Articles | Volume 19, issue 12
https://doi.org/10.5194/hess-19-4747-2015
https://doi.org/10.5194/hess-19-4747-2015
Research article
 | 
03 Dec 2015
Research article |  | 03 Dec 2015

Water vapor mapping by fusing InSAR and GNSS remote sensing data and atmospheric simulations

F. Alshawaf, B. Fersch, S. Hinz, H. Kunstmann, M. Mayer, and F. J. Meyer

Related authors

The extremely hot and dry 2018 summer in central and northern Europe from a multi-faceted weather and climate perspective
Efi Rousi, Andreas H. Fink, Lauren S. Andersen, Florian N. Becker, Goratz Beobide-Arsuaga, Marcus Breil, Giacomo Cozzi, Jens Heinke, Lisa Jach, Deborah Niermann, Dragan Petrovic, Andy Richling, Johannes Riebold, Stella Steidl, Laura Suarez-Gutierrez, Jordis S. Tradowsky, Dim Coumou, André Düsterhus, Florian Ellsäßer, Georgios Fragkoulidis, Daniel Gliksman, Dörthe Handorf, Karsten Haustein, Kai Kornhuber, Harald Kunstmann, Joaquim G. Pinto, Kirsten Warrach-Sagi, and Elena Xoplaki
Nat. Hazards Earth Syst. Sci., 23, 1699–1718, https://doi.org/10.5194/nhess-23-1699-2023,https://doi.org/10.5194/nhess-23-1699-2023, 2023
Short summary
MATHEMATICAL AND PHYSICAL APPROACHES TO INFER ABSOLUTE ZENITH WET DELAYS FROM DOUBLE DIFFERENTIAL INTERFEROMETRIC OBSERVATIONS USING ERA5 ATMOSPHERIC REANALYSIS
B. Kamm, A. Schenk, P. Yuan, and S. Hinz
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-M-1-2023, 153–159, https://doi.org/10.5194/isprs-archives-XLVIII-M-1-2023-153-2023,https://doi.org/10.5194/isprs-archives-XLVIII-M-1-2023-153-2023, 2023
An enhanced integrated water vapour dataset from more than 10 000 global ground-based GPS stations in 2020
Peng Yuan, Geoffrey Blewitt, Corné Kreemer, William C. Hammond, Donald Argus, Xungang Yin, Roeland Van Malderen, Michael Mayer, Weiping Jiang, Joseph Awange, and Hansjörg Kutterer
Earth Syst. Sci. Data, 15, 723–743, https://doi.org/10.5194/essd-15-723-2023,https://doi.org/10.5194/essd-15-723-2023, 2023
Short summary
Droughts in Germany: performance of regional climate models in reproducing observed characteristics
Dragan Petrovic, Benjamin Fersch, and Harald Kunstmann
Nat. Hazards Earth Syst. Sci., 22, 3875–3895, https://doi.org/10.5194/nhess-22-3875-2022,https://doi.org/10.5194/nhess-22-3875-2022, 2022
Short summary
Tropospheric water vapor: a comprehensive high-resolution data collection for the transnational Upper Rhine Graben region
Benjamin Fersch, Andreas Wagner, Bettina Kamm, Endrit Shehaj, Andreas Schenk, Peng Yuan, Alain Geiger, Gregor Moeller, Bernhard Heck, Stefan Hinz, Hansjörg Kutterer, and Harald Kunstmann
Earth Syst. Sci. Data, 14, 5287–5307, https://doi.org/10.5194/essd-14-5287-2022,https://doi.org/10.5194/essd-14-5287-2022, 2022
Short summary

Related subject area

Subject: Hydrometeorology | Techniques and Approaches: Modelling approaches
Sensitivity of the pseudo-global warming method under flood conditions: a case study from the northeastern US
Zeyu Xue, Paul Ullrich, and Lai-Yung Ruby Leung
Hydrol. Earth Syst. Sci., 27, 1909–1927, https://doi.org/10.5194/hess-27-1909-2023,https://doi.org/10.5194/hess-27-1909-2023, 2023
Short summary
Hybrid forecasting: blending climate predictions with AI models
Louise J. Slater, Louise Arnal, Marie-Amélie Boucher, Annie Y.-Y. Chang, Simon Moulds, Conor Murphy, Grey Nearing, Guy Shalev, Chaopeng Shen, Linda Speight, Gabriele Villarini, Robert L. Wilby, Andrew Wood, and Massimiliano Zappa
Hydrol. Earth Syst. Sci., 27, 1865–1889, https://doi.org/10.5194/hess-27-1865-2023,https://doi.org/10.5194/hess-27-1865-2023, 2023
Short summary
Sensitivities of subgrid-scale physics schemes, meteorological forcing, and topographic radiation in atmosphere-through-bedrock integrated process models: a case study in the Upper Colorado River basin
Zexuan Xu, Erica R. Siirila-Woodburn, Alan M. Rhoades, and Daniel Feldman
Hydrol. Earth Syst. Sci., 27, 1771–1789, https://doi.org/10.5194/hess-27-1771-2023,https://doi.org/10.5194/hess-27-1771-2023, 2023
Short summary
Local moisture recycling across the globe
Jolanda J. E. Theeuwen, Arie Staal, Obbe A. Tuinenburg, Bert V. M. Hamelers, and Stefan C. Dekker
Hydrol. Earth Syst. Sci., 27, 1457–1476, https://doi.org/10.5194/hess-27-1457-2023,https://doi.org/10.5194/hess-27-1457-2023, 2023
Short summary
How well does a convection-permitting regional climate model represent the reverse orographic effect of extreme hourly precipitation?
Eleonora Dallan, Francesco Marra, Giorgia Fosser, Marco Marani, Giuseppe Formetta, Christoph Schär, and Marco Borga
Hydrol. Earth Syst. Sci., 27, 1133–1149, https://doi.org/10.5194/hess-27-1133-2023,https://doi.org/10.5194/hess-27-1133-2023, 2023
Short summary

Cited articles

Alshawaf, F., Fersch, B., Hinz, S., Kunstmann, H., Mayer, M., Thiele, A., Westerhaus, M., and Meyer, F.: Analysis of atmospheric signals in spaceborne InSAR – toward water vapor mapping based on multiple sources, in: Geoscience and Remote Sensing Symposium (IGARSS), 2012 IEEE International, 1960–1963, 2012.
Alshawaf, F., Fuhrmann, T., Knopfler, A., Luo, X., Mayer, M., Hinz, S., and Heck, B.: A}ccurate Estimation of Atmospheric Water Vapor Using GNSS {Observations and Surface Meteorological Data, IEEE T. Geosci. Remote Sens., 53, 3764–3771, https://doi.org/10.1109/TGRS.2014.2382713, 2015a.
Alshawaf, F., Hinz, S., Mayer, M., and Meyer, F. J.: C}onstructing accurate maps of atmospheric water vapor by combining interferometric synthetic aperture radar and GNSS observations, J. {Geophys. Res.-Atmos., 120, 1391–1403, 2015b.
Awan, N. K., Truhetz, H., and Gobiet, A.: Parametrization-Induced Error Characteristics of MM5 and WRF Operated in Climate Mode over the Alpine Region: An Ensemble-Based Analysis., J. Climate, 24, 3107–3123, 2011.
Bender, M., Dick, G., Wickert, J., Schmidt, T., Song, S., Gendt, G., Ge, M., and Rothacher, M.: Validation of GPS slant delays using water vapor radiometers and weather models, Meteorol. Z., 17, 807–812, 2008.
Download
Short summary
This work aims at deriving high spatially resolved maps of atmospheric water vapor by the fusion data from Interferometric Synthetic Aperture Radar (InSAR), Global Navigation Satellite Systems (GNSS), and the Weather Research and Forecasting (WRF) model. The data fusion approach exploits the redundant and complementary spatial properties of all data sets to provide more accurate and high-resolution maps of water vapor. The comparison with maps from MERIS shows rms values of less than 1 mm.