chiew, F., Teng, J., Vaze, J., and Kirono, D.: Influence of global climate model selection on runoff impact assessment, J. Hydrol., 379, 172–180, https://doi.org/10.1016/j.jhydrol.2009.10.004, 2009.
Cong, Z., Yang, D., Gao, B., Yang, H., and Hu, H.: Hydrological trend analysis in the Yellow River basin using a distributed hydrological model, Water Resour. Res., 45, 335–345, https://doi.org/10.1029/2008WR006852, 2009.
Fu, G., Charles, S. P., and Chiew, F. H. S.: A two-parameter climate elasticity of streamflow index to assess climate change effects on annual streamflow, Water Resour. Res., 43, W11419, https://doi.org/10.1029/2007WR005890, 2007.
Gardner, L. R.: Assessing the effect of climate change on mean annual runoff, J. Hydrol., 379, 351–359, https://doi.org/10.1016/j.jhydrol.2009.10.021, 2009.
Hou, A., Ni, G., Yang, H., and Lei, Z.: Numerical analysis on the contribution of urbanization to wind stilling: an example over the Greater Beijing Metropolitan area, J. Appl. Meteorol. Climatol., 52, 1105–1115, https://doi.org/10.1175/JAMC-D-12-013.1, 2013.
Jiang, T., Chen, Y. D., Xu, C. Y., Chen, X., Chen, X., and Singh, V. P.: Comparison of hydrological impacts of climate change simulated by six hydrological models in the Dongjiang Basin, South China, J. Hydrol., 336, 316–333, https://doi.org/10.1016/j.jhydrol.2007.01.010, 2007.
Kendall, M. G.: Rank correlation methods, Biometrika, 1948.
Kendall, M. G.: Rank Correlation Methods, Oxford University Press, Oxford, 1990.
Li, B., Chen, Y., Chen, Z., Li, W., and Zhang, B.: Variations of temperature and precipitation of snowmelt period and its effect on runoff in the mountainous areas of Northwest China, J. Geograph. Sci., 23, 17–30, https://doi.org/10.1007/s11442-013-0990-1, 2013.
Liu, X., Zhang, X.-J., Tang, Q., and Zhang, X.-Z.: Effects of surface wind speed decline on modeled hydrological conditions in China, Hydrol. Earth Syst. Sci., 18, 2803–2813, https://doi.org/10.5194/hess-18-2803-2014, 2014.
Ma, H., Yang, D., Tan, S. K., Gao, B., and Hu, Q.: Impact of climate variability and human activity on streamflow decrease in the Miyun Reservoir catchment, J. Hydrol., 389, 317–324, https://doi.org/10.1016/j.jhydrol.2010.06.010, 2010.
Ma, Z., Kang, S., Zhang, L., Tong, L., and Su, X.: Analysis of impacts of climate variability and human activity on streamflow for a river basin in arid region of Northwest China, J. Hydrol., 352, 239–249, https://doi.org/10.1016/j.jhydrol.2007.12.022, 2008.
Maidment, D. R.: Handbook of Hydrology, McGraw-Hill, New York, 224–227, 1993.
Mcvicar, T. R., Roderick, M. L., Donohue, R. J., and Van Niel, T. G.: Less bluster ahead? Ecohydrological implications of global trends of terrestrial near-surface wind speeds, Ecohydrology, 5, 381–388, https://doi.org/10.1002/eco.1298, 2012.
Mou, L., Tian, F., Hu, H., and Sivapalan, M.: Extension of the Representative Elementary Watershed approach for cold regions: constitutive relationships and an application, Hydrol. Earth Syst. Sci., 12, 565–585, https://doi.org/10.5194/hess-12-565-2008, 2008.
Penman, H. L.: Natural evaporation from open water, Bare Soil and Grass, Roy. Soc. Lnd. Proc., 193, 120–145, 1948.
Ren, G., Ding, Y., Zhao, Z., Zheng, J.,Wu, T., Tang, G. and Xu, Y.: Recent progress in studies of climate change in China, Adv Atmos Sci, 29, 958–977, https://doi.org/10.1007/s00376-012-1200-2, 2012.
Sankarasubramanian, A., Vogel, R. M., and Limbrunner, J. F.: Climate elasticity of streamflow in the United States, Water Resour. Res., 37, 1771–1781, https://doi.org/10.1029/2000WR900330, 2001.
Schaake, J. C.: From climate to flow, Climate change and US water resources., edited by: Waggoner, P. E., John Wiley, New York, 177–206, 1990.
Song, Y., Liu, Y., and Ding, Y.: A study of surface humidity changes in china during the recent 50 years, Acta Meteorologica Sinica, 26, 541–553, https://doi.org/10.1007/s13351-012-0501-9, 2012.
Sun, S., Chen, H., Ju, W., Song, J., Zhang, H., Sun, J., and Fang, Y.: Effects of climate change on annual streamflow using climate elasticity in Poyang Lake Basin, China, Theor. Appl. Climatol., 112, 169–183, https://doi.org/10.1007/s00704-012-0714-y, 2013.
Sun, Y., Tian, F., Yang, L., and Hu, H.: Exploring the spatial variability of contributions from climate variation and change in catchment properties to streamflow decrease in a mesoscale basin by three different methods, J. Hydrol., 508, 170–180, https://doi.org/10.1016/j.jhydrol.2013.11.004, 2014.
Tang, B., Tong, L., Kang, S., and Zhang, L.: Impacts of climate variability on reference evapotranspiration over 58 years in the Haihe river basin of north China, Agr. Water Manage., 98, 1660–1670, https://doi.org/10.1016/j.agwat.2011.06.006, 2011.
Tang, Q., Oki, T., Kanae, S., and Hu, H.: The influence of precipitation variability and partial irrigation within grid cells on a hydrological simulation, J. Hydrometeorol., 8, 499–512, 2007.
Tang, W.-J., Yang, K., Qin, J., Cheng, C. C. K., and He, J.: Solar radiation trend across China in recent decades: a revisit with quality-controlled data, Atmos. Chem. Phys., 11, 393–406, https://doi.org/10.5194/acp-11-393-2011, 2011.
Tang, Y., Tang, Q., Tian, F., Zhang, Z., and Liu, G.: Responses of natural runoff to recent climatic variations in the Yellow River basin, China, Hydrol. Earth Syst. Sci., 17, 4471–4480, https://doi.org/10.5194/hess-17-4471-2013, 2013.
Tian, F., Hu, H., Lei, Z., and Sivapalan, M.: Extension of the Representative Elementary Watershed approach for cold regions via explicit treatment of energy related processes, Hydrol. Earth Syst. Sci., 10, 619–644, https://doi.org/10.5194/hess-10-619-2006, 2006.
Vautard, R., Cattiaux, J., Yiou, P., Thepaut, J. and Ciais, P.: Northern Hemisphere atmospheric stilling partly attributed to an increase in surface roughness, Nat Geosci, 3, 756–761, https://doi.org/10.1038/ngeo979, 2010.
Vogel, R. M., Wilson, I., and Daly, C.: Regional regression models of annual streamflow for The United States, J. Irr. Drain. Eng., 125, 148–157, 1999.
Wang, Z., Shen, Y., and Song, L.: Hydrologic response of the climatic change based on SWAT Model in Beijiang River basin, Meteorol. Environ. Res., 8–12, 2013.
Xu, M., Chang, C., Fu, C., Qi, Y., Robock, A., Robinson, D., and Zhang, H.: Steady decline of east Asian monsoon winds, 1969–2000: evidence from direct ground measurements of wind speed, J. Geophys. Res., 111, https://doi.org/10.1029/2006JD007337, 2006.
Xu, X., Yang, H., Yang, D., and Ma, H.: Assessing the impacts of climate variability and human activities on annual runoff in the Luan River basin, China, Hydrol. Res., 44, 940–952, https://doi.org/10.2166/nh.2013.144, 2013.
Yang, D., Herath, S., and Musiake, K.: Development of geomorphology-based hydrological model for large catchments, Proc. Hydraul. Eng., 42, 169–174, 1998.
Yang, D., Herath, S., and Musiake, K.: Comparison of different distributed hydrological models for characterization of catchment spatial variability, Hydrol. Process., 14, 403–416, 2000.
Yang, D., Li, C., Hu, H., Lei, Z., Yang, S., Kusuda, T., Koike, T., and Musiake, K.: Analysis of water resources variability in the Yellow River of China during the last half century using historical data, Water Resour. Res., 40, 308–322, https://doi.org/10.1029/2003WR002763, 2004.
Yang, D., Sun, F., Liu, Z., Cong, Z., and Lei, Z.: Interpreting the complementary relationship in non-humid environments based on the Budyko and Penman hypotheses, Geophys. Res. Lett., 33, 122–140, https://doi.org/10.1029/2006GL027657, 2006.
Yang, H. and Yang, D.: Derivation of climate elasticity of runoff to assess the effects of climate change on annual runoff, Water Resour. Res., 47, 197–203, https://doi.org/10.1029/2010WR009287, 2011.
Yang, H., Yang, D., Lei, Z., and Sun, F.: New analytical derivation of the mean annual water/energy balance equation, Water Resour. Res., 44, 893–897, https://doi.org/10.1029/2007WR006135, 2008.
Yang, H., Qi, J., Xu, X., Yang, D., and Lv, H.: The regional variation in climate elasticity and climate contribution to runoff across China, J. Hydrol., 517, 607–616, https://doi.org/10.1016/j.jhydrol.2014.05.062, 2014a.
Yang, H., Yang, D., and Hu, Q.: An error analysis of the Budyko hypothesis for assessing the contribution of climate change to runoff, Water Resour. Res., 50, 9620–9629, https://doi.org/10.1002/2014WR015451, 2014b.
Yang, H., Yang, D., Hu, Q., and lv, H.: Spatial variability of the trends in climatic variables across China during 1961–2010, Theor. Appl. Climatol., 120, 773–783, https://doi.org/10.1007/s00704-014-1208-x, 2015.
Zhao, C., Tie, X., and Lin, Y.: Apossible positive feedback of reduction of precipitation and increase in aerosols over eastern central China, Geophys Res Lett, 33, L11814, https://doi.org/10.1029/2006GL025959, 2006.
Zheng, H., Zhang, L., Zhu, R., Liu, C., Sato, Y., and Fukushima, Y.: Responses of streamflow to climate and land surface change in the headwaters of the Yellow River Basin, Water Resour. Res., 45, W00A19, https://doi.org/10.1029/2007WR006665, 2009.
Short summary
The hydrologic processes have been influenced by different climatic factors. However, the dominant climatic factor driving annual runoff change is still unknown in many catchments in China. By using the climate elasticity method proposed by Yang and Yang (2011), the elasticity of runoff to climatic factors was estimated, and the dominant climatic factors driving annual runoff change were detected at catchment scale over China.
The hydrologic processes have been influenced by different climatic factors. However, the...