Articles | Volume 20, issue 5
https://doi.org/10.5194/hess-20-1751-2016
https://doi.org/10.5194/hess-20-1751-2016
Education and communication
 | 
09 May 2016
Education and communication |  | 09 May 2016

Making rainfall features fun: scientific activities for teaching children aged 5–12 years

Auguste Gires, Catherine L. Muller, Marie-Agathe le Gueut, and Daniel Schertzer

Related authors

Part 1: Multifractal analysis of wind turbine power and the associated biases
Jerry Jose, Auguste Gires, Yelva Roustan, Ernani Schnorenberger, Ioulia Tchiguirinskaia, and Daniel Schertzer
Nonlin. Processes Geophys. Discuss., https://doi.org/10.5194/npg-2024-5,https://doi.org/10.5194/npg-2024-5, 2024
Revised manuscript accepted for NPG
Short summary
Part 2: Joint multifractal analysis of available wind power and rain intensity from an operational wind farm
Jerry Jose, Auguste Gires, Ernani Schnorenberger, Yelva Roustan, Daniel Schertzer, and Ioulia Tchiguirinskaia
Nonlin. Processes Geophys. Discuss., https://doi.org/10.5194/npg-2024-6,https://doi.org/10.5194/npg-2024-6, 2024
Revised manuscript accepted for NPG
Short summary
3D trajectories and velocities of rainfall drops in a multifractal turbulent wind field
Auguste Gires, Ioulia Tchiguirinskaia, and Daniel Schertzer
Atmos. Meas. Tech., 15, 5861–5875, https://doi.org/10.5194/amt-15-5861-2022,https://doi.org/10.5194/amt-15-5861-2022, 2022
Short summary
Combined high-resolution rainfall and wind data collected for 3 months on a wind farm 110 km southeast of Paris (France)
Auguste Gires, Jerry Jose, Ioulia Tchiguirinskaia, and Daniel Schertzer
Earth Syst. Sci. Data, 14, 3807–3819, https://doi.org/10.5194/essd-14-3807-2022,https://doi.org/10.5194/essd-14-3807-2022, 2022
Short summary
Measurements of the water balance components of a large green roof in the greater Paris area
Pierre-Antoine Versini, Filip Stanic, Auguste Gires, Daniel Schertzer, and Ioulia Tchiguirinskaia
Earth Syst. Sci. Data, 12, 1025–1035, https://doi.org/10.5194/essd-12-1025-2020,https://doi.org/10.5194/essd-12-1025-2020, 2020
Short summary

Related subject area

Subject: Hydrometeorology | Techniques and Approaches: Instruments and observation techniques
Technical note: A guide to using three open-source quality control algorithms for rainfall data from personal weather stations
Abbas El Hachem, Jochen Seidel, Tess O'Hara, Roberto Villalobos Herrera, Aart Overeem, Remko Uijlenhoet, András Bárdossy, and Lotte de Vos
Hydrol. Earth Syst. Sci., 28, 4715–4731, https://doi.org/10.5194/hess-28-4715-2024,https://doi.org/10.5194/hess-28-4715-2024, 2024
Short summary
Technical note: Investigating the potential for smartphone-based monitoring of evapotranspiration and land surface energy-balance partitioning
Adriaan J. Teuling, Belle Holthuis, and Jasper F. D. Lammers
Hydrol. Earth Syst. Sci., 28, 3799–3806, https://doi.org/10.5194/hess-28-3799-2024,https://doi.org/10.5194/hess-28-3799-2024, 2024
Short summary
Exploring patterns in precipitation intensity–duration–area–frequency relationships using weather radar data
Talia Rosin, Francesco Marra, and Efrat Morin
Hydrol. Earth Syst. Sci., 28, 3549–3566, https://doi.org/10.5194/hess-28-3549-2024,https://doi.org/10.5194/hess-28-3549-2024, 2024
Short summary
Technical Note: A simple feedforward artificial neural network for high temporal resolution classification of wet and dry periods using signal attenuation from commercial microwave links
Erlend Øydvin, Maximilian Graf, Christian Chwala, Mareile Astrid Wolff, Nils-Otto Kitterød, and Vegard Nilsen
EGUsphere, https://doi.org/10.5194/egusphere-2024-647,https://doi.org/10.5194/egusphere-2024-647, 2024
Short summary
An intercomparison of four gridded precipitation products over Europe using the three-cornered-hat method
Llorenç Lledó, Thomas Haiden, and Matthieu Chevallier
EGUsphere, https://doi.org/10.5194/egusphere-2024-807,https://doi.org/10.5194/egusphere-2024-807, 2024
Short summary

Cited articles

Alrutz, M.: Granting science a dramatic licence: exploring a 4th grade science classroom and the possibilities for integrating drama, Teach. Artist J., 2, 31–39, 2004.
Bennett, J. and Hogarth, S.: Would you want to talk to a scientist at a party? High school students' attitudes to school science and to science, Int. J. Sci. Educ., 31, 1975–1998, 2009.
Bocci, F.: Whether or not to run in the rain, Eur. J. Phys., 33, 1321–1332, 2012.
Broemmel, A. D. and Rearden, K. T.: Should teachers use the teachers' choice books in science classes?, Reading Teach., 60, 254–265, https://doi.org/10.1598/RT.60.3.5, 2006.
Buncick, M. C., Betts, P. G., and Horgan, D. D.: Using demonstrations as a contextual road map: enhancing course continuity and promoting active engagement in introductory college physics, Int. J. Sci. Educ., 23, 1237–1255, 2001.
Download
Short summary
Educational activities are now a common channel to increase impact of research projects. Here, we present innovative activities for young children that aim to help them (and their teachers) grasp some of the complex underlying scientific issues in environmental fields. The activities developed are focused on rainfall: observation and modeling of rain drop size and the succession of dry and rainy days, and writing of a scientific book. All activities were implemented in classrooms.