Journal cover Journal topic
Hydrology and Earth System Sciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.153 IF 5.153
  • IF 5-year value: 5.460 IF 5-year
    5.460
  • CiteScore value: 7.8 CiteScore
    7.8
  • SNIP value: 1.623 SNIP 1.623
  • IPP value: 4.91 IPP 4.91
  • SJR value: 2.092 SJR 2.092
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 123 Scimago H
    index 123
  • h5-index value: 65 h5-index 65
Volume 19, issue 12
Hydrol. Earth Syst. Sci., 19, 4747–4764, 2015
https://doi.org/10.5194/hess-19-4747-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
Hydrol. Earth Syst. Sci., 19, 4747–4764, 2015
https://doi.org/10.5194/hess-19-4747-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 03 Dec 2015

Research article | 03 Dec 2015

Water vapor mapping by fusing InSAR and GNSS remote sensing data and atmospheric simulations

F. Alshawaf et al.

Related authors

Preface: Technical Commission I
S. Hinz, R. Q. Feitosa, M. Weinmann, and B. Jutzi
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., V-1-2020, 7–7, https://doi.org/10.5194/isprs-annals-V-1-2020-7-2020,https://doi.org/10.5194/isprs-annals-V-1-2020-7-2020, 2020
SELF-SUPERVISED LEARNING FOR MONOCULAR DEPTH ESTIMATION FROM AERIAL IMAGERY
M. Hermann, B. Ruf, M. Weinmann, and S. Hinz
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., V-2-2020, 357–364, https://doi.org/10.5194/isprs-annals-V-2-2020-357-2020,https://doi.org/10.5194/isprs-annals-V-2-2020-357-2020, 2020
Rain event detection in commercial microwave link attenuation data using convolutional neural networks
Julius Polz, Christian Chwala, Maximilian Graf, and Harald Kunstmann
Atmos. Meas. Tech., 13, 3835–3853, https://doi.org/10.5194/amt-13-3835-2020,https://doi.org/10.5194/amt-13-3835-2020, 2020
Short summary
Rainfall estimation from a German-wide commercial microwave link network: optimized processing and validation for 1 year of data
Maximilian Graf, Christian Chwala, Julius Polz, and Harald Kunstmann
Hydrol. Earth Syst. Sci., 24, 2931–2950, https://doi.org/10.5194/hess-24-2931-2020,https://doi.org/10.5194/hess-24-2931-2020, 2020
Short summary
High-resolution fully coupled atmospheric–hydrological modeling: a cross-compartment regional water and energy cycle evaluation
Benjamin Fersch, Alfonso Senatore, Bianca Adler, Joël Arnault, Matthias Mauder, Katrin Schneider, Ingo Völksch, and Harald Kunstmann
Hydrol. Earth Syst. Sci., 24, 2457–2481, https://doi.org/10.5194/hess-24-2457-2020,https://doi.org/10.5194/hess-24-2457-2020, 2020

Related subject area

Subject: Hydrometeorology | Techniques and Approaches: Modelling approaches
Assessment and projection of the water budget over western Canada using convection-permitting weather research and forecasting simulations
Sopan Kurkute, Zhenhua Li, Yanping Li, and Fei Huo
Hydrol. Earth Syst. Sci., 24, 3677–3697, https://doi.org/10.5194/hess-24-3677-2020,https://doi.org/10.5194/hess-24-3677-2020, 2020
Short summary
Climate-dependent propagation of precipitation uncertainty into the water cycle
Ali Fallah, Sungmin O, and Rene Orth
Hydrol. Earth Syst. Sci., 24, 3725–3735, https://doi.org/10.5194/hess-24-3725-2020,https://doi.org/10.5194/hess-24-3725-2020, 2020
Short summary
A meteorological–hydrological regional ensemble forecast for an early-warning system over small Apennine catchments in Central Italy
Rossella Ferretti, Annalina Lombardi, Barbara Tomassetti, Lorenzo Sangelantoni, Valentina Colaiuda, Vincenzo Mazzarella, Ida Maiello, Marco Verdecchia, and Gianluca Redaelli
Hydrol. Earth Syst. Sci., 24, 3135–3156, https://doi.org/10.5194/hess-24-3135-2020,https://doi.org/10.5194/hess-24-3135-2020, 2020
Short summary
Bias in dynamically downscaled rainfall characteristics for hydroclimatic projections
Nicholas J. Potter, Francis H. S. Chiew, Stephen P. Charles, Guobin Fu, Hongxing Zheng, and Lu Zhang
Hydrol. Earth Syst. Sci., 24, 2963–2979, https://doi.org/10.5194/hess-24-2963-2020,https://doi.org/10.5194/hess-24-2963-2020, 2020
Short summary
Impact of downscaled rainfall biases on projected runoff changes
Stephen P. Charles, Francis H. S. Chiew, Nicholas J. Potter, Hongxing Zheng, Guobin Fu, and Lu Zhang
Hydrol. Earth Syst. Sci., 24, 2981–2997, https://doi.org/10.5194/hess-24-2981-2020,https://doi.org/10.5194/hess-24-2981-2020, 2020
Short summary

Cited articles

Alshawaf, F., Fersch, B., Hinz, S., Kunstmann, H., Mayer, M., Thiele, A., Westerhaus, M., and Meyer, F.: Analysis of atmospheric signals in spaceborne InSAR – toward water vapor mapping based on multiple sources, in: Geoscience and Remote Sensing Symposium (IGARSS), 2012 IEEE International, 1960–1963, 2012.
Alshawaf, F., Fuhrmann, T., Knopfler, A., Luo, X., Mayer, M., Hinz, S., and Heck, B.: A}ccurate Estimation of Atmospheric Water Vapor Using GNSS {Observations and Surface Meteorological Data, IEEE T. Geosci. Remote Sens., 53, 3764–3771, https://doi.org/10.1109/TGRS.2014.2382713, 2015a.
Alshawaf, F., Hinz, S., Mayer, M., and Meyer, F. J.: C}onstructing accurate maps of atmospheric water vapor by combining interferometric synthetic aperture radar and GNSS observations, J. {Geophys. Res.-Atmos., 120, 1391–1403, 2015b.
Awan, N. K., Truhetz, H., and Gobiet, A.: Parametrization-Induced Error Characteristics of MM5 and WRF Operated in Climate Mode over the Alpine Region: An Ensemble-Based Analysis., J. Climate, 24, 3107–3123, 2011.
Bender, M., Dick, G., Wickert, J., Schmidt, T., Song, S., Gendt, G., Ge, M., and Rothacher, M.: Validation of GPS slant delays using water vapor radiometers and weather models, Meteorol. Z., 17, 807–812, 2008.
Publications Copernicus
Download
Short summary
This work aims at deriving high spatially resolved maps of atmospheric water vapor by the fusion data from Interferometric Synthetic Aperture Radar (InSAR), Global Navigation Satellite Systems (GNSS), and the Weather Research and Forecasting (WRF) model. The data fusion approach exploits the redundant and complementary spatial properties of all data sets to provide more accurate and high-resolution maps of water vapor. The comparison with maps from MERIS shows rms values of less than 1 mm.
This work aims at deriving high spatially resolved maps of atmospheric water vapor by the fusion...
Citation