Articles | Volume 19, issue 2
https://doi.org/10.5194/hess-19-657-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/hess-19-657-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Drivers of spatial and temporal variability of streamflow in the Incomati River basin
A. M. L. Saraiva Okello
CORRESPONDING AUTHOR
UNESCO-IHE, Institute for Water Education, P.O. Box 3015, 2601 DA Delft, the Netherlands
Centre for Water Resources Research, School of Agriculture, Earth and Environmental Science, University of KwaZulu-Natal, Private Bag X01, Scottsville, 3209, South Africa
I. Masih
UNESCO-IHE, Institute for Water Education, P.O. Box 3015, 2601 DA Delft, the Netherlands
S. Uhlenbrook
UNESCO-IHE, Institute for Water Education, P.O. Box 3015, 2601 DA Delft, the Netherlands
Delft University of Technology, Department of Water Resources, P.O. Box 5048, 2600 GA Delft, the Netherlands
G. P. W. Jewitt
Centre for Water Resources Research, School of Agriculture, Earth and Environmental Science, University of KwaZulu-Natal, Private Bag X01, Scottsville, 3209, South Africa
P. van der Zaag
UNESCO-IHE, Institute for Water Education, P.O. Box 3015, 2601 DA Delft, the Netherlands
Delft University of Technology, Department of Water Resources, P.O. Box 5048, 2600 GA Delft, the Netherlands
E. Riddell
Centre for Water Resources Research, School of Agriculture, Earth and Environmental Science, University of KwaZulu-Natal, Private Bag X01, Scottsville, 3209, South Africa
Related authors
V. V. Camacho Suarez, A. M. L. Saraiva Okello, J. W. Wenninger, and S. Uhlenbrook
Hydrol. Earth Syst. Sci., 19, 4183–4199, https://doi.org/10.5194/hess-19-4183-2015, https://doi.org/10.5194/hess-19-4183-2015, 2015
Short summary
Short summary
Isotope and hydrochemical tracers are tested providing new insights to isotope hydrograph in semi-arid areas in southern Africa. This study provides a spatial hydrochemical characterization of surface and groundwater sources, end member mixing analysis, and two- and three-component hydrograph separations. Results showed that the Kaap catchment is mainly dominated by groundwater sources, and direct runoff is positively correlated with the Antecedent Precipitation Index during the wet season.
Anjana Ekka, Yong Jiang, Saket Pande, and Pieter van der Zaag
Hydrol. Earth Syst. Sci., 28, 3219–3241, https://doi.org/10.5194/hess-28-3219-2024, https://doi.org/10.5194/hess-28-3219-2024, 2024
Short summary
Short summary
For the first time, we analyse the economic and ecological performance of existing multiple big reservoirs on a daily timescale for a major river basin (upper Cauvery) in India, where pre-intervention data were not available but where there are increasing calls for such assessments. Results show that smaller reservoirs on smaller streams that maximize the economic value of stored water are better for the basin economy and the environment. The approach can help to prioritize dam removals.
Bich Ngoc Tran, Johannes van der Kwast, Solomon Seyoum, Remko Uijlenhoet, Graham Jewitt, and Marloes Mul
Hydrol. Earth Syst. Sci., 27, 4505–4528, https://doi.org/10.5194/hess-27-4505-2023, https://doi.org/10.5194/hess-27-4505-2023, 2023
Short summary
Short summary
Satellite data are increasingly used to estimate evapotranspiration (ET) or the amount of water moving from plants, soils, and water bodies into the atmosphere over large areas. Uncertainties from various sources affect the accuracy of these calculations. This study reviews the methods to assess the uncertainties of such ET estimations. It provides specific recommendations for a comprehensive assessment that assists in the potential uses of these data for research, monitoring, and management.
Claire I. Michailovsky, Bert Coerver, Marloes Mul, and Graham Jewitt
Hydrol. Earth Syst. Sci., 27, 4335–4354, https://doi.org/10.5194/hess-27-4335-2023, https://doi.org/10.5194/hess-27-4335-2023, 2023
Short summary
Short summary
Many remote sensing products for precipitation, evapotranspiration, and water storage variations exist. However, when these are used with in situ runoff data in water balance closure studies, no single combination of products consistently outperforms others. We analyzed the water balance closure using different products in catchments worldwide and related the results to catchment characteristics. Our results can help identify the dataset combinations best suited for use in different catchments.
Afua Owusu, Jazmin Zatarain Salazar, Marloes Mul, Pieter van der Zaag, and Jill Slinger
Hydrol. Earth Syst. Sci., 27, 2001–2017, https://doi.org/10.5194/hess-27-2001-2023, https://doi.org/10.5194/hess-27-2001-2023, 2023
Short summary
Short summary
The construction of two dams in the Lower Volta River, Ghana, adversely affected downstream riverine ecosystems and communities. In contrast, Ghana has enjoyed vast economic benefits from the dams. Herein lies the challenge; there exists a trade-off between water for river ecosystems and water for anthropogenic water demands such hydropower. In this study, we quantify these trade-offs and show that there is room for providing environmental flows under current and future climatic conditions.
Anjana Ekka, Yong Jiang, Saket Pande, and Pieter van der Zaag
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2023-10, https://doi.org/10.5194/hess-2023-10, 2023
Manuscript not accepted for further review
Short summary
Short summary
The present study offers a hydro-economic method for evaluating the effects of multiple of dams on river ecosystem services under various scenarios of spatially placed reservoirs. Tradeoff analysis between agricultural production and fish species richness is used to examine the economic and environmental feasibility of multiple dams at basin scale. Smaller reservoirs on basin tributaries maximize the value of stored water while benefiting both the economy and the environment.
Abebe D. Chukalla, Marloes L. Mul, Pieter van der Zaag, Gerardo van Halsema, Evaristo Mubaya, Esperança Muchanga, Nadja den Besten, and Poolad Karimi
Hydrol. Earth Syst. Sci., 26, 2759–2778, https://doi.org/10.5194/hess-26-2759-2022, https://doi.org/10.5194/hess-26-2759-2022, 2022
Short summary
Short summary
New techniques to monitor the performance of irrigation schemes are vital to improve land and water productivity. We developed a framework and applied the remotely sensed FAO WaPOR dataset to assess uniformity, equity, adequacy, and land and water productivity at the Xinavane sugarcane estate, segmented by three irrigation methods. The developed performance assessment framework and the Python script in Jupyter Notebooks can aid in such irrigation performance analysis in other regions.
Jonatan Godinez Madrigal, Nora Van Cauwenbergh, Jaime Hoogesteger, Pamela Claure Gutierrez, and Pieter van der
Zaag
Hydrol. Earth Syst. Sci., 26, 885–902, https://doi.org/10.5194/hess-26-885-2022, https://doi.org/10.5194/hess-26-885-2022, 2022
Short summary
Short summary
Urban water systems are facing an increasing pressure on their water resources to guarantee safe and sufficient water access. Water managers often use tried and tested strategies like large supply augmentation infrastructure to address water problems. However, these projects do not address key problems and cause water conflicts. We conducted transdisciplinary research to show how water conflicts can change the development pathway of urban water systems by implementing alternative solutions.
Jonatan Godinez-Madrigal, Nora Van Cauwenbergh, and Pieter van der Zaag
Hydrol. Earth Syst. Sci., 24, 4903–4921, https://doi.org/10.5194/hess-24-4903-2020, https://doi.org/10.5194/hess-24-4903-2020, 2020
Short summary
Short summary
Our research studies whether science depoliticizes water conflicts or instead conflicts politicize science–policy processes. We analyze a water conflict due to the development of large infrastructure. We interviewed key actors in the conflict and replicated the results of water resources models developed to solve the conflict. We found that knowledge produced in isolation has no positive effect in transforming the conflict; instead, its potential could be enhanced if produced collaboratively.
Dirk-Jan D. Kok, Saket Pande, Jules B. van Lier, Angela R. C. Ortigara, Hubert Savenije, and Stefan Uhlenbrook
Hydrol. Earth Syst. Sci., 22, 5781–5799, https://doi.org/10.5194/hess-22-5781-2018, https://doi.org/10.5194/hess-22-5781-2018, 2018
Short summary
Short summary
Phosphorus (P) is important to global food security. Thus it is concerning that natural P reserves are predicted to deplete within the century. Here we explore the potential of P recovery from wastewater (WW) at global scale. We identify high production and demand sites to determine optimal market prices and trade flows. We show that 20 % of the agricultural demand can be met, yet only 4 % can be met economically. Nonetheless, this recovery stimulates circular economic development in WW treatment.
Jonatan Godinez Madrigal, Pieter van der Zaag, and Nora van Cauwenbergh
Proc. IAHS, 376, 57–62, https://doi.org/10.5194/piahs-376-57-2018, https://doi.org/10.5194/piahs-376-57-2018, 2018
Short summary
Short summary
A part of the population of Mexico is undergoing severe water crises vis-a-vis with the quantity and quality of water. The water authority's strategy dwells solely in infrastructure development to tackle the symptoms, not the causes. The paper summarizes how the causes of crises lie not in the lack of infrastructure but in a deficient management and governance. I did the research because I'd to influence on policy, and I did it through fieldwork and critical literature review.
Dirk-Jan Daniel Kok, Saket Pande, Angela Renata Cordeiro Ortigara, Hubert Savenije, and Stefan Uhlenbrook
Proc. IAHS, 376, 83–86, https://doi.org/10.5194/piahs-376-83-2018, https://doi.org/10.5194/piahs-376-83-2018, 2018
Short summary
Short summary
Phosphorus is necessary for the development of crops and is therefore essential in safeguarding our food security. Several studies predict that our rock phosphate reserves, used to create synthetic, phosphatic fertilizers, may become depleted within this century. This study roughly approximates for which areas in Africa we can instead recover phosphorus from wastewater in order to reduce our dependancy on unsustainable rock phosphate.
Barry Croke and Graham Jewitt
Proc. IAHS, 376, 1–1, https://doi.org/10.5194/piahs-376-1-2018, https://doi.org/10.5194/piahs-376-1-2018, 2018
Michael S. Aduah, Graham P. W. Jewitt, and Michele L. W. Toucher
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2017-591, https://doi.org/10.5194/hess-2017-591, 2017
Preprint withdrawn
Short summary
Short summary
The study provides a first stage contextualized estimation of the potential impacts of combined land use and climate changes on the rainforest part of the West African region, using a representative study area in south western Ghana. The study shows clearly that if the rainfall reduce drastically, changes in streamflow will be controlled by land use changes, but if rainfall increases, streamflows will be controlled by climate. Data and adaptive catchment management is needed for the region.
Khalid Hassaballah, Yasir Mohamed, Stefan Uhlenbrook, and Khalid Biro
Hydrol. Earth Syst. Sci., 21, 5217–5242, https://doi.org/10.5194/hess-21-5217-2017, https://doi.org/10.5194/hess-21-5217-2017, 2017
Short summary
Short summary
The Dinder and Rahad experienced significant hydrological changes in recent years. Some claim that this is due to land use & land cover change (LULCC). Specific studies on LULCC in the Dinder and Rahad basins are still missing. This paper aims to understand the LULCC in the Dinder and Rahad and its implications on streamflow using satellite data and hydrological modelling. We expect that this study will be of high importance for decision making related to water resource planning and management.
Tesfay G. Gebremicael, Yasir A. Mohamed, Pieter van der Zaag, Amdom G. Berhe, Gebremedhin G. Haile, Eyasu Y. Hagos, and Mulubrhan K. Hagos
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2017-504, https://doi.org/10.5194/hess-2017-504, 2017
Manuscript not accepted for further review
Short summary
Short summary
Eight satellite-based rainfall products were evaluated using a comprehensive approach against rain gauge networks over the complex topography of the upper Tekeze-Atbara tributary of the Nile basin. Results showed that CHIRPS, TRMM, and RFEv2 performed well and were able to capture the ground rainfall compared to the remaining five products. Unlike in temporal scale, the performance of the products did not show a uniform pattern with respect to spatial scale.
Jean N. Namugize, Graham P. W. Jewitt, David Clark, and Johan Strömqvist
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2017-365, https://doi.org/10.5194/hess-2017-365, 2017
Revised manuscript has not been submitted
Short summary
Short summary
The research study on testing the capability of HYPE model to simulate streamflow, nitrogen and phosphorus was motivated by the inclusion of in-stream processes of transport and dynamics of nutrients in the routing functions of the model. Results indicate that high streamflow events were represented well, with a general over-simulation of low flows. These findings are consistent with observations of spatial and seasonal distribution of nutrients in the catchment.
Tesfay G. Gebremicael, Yasir A. Mohamed, Pieter v. Zaag, and Eyasu Y. Hagos
Hydrol. Earth Syst. Sci., 21, 2127–2142, https://doi.org/10.5194/hess-21-2127-2017, https://doi.org/10.5194/hess-21-2127-2017, 2017
Short summary
Short summary
This study was conducted to understand the spatio-temporal variations of streamflow in the Tekezē basin. Results showed rainfall over the basin did not significantly change. However, streamflow experienced high variabilities at seasonal and annual scales. Further studies are needed to verify hydrological changes by identifying the physical mechanisms behind those changes. Findings are useful as prerequisite for studying the effects of catchment management dynamics on the hydrological processes.
Ali D. Abdullah, Jacqueline I. A. Gisen, Pieter van der Zaag, Hubert H. G. Savenije, Usama F. A. Karim, Ilyas Masih, and Ioana Popescu
Hydrol. Earth Syst. Sci., 20, 4031–4042, https://doi.org/10.5194/hess-20-4031-2016, https://doi.org/10.5194/hess-20-4031-2016, 2016
Short summary
Short summary
A comprehensive and detailed data set of the salinity distribution over an entire year in a complex and dynamic (because heavily utilized and modified) deltaic river system was thoroughly analysed, and formed the basis for a validated analytical model that can predict the extent of seawater among other salinity sources in an estuary. The procedure can be applied to other estuaries.
Khalid Hassaballah, Yasir Mohamed, and Stefan Uhlenbrook
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2016-407, https://doi.org/10.5194/hess-2016-407, 2016
Manuscript not accepted for further review
Short summary
Short summary
In this research, we investigated the hydro-climatology of the Dinder and Rahad Rivers (tributaries of the Blue Nile, Sudan/Ethiopia), and its implications on wetlands ecosystems of the Dinder National Park (DNP) in Sudan. Rahad annual flow shows significant increasing trend. Dinder River shows decreasing trends in August maxima. The alterations in the Dinder river flow are likely affect the ecosystems of the DNP negatively, especially for species that depend on the seasonal flow patterns.
V. V. Camacho Suarez, A. M. L. Saraiva Okello, J. W. Wenninger, and S. Uhlenbrook
Hydrol. Earth Syst. Sci., 19, 4183–4199, https://doi.org/10.5194/hess-19-4183-2015, https://doi.org/10.5194/hess-19-4183-2015, 2015
Short summary
Short summary
Isotope and hydrochemical tracers are tested providing new insights to isotope hydrograph in semi-arid areas in southern Africa. This study provides a spatial hydrochemical characterization of surface and groundwater sources, end member mixing analysis, and two- and three-component hydrograph separations. Results showed that the Kaap catchment is mainly dominated by groundwater sources, and direct runoff is positively correlated with the Antecedent Precipitation Index during the wet season.
E. Teferi, S. Uhlenbrook, and W. Bewket
Earth Syst. Dynam., 6, 617–636, https://doi.org/10.5194/esd-6-617-2015, https://doi.org/10.5194/esd-6-617-2015, 2015
Short summary
Short summary
This study concludes that integrated analysis of course and fine-scale, inter-annual and intra-annual trends enables a more robust identification of changes in vegetation condition. Seasonal trend analysis was found to be very useful in identifying changes in vegetation condition that could be masked if only inter-annual vegetation trend analysis were performed. The finer-scale intra-annual trend analysis revealed trends that were more linked to human activities.
A. D. Clulow, C. S. Everson, M. G. Mengistu, J. S. Price, A. Nickless, and G. P. W. Jewitt
Hydrol. Earth Syst. Sci., 19, 2513–2534, https://doi.org/10.5194/hess-19-2513-2015, https://doi.org/10.5194/hess-19-2513-2015, 2015
Short summary
Short summary
The 3rd paper in a series dealing with evaporation over indigenous vegetation in an area of South Africa experiencing severe water challenges. The area is a World Heritage site and an important conservation area in which our understanding of the water balance plays a crucial role in system management.
We provide the fist estimates of total evaporation from a subtropical peat swamp forest, investigate measurement techniques and provide modelling solutions to estimate long-term evaporation.
P. Trambauer, M. Werner, H. C. Winsemius, S. Maskey, E. Dutra, and S. Uhlenbrook
Hydrol. Earth Syst. Sci., 19, 1695–1711, https://doi.org/10.5194/hess-19-1695-2015, https://doi.org/10.5194/hess-19-1695-2015, 2015
F. E. F. Mussá, Y. Zhou, S. Maskey, I. Masih, and S. Uhlenbrook
Hydrol. Earth Syst. Sci., 19, 1093–1106, https://doi.org/10.5194/hess-19-1093-2015, https://doi.org/10.5194/hess-19-1093-2015, 2015
O. Munyaneza, A. Mukubwa, S. Maskey, S. Uhlenbrook, and J. Wenninger
Hydrol. Earth Syst. Sci., 18, 5289–5301, https://doi.org/10.5194/hess-18-5289-2014, https://doi.org/10.5194/hess-18-5289-2014, 2014
F. F. Worku, M. Werner, N. Wright, P. van der Zaag, and S. S. Demissie
Hydrol. Earth Syst. Sci., 18, 3837–3853, https://doi.org/10.5194/hess-18-3837-2014, https://doi.org/10.5194/hess-18-3837-2014, 2014
I. Masih, S. Maskey, F. E. F. Mussá, and P. Trambauer
Hydrol. Earth Syst. Sci., 18, 3635–3649, https://doi.org/10.5194/hess-18-3635-2014, https://doi.org/10.5194/hess-18-3635-2014, 2014
H. Calderon and S. Uhlenbrook
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hessd-11-9759-2014, https://doi.org/10.5194/hessd-11-9759-2014, 2014
Revised manuscript has not been submitted
P. Trambauer, S. Maskey, M. Werner, F. Pappenberger, L. P. H. van Beek, and S. Uhlenbrook
Hydrol. Earth Syst. Sci., 18, 2925–2942, https://doi.org/10.5194/hess-18-2925-2014, https://doi.org/10.5194/hess-18-2925-2014, 2014
S. Tekleab, J. Wenninger, and S. Uhlenbrook
Hydrol. Earth Syst. Sci., 18, 2415–2431, https://doi.org/10.5194/hess-18-2415-2014, https://doi.org/10.5194/hess-18-2415-2014, 2014
J. K. Kiptala, M. L. Mul, Y. A. Mohamed, and P. van der Zaag
Hydrol. Earth Syst. Sci., 18, 2287–2303, https://doi.org/10.5194/hess-18-2287-2014, https://doi.org/10.5194/hess-18-2287-2014, 2014
P. M. Nyenje, L. M. G. Meijer, J. W. Foppen, R. Kulabako, and S. Uhlenbrook
Hydrol. Earth Syst. Sci., 18, 1009–1025, https://doi.org/10.5194/hess-18-1009-2014, https://doi.org/10.5194/hess-18-1009-2014, 2014
H. H. G. Savenije, A. Y. Hoekstra, and P. van der Zaag
Hydrol. Earth Syst. Sci., 18, 319–332, https://doi.org/10.5194/hess-18-319-2014, https://doi.org/10.5194/hess-18-319-2014, 2014
P. Trambauer, E. Dutra, S. Maskey, M. Werner, F. Pappenberger, L. P. H. van Beek, and S. Uhlenbrook
Hydrol. Earth Syst. Sci., 18, 193–212, https://doi.org/10.5194/hess-18-193-2014, https://doi.org/10.5194/hess-18-193-2014, 2014
M. B. Mabrouk, A. Jonoski, D. Solomatine, and S. Uhlenbrook
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hessd-10-10873-2013, https://doi.org/10.5194/hessd-10-10873-2013, 2013
Revised manuscript not accepted
Y. Hu, S. Maskey, and S. Uhlenbrook
Hydrol. Earth Syst. Sci., 17, 2501–2514, https://doi.org/10.5194/hess-17-2501-2013, https://doi.org/10.5194/hess-17-2501-2013, 2013
Y. Zhou, J. Wenninger, Z. Yang, L. Yin, J. Huang, L. Hou, X. Wang, D. Zhang, and S. Uhlenbrook
Hydrol. Earth Syst. Sci., 17, 2435–2447, https://doi.org/10.5194/hess-17-2435-2013, https://doi.org/10.5194/hess-17-2435-2013, 2013
A. D. Clulow, C. S. Everson, J. S. Price, G. P. W. Jewitt, and B. C. Scott-Shaw
Hydrol. Earth Syst. Sci., 17, 2053–2067, https://doi.org/10.5194/hess-17-2053-2013, https://doi.org/10.5194/hess-17-2053-2013, 2013
T. Euser, H. C. Winsemius, M. Hrachowitz, F. Fenicia, S. Uhlenbrook, and H. H. G. Savenije
Hydrol. Earth Syst. Sci., 17, 1893–1912, https://doi.org/10.5194/hess-17-1893-2013, https://doi.org/10.5194/hess-17-1893-2013, 2013
H. H. Bulcock and G. P. W. Jewitt
Hydrol. Earth Syst. Sci., 16, 4693–4705, https://doi.org/10.5194/hess-16-4693-2012, https://doi.org/10.5194/hess-16-4693-2012, 2012
Related subject area
Subject: Water Resources Management | Techniques and Approaches: Instruments and observation techniques
Phosphorus supply and floodplain design govern phosphorus reduction capacity in remediated agricultural streams
Transpiration rates from mature Eucalyptus grandis × E. nitens clonal hybrid and Pinus elliottii plantations near the Two Streams Research Catchment, South Africa
Phenophase-based comparison of field observations to satellite-based actual evaporation estimates of a natural woodland: miombo woodland, southern Africa
Patterns and drivers of water quality changes associated with dams in the Tropical Andes
δ13C, CO2 ∕ 3He and 3He ∕ 4He ratios reveal the presence of mantle gas in the CO2-rich groundwaters of the Ardennes massif (Spa, Belgium)
Advances in the hydraulic interpretation of water wells using flowmeter logs
Continuous monitoring of a soil aquifer treatment system's physico-chemical conditions to optimize operational performance
Building a methodological framework and toolkit for news media dataset tracking of conflict and cooperation dynamics on transboundary rivers
Investigating the environmental response to water harvesting structures: a field study in Tanzania
The importance of city trees for reducing net rainfall: comparing measurements and simulations
Small-scale characterization of vine plant root water uptake via 3-D electrical resistivity tomography and mise-à-la-masse method
Hydrogeological controls on spatial patterns of groundwater discharge in peatlands
Monitoring surface water quality using social media in the context of citizen science
Using crowdsourced web content for informing water systems operations in snow-dominated catchments
Learning about water resource sharing through game play
High-resolution monitoring of nutrients in groundwater and surface waters: process understanding, quantification of loads and concentrations, and management applications
Contrasting watershed-scale trends in runoff and sediment yield complicate rangeland water resources planning
The use of semi-structured interviews for the characterisation of farmer irrigation practices
High-frequency monitoring of water fluxes and nutrient loads to assess the effects of controlled drainage on water storage and nutrient transport
Investigating suspended sediment dynamics in contrasting agricultural catchments using ex situ turbidity-based suspended sediment monitoring
Vulnerability of groundwater resources to interaction with river water in a boreal catchment
Using high-resolution phosphorus data to investigate mitigation measures in headwater river catchments
Comparison of sampling methodologies for nutrient monitoring in streams: uncertainties, costs and implications for mitigation
Geophysical methods to support correct water sampling locations for salt dilution gauging
Water management simulation games and the construction of knowledge
Tracing the spatial propagation of river inlet water into an agricultural polder area using anthropogenic gadolinium
Transboundary geophysical mapping of geological elements and salinity distribution critical for the assessment of future sea water intrusion in response to sea level rise
Potentials and limits of urban rainwater harvesting in the Middle East
Hydrologic feasibility of artificial forestation in the semi-arid Loess Plateau of China
Hydraulic analysis of river training cross-vanes as part of post-restoration monitoring
Modern comprehensive approach to monitor the morphodynamic evolution of a restored river corridor
The effect of physical water quality and water level changes on the occurrence and density of Anopheles mosquito larvae around the shoreline of the Koka reservoir, central Ethiopia
Space-time variability of hydrological drought and wetness in Iran using NCEP/NCAR and GPCC datasets
Relative impacts of key drivers on the response of the water table to a major alley farming experiment
Lukas Hallberg, Faruk Djodjic, and Magdalena Bieroza
Hydrol. Earth Syst. Sci., 28, 341–355, https://doi.org/10.5194/hess-28-341-2024, https://doi.org/10.5194/hess-28-341-2024, 2024
Short summary
Short summary
Floodplains can be constructed along agricultural streams with the purpose of increasing water residence time, thereby reducing instream erosion and intercepting nutrient export. In this paper we show how this remediation measure can reduce phosphorus concentrations by up to 30 % through optimized floodplain designs and placement. These reductions were primarily facilitated by protection against erosion rather than by the promotion of deposition on floodplains.
Nkosinathi David Kaptein, Colin S. Everson, Alistair David Clulow, Michele Lynn Toucher, and Ilaria Germishuizen
Hydrol. Earth Syst. Sci., 27, 4467–4484, https://doi.org/10.5194/hess-27-4467-2023, https://doi.org/10.5194/hess-27-4467-2023, 2023
Short summary
Short summary
Water-use studies comparing pine and Eucalyptus are limited. This study used internationally recognized methods to measure water use by Eucalyptus and pine over two seasons. Results showed that, over one season, pine used more water than Eucalyptus, which was contrary to previous long-term studies. However, the Eucalyptus site was found to be water stressed. This study concluded that the observed water stress and reduced transpiration rates must be included in hydrological models.
Henry Zimba, Miriam Coenders-Gerrits, Kawawa Banda, Bart Schilperoort, Nick van de Giesen, Imasiku Nyambe, and Hubert H. G. Savenije
Hydrol. Earth Syst. Sci., 27, 1695–1722, https://doi.org/10.5194/hess-27-1695-2023, https://doi.org/10.5194/hess-27-1695-2023, 2023
Short summary
Short summary
Miombo woodland plants continue to lose water even during the driest part of the year. This appears to be facilitated by the adapted features such as deep rooting (beyond 5 m) with access to deep soil moisture, potentially even ground water. It appears the trend and amount of water that the plants lose is correlated more to the available energy. This loss of water in the dry season by miombo woodland plants appears to be incorrectly captured by satellite-based evaporation estimates.
R. Scott Winton, Silvia López-Casas, Daniel Valencia-Rodríguez, Camilo Bernal-Forero, Juliana Delgado, Bernhard Wehrli, and Luz Jiménez-Segura
Hydrol. Earth Syst. Sci., 27, 1493–1505, https://doi.org/10.5194/hess-27-1493-2023, https://doi.org/10.5194/hess-27-1493-2023, 2023
Short summary
Short summary
Dams are an important and rapidly growing means of energy generation in the Tropical Andes of South America. To assess the impacts of dams in the region, we assessed differences in the upstream and downstream water quality of all hydropower dams in Colombia. We found evidence of substantial dam-induced changes in water temperature, dissolved oxygen concentration and suspended sediments. Dam-induced changes in Colombian waters violate regulations and are likely impacting aquatic life.
Agathe Defourny, Pierre-Henri Blard, Laurent Zimmermann, Patrick Jobé, Arnaud Collignon, Frédéric Nguyen, and Alain Dassargues
Hydrol. Earth Syst. Sci., 26, 2637–2648, https://doi.org/10.5194/hess-26-2637-2022, https://doi.org/10.5194/hess-26-2637-2022, 2022
Short summary
Short summary
The Belgian city of Spa is known worldwide for its ferruginous and naturally sparkling groundwater springs that gave their name to the bathing tradition commonly called
spa. However, the origin of the dissolved CO2 they contain was still a matter of debate. Thanks to new analysis on groundwater samples, particularly carbon and helium isotopes together with dissolved gases, this study has demonstrated that the volcanic origin of the CO2 is presumably from the neighboring Eifel volcanic fields.
Jesús Díaz-Curiel, Bárbara Biosca, Lucía Arévalo-Lomas, María Jesús Miguel, and Natalia Caparrini
Hydrol. Earth Syst. Sci., 26, 2617–2636, https://doi.org/10.5194/hess-26-2617-2022, https://doi.org/10.5194/hess-26-2617-2022, 2022
Short summary
Short summary
A methodology is developed for a new hydraulic characterization of continental hydrological basins. For this purpose, the division of wells into flow stretches with different hydraulic behaviour is made according to the results of the flowmeter, supposing that the hypothesis hydraulic heads of the deepest flow stretches of the well do not necessarily match the head shown by the overall well.
Tuvia Turkeltaub, Alex Furman, Ron Mannheim, and Noam Weisbrod
Hydrol. Earth Syst. Sci., 26, 1565–1578, https://doi.org/10.5194/hess-26-1565-2022, https://doi.org/10.5194/hess-26-1565-2022, 2022
Short summary
Short summary
The quality control and optimization of soil aquifer treatment (SAT) performance is challenging due to the multiple factors and costs involved. We installed in situ subsurface monitoring sensors that provided continuous high-resolution monitoring of the biochemical and physical conditions of an active SAT system. Data analysis facilitated the determination of the optimal drying and wetting stages, which are critical for suitable SAT management.
Liying Guo, Jing Wei, Keer Zhang, Jiale Wang, and Fuqiang Tian
Hydrol. Earth Syst. Sci., 26, 1165–1185, https://doi.org/10.5194/hess-26-1165-2022, https://doi.org/10.5194/hess-26-1165-2022, 2022
Short summary
Short summary
Data support is crucial for the research of conflict and cooperation on transboundary rivers. Conventional, manual constructions of datasets cannot meet the requirements for fast updates in the big data era. This study brings up a revised methodological framework, based on the conventional method, and a toolkit for the news media dataset tracking of conflict and cooperation dynamics on transboundary rivers. A dataset with good tradeoffs between data relevance and coverage is generated.
Jessica A. Eisma and Venkatesh M. Merwade
Hydrol. Earth Syst. Sci., 24, 1891–1906, https://doi.org/10.5194/hess-24-1891-2020, https://doi.org/10.5194/hess-24-1891-2020, 2020
Short summary
Short summary
Sand dams capture and store water for use during the dry season in rural communities. A year long field study of three sand dams in Tanzania showed that sand dams are not a suitable habitat for aquatic insects. They capture plenty of water, but most is evaporated during the first few months of the dry season. Sand dams positively impact vegetation and minimally impact erosion. Community water security can be increased by sand dams, but site characteristics and construction are important factors.
Vincent Smets, Charlotte Wirion, Willy Bauwens, Martin Hermy, Ben Somers, and Boud Verbeiren
Hydrol. Earth Syst. Sci., 23, 3865–3884, https://doi.org/10.5194/hess-23-3865-2019, https://doi.org/10.5194/hess-23-3865-2019, 2019
Short summary
Short summary
The impact of city trees for intercepting rainfall is quantified using measurements and modeling tools. The measurements show that an important amount of rainfall is intercepted, limiting the amount of water reaching the ground. Models are used to extrapolate the measurement results. The performance of two specialized interception models and one water balance model is evaluated. Our results show that the performance of the water balance model is similar to the specialized interception models.
Benjamin Mary, Luca Peruzzo, Jacopo Boaga, Myriam Schmutz, Yuxin Wu, Susan S. Hubbard, and Giorgio Cassiani
Hydrol. Earth Syst. Sci., 22, 5427–5444, https://doi.org/10.5194/hess-22-5427-2018, https://doi.org/10.5194/hess-22-5427-2018, 2018
Danielle K. Hare, David F. Boutt, William P. Clement, Christine E. Hatch, Glorianna Davenport, and Alex Hackman
Hydrol. Earth Syst. Sci., 21, 6031–6048, https://doi.org/10.5194/hess-21-6031-2017, https://doi.org/10.5194/hess-21-6031-2017, 2017
Short summary
Short summary
This research examines what processes drive the location and strength of groundwater springs within a peatland environment. Using temperature and geophysical methods, we demonstrate that the relationship between regional groundwater flow gradients and the basin shape below the peatland surface control where groundwater springs occur. Understanding this relationship will support effective restoration efforts, as groundwater spring locations are important to overall peatland function and ecology.
Hang Zheng, Yang Hong, Di Long, and Hua Jing
Hydrol. Earth Syst. Sci., 21, 949–961, https://doi.org/10.5194/hess-21-949-2017, https://doi.org/10.5194/hess-21-949-2017, 2017
Short summary
Short summary
Do you feel angry if the river in your living place is polluted by industries? Do you want to do something to save your environment? Just log in to http://www.thuhjjc.com and use the Tsinghua Environment Monitoring Platform (TEMP) to photograph the water pollution actives and make your report. This study established a social media platform to monitor and report surface water quality. The effectiveness of the platform was demonstrated by the 324 water quality reports across 30 provinces in China.
Matteo Giuliani, Andrea Castelletti, Roman Fedorov, and Piero Fraternali
Hydrol. Earth Syst. Sci., 20, 5049–5062, https://doi.org/10.5194/hess-20-5049-2016, https://doi.org/10.5194/hess-20-5049-2016, 2016
Short summary
Short summary
The unprecedented availability of user-generated data on the Web is opening new opportunities for enhancing real-time monitoring and modeling of environmental systems based on data that are public, low-cost, and spatiotemporally dense. In this paper, we contribute a novel crowdsourcing procedure for extracting snow-related information from public web images. The value of the obtained virtual snow indexes is assessed for a real-world water management problem.
Tracy Ewen and Jan Seibert
Hydrol. Earth Syst. Sci., 20, 4079–4091, https://doi.org/10.5194/hess-20-4079-2016, https://doi.org/10.5194/hess-20-4079-2016, 2016
Short summary
Short summary
Games are an optimal way to teach about water resource sharing, as they allow real-world scenarios to be explored. We look at how games can be used to teach about water resource sharing, by both playing and developing water games. An evaluation of the web-based game Irrigania found Irrigania to be an effective and easy tool to incorporate into curriculum, and a course on developing water games encouraged students to think about water resource sharing in a more critical and insightful way.
Frans C. van Geer, Brian Kronvang, and Hans Peter Broers
Hydrol. Earth Syst. Sci., 20, 3619–3629, https://doi.org/10.5194/hess-20-3619-2016, https://doi.org/10.5194/hess-20-3619-2016, 2016
Short summary
Short summary
The paper includes a review of the current state of high-frequency monitoring in groundwater and surface waters as an outcome of a special issue of HESS and four sessions at EGU on this topic. The focus of the paper is to look at how high-frequency monitoring can be used as a valuable support to assess the management efforts under various EU directives. We conclude that we in future will see a transition from research to implementation in operational monitoring use of high-frequency sensors.
Matthew D. Berg, Franco Marcantonio, Mead A. Allison, Jason McAlister, Bradford P. Wilcox, and William E. Fox
Hydrol. Earth Syst. Sci., 20, 2295–2307, https://doi.org/10.5194/hess-20-2295-2016, https://doi.org/10.5194/hess-20-2295-2016, 2016
Short summary
Short summary
Rangelands, from grasslands to woodlands, cover much of the earth. These areas face great pressure to meet growing water needs. Data on large-scale dynamics that drive water planning remain rare. Our watershed-scale results challenge simplistic hydrological assumptions. Streamflow was resilient to dramatic landscape changes. These changes did shape sediment yield, affecting water storage. Understanding these processes is vital to projections of rangeland water resources in a changing world.
Jimmy O'Keeffe, Wouter Buytaert, Ana Mijic, Nicholas Brozović, and Rajiv Sinha
Hydrol. Earth Syst. Sci., 20, 1911–1924, https://doi.org/10.5194/hess-20-1911-2016, https://doi.org/10.5194/hess-20-1911-2016, 2016
Short summary
Short summary
Semi-structured interviews provide an effective and efficient way of collecting qualitative and quantitative data on water use practices. Interviews are organised around a topic guide, which helps lead the conversation while allowing sufficient opportunity to identify issues previously unknown to the researcher. The use of semi-structured interviews could significantly and quickly improve insight on water resources, leading to more realistic future management options and increased water security.
J. C. Rozemeijer, A. Visser, W. Borren, M. Winegram, Y. van der Velde, J. Klein, and H. P. Broers
Hydrol. Earth Syst. Sci., 20, 347–358, https://doi.org/10.5194/hess-20-347-2016, https://doi.org/10.5194/hess-20-347-2016, 2016
Short summary
Short summary
Controlled drainage has been recognized as an effective option to optimize soil moisture conditions for agriculture and to reduce unnecessary losses of fresh water and nutrients. For a grassland field in the Netherlands, we measured the changes in the field water and solute balance after introducing controlled drainage. We concluded that controlled drainage reduced the drain discharge and increased the groundwater storage in the field, but did not have clear positive effects for water quality.
S. C. Sherriff, J. S. Rowan, A. R. Melland, P. Jordan, O. Fenton, and D. Ó hUallacháin
Hydrol. Earth Syst. Sci., 19, 3349–3363, https://doi.org/10.5194/hess-19-3349-2015, https://doi.org/10.5194/hess-19-3349-2015, 2015
A. Rautio, A.-L. Kivimäki, K. Korkka-Niemi, M. Nygård, V.-P. Salonen, K. Lahti, and H. Vahtera
Hydrol. Earth Syst. Sci., 19, 3015–3032, https://doi.org/10.5194/hess-19-3015-2015, https://doi.org/10.5194/hess-19-3015-2015, 2015
Short summary
Short summary
Based on low-altitude aerial infrared surveys, around 370 groundwater–surface water interaction sites were located. Longitudinal temperature patterns, stable isotopes and dissolved silica composition of the studied rivers differed. Interaction sites identified in the proximity of 12 municipal water plants during low-flow seasons should be considered as potential risk areas during flood periods and should be taken under consideration in river basin management under changing climatic situations.
J. M. Campbell, P. Jordan, and J. Arnscheidt
Hydrol. Earth Syst. Sci., 19, 453–464, https://doi.org/10.5194/hess-19-453-2015, https://doi.org/10.5194/hess-19-453-2015, 2015
Short summary
Short summary
High-resolution phosphorus and flow data were used to gauge the effects of diffuse (soil P) and point source (septic tank system) mitigation measures in two flashy headwater river catchments. Over 4 years the data indicated an overall increase in P concentration in defined high flow ranges and low flow P concentration showed little change. The work indicates fractured responses to catchment management advice and mitigation which were also affected by variations in seasonal hydrometeorology.
J. Audet, L. Martinsen, B. Hasler, H. de Jonge, E. Karydi, N. B. Ovesen, and B. Kronvang
Hydrol. Earth Syst. Sci., 18, 4721–4731, https://doi.org/10.5194/hess-18-4721-2014, https://doi.org/10.5194/hess-18-4721-2014, 2014
Short summary
Short summary
The mitigation of excess nitrogen and phosphorus in river waters requires costly measures. Therefore it is essential to use reliable monitoring methods to select adequate mitigation strategies. Here we show that more development is needed before passive samplers can be considered as reliable alternative for sampling nutrients in stream. We also showed that although continuous sampling is expensive, its reliability precludes unnecessarily high implementation costs of mitigation measures.
C. Comina, M. Lasagna, D. A. De Luca, and L. Sambuelli
Hydrol. Earth Syst. Sci., 18, 3195–3203, https://doi.org/10.5194/hess-18-3195-2014, https://doi.org/10.5194/hess-18-3195-2014, 2014
M. Rusca, J. Heun, and K. Schwartz
Hydrol. Earth Syst. Sci., 16, 2749–2757, https://doi.org/10.5194/hess-16-2749-2012, https://doi.org/10.5194/hess-16-2749-2012, 2012
J. Rozemeijer, C. Siderius, M. Verheul, and H. Pomarius
Hydrol. Earth Syst. Sci., 16, 2405–2415, https://doi.org/10.5194/hess-16-2405-2012, https://doi.org/10.5194/hess-16-2405-2012, 2012
F. Jørgensen, W. Scheer, S. Thomsen, T. O. Sonnenborg, K. Hinsby, H. Wiederhold, C. Schamper, T. Burschil, B. Roth, R. Kirsch, and E. Auken
Hydrol. Earth Syst. Sci., 16, 1845–1862, https://doi.org/10.5194/hess-16-1845-2012, https://doi.org/10.5194/hess-16-1845-2012, 2012
J. Lange, S. Husary, A. Gunkel, D. Bastian, and T. Grodek
Hydrol. Earth Syst. Sci., 16, 715–724, https://doi.org/10.5194/hess-16-715-2012, https://doi.org/10.5194/hess-16-715-2012, 2012
T. T. Jin, B. J. Fu, G. H. Liu, and Z. Wang
Hydrol. Earth Syst. Sci., 15, 2519–2530, https://doi.org/10.5194/hess-15-2519-2011, https://doi.org/10.5194/hess-15-2519-2011, 2011
T. A. Endreny and M. M. Soulman
Hydrol. Earth Syst. Sci., 15, 2119–2126, https://doi.org/10.5194/hess-15-2119-2011, https://doi.org/10.5194/hess-15-2119-2011, 2011
N. Pasquale, P. Perona, P. Schneider, J. Shrestha, A. Wombacher, and P. Burlando
Hydrol. Earth Syst. Sci., 15, 1197–1212, https://doi.org/10.5194/hess-15-1197-2011, https://doi.org/10.5194/hess-15-1197-2011, 2011
B. M. Teklu, H. Tekie, M. McCartney, and S. Kibret
Hydrol. Earth Syst. Sci., 14, 2595–2603, https://doi.org/10.5194/hess-14-2595-2010, https://doi.org/10.5194/hess-14-2595-2010, 2010
T. Raziei, I. Bordi, L. S. Pereira, and A. Sutera
Hydrol. Earth Syst. Sci., 14, 1919–1930, https://doi.org/10.5194/hess-14-1919-2010, https://doi.org/10.5194/hess-14-1919-2010, 2010
S. L. Noorduijn, K. R. J. Smettem, R. Vogwill, and A. Ghadouani
Hydrol. Earth Syst. Sci., 13, 2095–2104, https://doi.org/10.5194/hess-13-2095-2009, https://doi.org/10.5194/hess-13-2095-2009, 2009
Cited articles
Beumer, J. and Mallory, S.: Water Requirements and Availability Reconciliation Strategy for the Mbombela Municipal Area. Final Reconcialiation Strategy, Department of Water Affairs, South Africa, 2014.
Birkel, C., Soulsby, C., Ali, G., and Tetzlaff, D.: Assessing the cumulative impacts of hydropower regulation on the flow characteristics of a large atlantic Salmon river system, River Res. Applic., 30, 456–475, https://doi.org/10.1002/rra.2656, 2014.
Bunn, S. E. and Arthington, A. H.: Basic Principles and Ecological Consequences of Altered Flow Regimes for Aquatic Biodiversity, Environ. Manage., 30, 492–507, https://doi.org/10.1007/s00267-002-2737-0, 2002.
De Winnaar, G. and Jewitt, G.: Ecohydrological implications of runoff harvesting in the headwaters of the Thukela River basin, South Africa, Phys. Chem. Earth, Parts A/B/C, 35, 634–642, https://doi.org/10.1016/j.pce.2010.07.009, 2010.
DWAF – Department of Water Affairs and Forestry: Inkomati Water Availability Assessment Study, Water Requirements Volume 1, prepared by: Water for Africa Environmental, Engineering and Management Consultants, SRK Consulting and CPH20, PWMA 05/X22/00/0908, Pretoria, 2009a.
DWAF – Department of Water Affairs and Forestry: Inkomati Water Availability Assessment Study, Main Report, prepared by: Water for Africa Environmental, Engineering and Management Consultants, SRK Consulting and CPH20, PWMA 05/X22/00/0808, Pretoria, 2009b.
DWAF – Department of Water Affairs and Forestry: Inkomati Water Availability Assessment Study, Hydrology of Sabie River Volume 1, prepared by: Water for Africa Environmental, Engineering and Management Consultants, SRK Consulting and CPH20, PWMA 05/X22/00/1608, Pretoria, 2009c.
DWAF – Department of Water Affairs and Forestry: Inkomati Water Availability Assessment Study, Hydrology of Crocodile River Volume 1, prepared by: Water for Africa Environmental, Engineering and Management Consultants, SRK Consulting and CPH20, PWMA 05/X22/00/1508, Pretoria, 2009d.
Fanta, B., Zaake, B. T., and Kachroo, R. K.: A study of variability of annual river flow of the southern African region, Hydrol. Sci. J., 46, 513–524, https://doi.org/10.1080/02626660109492847, 2001.
Guzman, J. A. and Chu, M. L.: SPELL-stat v 15110 B. Grupo en Prediccion y Modelamiento Hidroclimatico Universidad Industrial de Santander, Colombia, Hydrological Modelling and Prediction Group, Industrial University of Santander, Colombia, available at: http://jguzman.info/legacy/index.html, 2003.
Hu, Y., Maskey, S., Uhlenbrook, S., and Zhao, H.: Streamflow trends and climate linkages in the source region of the Yellow River, China, Hydrol. Process., 25, 3399–3411, https://doi.org/10.1002/hyp.8069, 2011.
Hughes, D. A. and Mallory, S. J. L.: Including environmental flow requirements as part of real-time water resource management, River Res. Applic., 24, 852–861, https://doi.org/10.1002/rra.1101, 2008.
Hughes, D. A., Tshimanga, R. M., Tirivarombo, S., and Tanner, J.: Simulating wetland impacts on stream flow in southern Africa using a monthly hydrological model, Hydrol. Process., 28, 1775–1786, https://doi.org/10.1002/hyp.9725, 2014.
ICMA: The Inkomati Catchment Management Strategy: A First Generations Catchment Management Strategy for the Inkomati Water Management Area, Inkomati Catchment Management Agency, Nelspruit, 2010.
Jarmain, C., Dost, R. J. J., De Bruijn, E., Ferreira, F., Schaap, O., Bastiaanssen, W. G. M., Bastiaanssen, F., van Haren, I., van Haren, I. J., Wayers, T., Ribeiro, D., Pelgrum, H., Obando, E., and Van Eekelen, M. W.: Spatial Hydro-meteorological data for transparent and equitable water resources management in the Incomati catchment, Pretoria, South Africa, 2013.
Jewitt, G. P. W.: The 8 %–4 % debate: Commercial afforestation and water use in South Africa, S. Afr. Forest. J., 194, 1–5, 2002.
Jewitt, G.: Integrating blue and green water flows for water resources management and planning, Phys. Chem. Earth, Parts A/B/C, 31, 753–762, http://dx.doi.org/10.1016/j.pce.2006.08.033, 2006a.
Jewitt, G.: Water and Forests, in: Encyclopedia of Hydrological Sciences, John Wiley & Sons, Ltd, 2006b.
Jewitt, G. P. W., Garratt, J. A., Calder, I. R., and Fuller, L.: Water resources planning and modelling tools for the assessment of land use change in the Luvuvhu Catchment, South Africa, Phys. Chem. Earth, Parts A/B/C, 29, 1233–1241, 2004.
Kruger, A. C. and Shongwe, S.: Temperature trends in South Africa: 1960–2003, Int. J. Climatol., 24, 1929–1945, https://doi.org/10.1002/joc.1096, 2004.
LeMarie, M., van der Zaag, P., Menting, G., Baquete, E., and Schotanus, D.: The use of remote sensing for monitoring environmental indicators: The case of the Incomati estuary, Mozambique, Phys. Chem. Earth, Parts A/B/C, 31, 857–863, https://doi.org/10.1016/j.pce.2006.08.023, 2006.
Lennard, C., Coop, L., Morison, D., and Grandin, R.: Extreme events: Past and future changes in the attributes of extreme rainfall and the dynamics of their driving processes, Climate Systems Analysis Group University of Cape Town, 2013.
Love, D., Uhlenbrook, S., Twomlow, S., and van Der Zaag, P.: Changing hydroclimatic and discharge patterns in the northern Limpopo Basin, Zimbabwe, Water SA, 36, 335–350, 2010.
Lynch, S. D.: The Development of a Raster Database of Annual, Monthly and Daily Rainfall for Southern Africa., Water Research Commission, South Africa, Rep. 1156/1/04Rep. 1156/1/04, 2003.
Maingi, J. K. and Marsh, S. E.: Quantifying hydrologic impacts following dam construction along the Tana River, Kenya, J. Arid Environ., 50, 53–79, https://doi.org/10.1006/jare.2000.0860, 2002.
Masih, I., Uhlenbrook, S., Maskey, S., and Smakhtin, V.: Streamflow trends and climate linkages in the Zagros Mountains, Iran, Clim. Change, 104, 317–338, https://doi.org/10.1007/s10584-009-9793-x, 2011.
Mathews, R. and Richter, B. D.: Application of the Indicators of Hydrologic Alteration Software in Environmental Flow Setting1, JAWRA J. Am. Water Resour. Assoc., 43, 1400–1413, https://doi.org/10.1111/j.1752-1688.2007.00099.x, 2007.
Miao, C. Y., Shi, W., Chen, X. H., and Yang, L.: Spatio-temporal variability of streamflow in the Yellow River: possible causes and implications, Hydrol. Sci. J., 57, 1355–1367, https://doi.org/10.1080/02626667.2012.718077, 2012.
Milly, P. C. D., Betancourt, J., Falkenmark, M., Hirsch, R. M., Kundzewicz, Z. W., Lettenmaier, D. P., and Stouffer, R. J.: Stationarity Is Dead: Whither Water Management?, Science, 319, 573–574, https://doi.org/10.1126/science.1151915, 2008.
Montanari, A., Young, G., Savenije, H. H. G., Hughes, D., Wagener, T., Ren, L. L., Koutsoyiannis, D., Cudennec, C., Toth, E., Grimaldi, S., Blöschl, G., Sivapalan, M., Beven, K., Gupta, H., Hipsey, M., Schaefli, B., Arheimer, B., Boegh, E., Schymanski, S. J., Di Baldassarre, G., Yu, B., Hubert, P., Huang, Y., Schumann, A., Post, D. A., Srinivasan, V., Harman, C., Thompson, S., Rogger, M., Viglione, A., McMillan, H., Characklis, G., Pang, Z., and Belyaev, V.: Panta Rhei – Everything Flows: Change in hydrology and society – The IAHS Scientific Decade 2013–2022, Hydrolog. Sci. J., 58, 1256–1275, https://doi.org/10.1080/02626667.2013.809088, 2013.
Moore, D., Dore, J., and Gyawali, D.: The World Commission on Dams + 10: Revisiting the large dam controversy, Water Altern., 3, 3–13, 2010.
Mukororira, F.: Analysis of water allocation in the Komati catchment downstream of Maguga and Driekoppies Dams, MSc Thesis WM 12.18, Water Management, UNESCO-IHE, Delft, 2012.
Mussá, F., Zhou, Y., Maskey, S., Masih, I., and Uhlenbrook, S.: Trend analysis on dry extremes of precipitation and discharge in the Crocodile River catchment, Incomati basin, 14th WaterNet/ WARFSA/GWP-SA symposium, 30 October–1 November 2013, Dar es Salaam, Tanzania, 2013,
Nkomo, S. and van der Zaag, P.: Equitable water allocation in a heavily committed international catchment area: the case of the Komati Catchment, Phys. Chem. Earth, Parts A/B/C, 29, 1309–1317, 2004.
Pettitt, A.: A non-parametric approach to the change-point problem., Appl. Stat., 28, 126–135, 1979.
Pollard, S. and du Toit, D.: Integrated water resource management in complex systems: How the catchment management strategies seek to achieve sustainability and equity in water resources in South Africa, Water SA, 34, 671–680, 2009.
Pollard, S. and du Toit, D.: Towards the sustainability of freshwater systems in South Africa: An exploration of factors that enable and constrain meeting the ecological Reserve within the context of Integrated Water Resources Management in the catchments of the lowveld, Water Research Comission, Pretoria, South Africa. Report No. TT 477/10, 2011a.
Pollard, S. and du Toit, D.: Towards Adaptive Integrated Water Resources Management in Southern Africa: The Role of Self-organisation and Multi-scale Feedbacks for Learning and Responsiveness in the Letaba and Crocodile Catchments, Water Resour. Manage., 25, 4019–4035, https://doi.org/10.1007/s11269-011-9904-0, 2011b.
Pollard, S., Du Toit, D., and Biggs, H.: River management under transformation: The emergence of strategic adaptive management of river systems in the Kruger National Park, Koedoe, 53, 1011, https://doi.org/10.4102/koedoe.v53i2.1011, 2011.
Pollard, S., Mallory, S., Riddell, E., and Sawunyama, T.: Towards improving the assessment and implementation of the reserve: real-time assessment and implementation of the ecological reserve: report to the Water Research Commission, Water Research Commission, Pretoria, South Africa, 2012.
Richter, B. D. and Thomas, G. A.: Restoring environmental flows by modifying dam operations, Ecol. Soc., 12, available at: http://www.ecologyandsociety.org/vol12/iss1/art12/, 2007.
Richter, B. D., Baumgartner, J. V., Powell, J., and Braun, D. P.: A Method for Assessing Hydrologic Alteration within Ecosystems, Conserv. Biol., 10, 1163–1174, 1996.
Richter, B. D., Baumgartner, J. V., Braun, D. P., and Powell, J.: A spatial assessment of hydrologic alteration within a river network, Regulated Rivers: Res. Manage., 14, 329–340, https://doi.org/10.1002/(sici)1099-1646(199807/08)14:4< 329::aid-rrr505> 3.0.co;2-e, 1998.
Richter, B. D., Mathews, R., Harrison, D. L., and Wigington, R.: Ecologically sustainable water management: managing river flows for ecological integrity, Ecol. Appl., 13, 206–224, https://doi.org/10.1890/1051-0761(2003)013[0206:eswmmr]2.0.co; 2, 2003.
Riddell, E., Pollard, S., Mallory, S., and Sawunyama, T.: A methodology for historical assessment of compliance with environmental water allocations: lessons from the Crocodile (East) River, South Africa, Hydrol. Sci. J., 59, 831–843, https://doi.org/10.1080/02626667.2013.853123, 2013.
Rockström, J., Falkenmark, M., Karlberg, L., Hoff, H., Rost, S., and Gerten, D.: Future water availability for global food production: The potential of green water for increasing resilience to global change, Water Resour. Res., 45, W00A12, https://doi.org/10.1029/2007wr006767, 2009.
Rouault, M., Fauchereau, N., Pohl, B., Penven, P., Richard, Y., Reason, C., Pegram, G., Phillippon, N., Siedler, G., and Murgia, A.: Multidisciplinary analysis of hydroclimatic variability at the catchment scale, University of Cape Town, CRC, Universite de Dijon, UBO, Universite de Bretagne Occidentale, University of Kwazulu Natal, IMF, University of Kiel, LTHE, Universite de Grenoble, 2010.
Schulze, R. E.: Approaches towards practical adaptive management options for selected water-related sectors in South Africa in a context of climate change, Water SA, 37, 621–645, 2011.
Schulze, R.: A 2011 perspective on climate change and the South African water sector, WRC Report TT 518/12, Gezina, South Africa, 2012.
Shongwe, M. E., van Oldenborgh, G. J., van den Hurk, B. J. J. M., de Boer, B., Coelho, C. A. S., and van Aalst, M. K.: Projected Changes in Mean and Extreme Precipitation in Africa under Global Warming. Part I: Southern Africa, J. Climate, 22, 3819–3837, https://doi.org/10.1175/2009jcli2317.1, 2009.
Taylor, V., Schulze, R., and Jewitt, G. P. W.: Application of the Indicators of Hydrological Alteration method to the Mkomazi River, KwaZulu-Natal, South Africa, Afr. J. Aquatic Sci., 28, 1–11, https://doi.org/10.2989/16085914.2003.9626593, 2003.
TPTC: Tripartite Permanent Technical Committee (TPTC) between, Moçambique, South Africa, Swaziland, PRIMA: IAAP 3: Consultancy Services for Integrated Water Resources Management. Baseline evaluation and scoping report: Part C. Report No.: IAAP 3: 03C–2010, Prepared for TPTC by Aurecon, Pretoria, 2010.
Tullos, D., Tilt, B., and Liermann, C. R.: Introduction to the special issue: Understanding and linking the biophysical, socioeconomic and geopolitical effects of dams, J. Environ. Manage., 90, Supplement 3, S203–S207, https://doi.org/10.1016/j.jenvman.2008.08.018, 2009.
Van den Berg, E., Plarre, C., Van den Berg, H., and Thompson, M.: The South African national land cover 2000, Agricultural Research Council (ARC) and Council for Scientific and Industrial Research (CSIR), Pretoria, Report No. GW/A/2008/86, 2008.
Van der Zaag, P. and Vaz, A. C.: Sharing the Incomati waters: cooperation and competition in the balance, Water Pol., 5, 349–368, 2003.
van Eekelen, M. W., Bastiaanssen, W. G. M., Jarmain, C., Jackson, B., Ferreira, F., van der Zaag, P., Saraiva Okello, A., Bosch, J., Dye, P., Bastidas-Obando, E., Dost, R. J. J., and Luxemburg, W. M. J.: A novel approach to estimate direct and indirect water withdrawals from satellite measurements: A case study from the Incomati basin, Agr. Ecosyst. Environ., 200, 126–142, https://doi.org/10.1016/j.agee.2014.10.023, 2015.
Vörösmarty, C. J., McIntyre, P., Gessner, M. O., Dudgeon, D., Prusevich, A., Green, P., Glidden, S., Bunn, S. E., Sullivan, C. A., and Liermann, C. R.: Global threats to human water security and river biodiversity, Nature, 467, 555–561, 2010.
Warburton, M. L., Schulze, R. E., and Jewitt, G. P. W.: Confirmation of ACRU model results for applications in land use and climate change studies, Hydrol. Earth Syst. Sci., 14, 2399–2414, https://doi.org/10.5194/hess-14-2399-2010, 2010.
Warburton, M. L., Schulze, R. E., and Jewitt, G. P. W.: Hydrological impacts of land use change in three diverse South African catchments, J. Hydrol., 414–415, 118-135, https://doi.org/10.1016/j.jhydrol.2011.10.028, 2012.
Zhang, X., Zhang, L., Zhao, J., Rustomji, P., and Hairsine, P.: Responses of streamflow to changes in climate and land use/cover in the Loess Plateau, China, Water Resour. Res., 44, W00A07, https://doi.org/10.1029/2007wr006711, 2008.
Short summary
We studied long-term daily records of rainfall and streamflow of the Incomati River basin in southern Africa. We used statistical analysis and the Indicators of Hydrologic Alteration tool to describe the spatial and temporal variability flow regime. We found significant declining trends in October flows, and low flow indicators; however, no significant trend was found in rainfall. Land use and flow regulation are larger drivers of temporal changes in streamflow than climatic forces in the basin.
We studied long-term daily records of rainfall and streamflow of the Incomati River basin in...