Articles | Volume 19, issue 12
Hydrol. Earth Syst. Sci., 19, 4747–4764, 2015
https://doi.org/10.5194/hess-19-4747-2015
Hydrol. Earth Syst. Sci., 19, 4747–4764, 2015
https://doi.org/10.5194/hess-19-4747-2015
Research article
03 Dec 2015
Research article | 03 Dec 2015

Water vapor mapping by fusing InSAR and GNSS remote sensing data and atmospheric simulations

F. Alshawaf et al.

Related authors

Droughts in Germany: Performance of Regional Climate Models in Reproducing Observed Characteristics
Dragan Petrovic, Benjamin Fersch, and Harald Kunstmann
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2022-162,https://doi.org/10.5194/nhess-2022-162, 2022
Preprint under review for NHESS
Short summary
Tropospheric water vapor: A comprehensive high resolution data collection for the transnational Upper Rhine Graben region
Benjamin Fersch, Andreas Wagner, Bettina Kamm, Endrit Shehaj, Andreas Schenk, Peng Yuan, Alain Geiger, Gregor Moeller, Bernhard Heck, Stefan Hinz, Hansjörg Kutterer, and Harald Kunstmann
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2022-57,https://doi.org/10.5194/essd-2022-57, 2022
Preprint under review for ESSD
Short summary
Soil moisture observation in a forested headwater catchment: combining a dense cosmic-ray neutron sensor network with roving and hydrogravimetry at the TERENO site Wüstebach
Maik Heistermann, Heye Bogena, Till Francke, Andreas Güntner, Jannis Jakobi, Daniel Rasche, Martin Schrön, Veronika Döpper, Benjamin Fersch, Jannis Groh, Amol Patil, Thomas Pütz, Marvin Reich, Steffen Zacharias, Carmen Zengerle, and Sascha Oswald
Earth Syst. Sci. Data, 14, 2501–2519, https://doi.org/10.5194/essd-14-2501-2022,https://doi.org/10.5194/essd-14-2501-2022, 2022
Short summary
PREFACE: TECHNICAL COMMISSION I
S. Hinz, R. Q. Feitosa, M. Weinmann, and B. Jutzi
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B1-2022, 7–7, https://doi.org/10.5194/isprs-archives-XLIII-B1-2022-7-2022,https://doi.org/10.5194/isprs-archives-XLIII-B1-2022-7-2022, 2022
COMPARISON AND EVALUATION OF DIFFERENT APPROACHES FOR EFFICIENT PROCESSING OF LONG GROUND-BASED SAR TIMES SERIES
M. Rebmeister, A. Schenk, and S. Hinz
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B3-2022, 341–348, https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-341-2022,https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-341-2022, 2022

Related subject area

Subject: Hydrometeorology | Techniques and Approaches: Modelling approaches
A comparison of hydrological models with different level of complexity in Alpine regions in the context of climate change
Francesca Carletti, Adrien Michel, Francesca Casale, Alice Burri, Daniele Bocchiola, Mathias Bavay, and Michael Lehning
Hydrol. Earth Syst. Sci., 26, 3447–3475, https://doi.org/10.5194/hess-26-3447-2022,https://doi.org/10.5194/hess-26-3447-2022, 2022
Short summary
Modelling evaporation with local, regional and global BROOK90 frameworks: importance of parameterization and forcing
Ivan Vorobevskii, Thi Thanh Luong, Rico Kronenberg, Thomas Grünwald, and Christian Bernhofer
Hydrol. Earth Syst. Sci., 26, 3177–3239, https://doi.org/10.5194/hess-26-3177-2022,https://doi.org/10.5194/hess-26-3177-2022, 2022
Short summary
Hydrological concept formation inside long short-term memory (LSTM) networks
Thomas Lees, Steven Reece, Frederik Kratzert, Daniel Klotz, Martin Gauch, Jens De Bruijn, Reetik Kumar Sahu, Peter Greve, Louise Slater, and Simon J. Dadson
Hydrol. Earth Syst. Sci., 26, 3079–3101, https://doi.org/10.5194/hess-26-3079-2022,https://doi.org/10.5194/hess-26-3079-2022, 2022
Short summary
A two-step merging strategy for incorporating multi-source precipitation products and gauge observations using machine learning classification and regression over China
Huajin Lei, Hongyu Zhao, and Tianqi Ao
Hydrol. Earth Syst. Sci., 26, 2969–2995, https://doi.org/10.5194/hess-26-2969-2022,https://doi.org/10.5194/hess-26-2969-2022, 2022
Short summary
Hydrometeorological evaluation of two nowcasting systems for Mediterranean heavy precipitation events with operational considerations
Alexane Lovat, Béatrice Vincendon, and Véronique Ducrocq
Hydrol. Earth Syst. Sci., 26, 2697–2714, https://doi.org/10.5194/hess-26-2697-2022,https://doi.org/10.5194/hess-26-2697-2022, 2022
Short summary

Cited articles

Alshawaf, F., Fersch, B., Hinz, S., Kunstmann, H., Mayer, M., Thiele, A., Westerhaus, M., and Meyer, F.: Analysis of atmospheric signals in spaceborne InSAR – toward water vapor mapping based on multiple sources, in: Geoscience and Remote Sensing Symposium (IGARSS), 2012 IEEE International, 1960–1963, 2012.
Alshawaf, F., Fuhrmann, T., Knopfler, A., Luo, X., Mayer, M., Hinz, S., and Heck, B.: A}ccurate Estimation of Atmospheric Water Vapor Using GNSS {Observations and Surface Meteorological Data, IEEE T. Geosci. Remote Sens., 53, 3764–3771, https://doi.org/10.1109/TGRS.2014.2382713, 2015a.
Alshawaf, F., Hinz, S., Mayer, M., and Meyer, F. J.: C}onstructing accurate maps of atmospheric water vapor by combining interferometric synthetic aperture radar and GNSS observations, J. {Geophys. Res.-Atmos., 120, 1391–1403, 2015b.
Awan, N. K., Truhetz, H., and Gobiet, A.: Parametrization-Induced Error Characteristics of MM5 and WRF Operated in Climate Mode over the Alpine Region: An Ensemble-Based Analysis., J. Climate, 24, 3107–3123, 2011.
Bender, M., Dick, G., Wickert, J., Schmidt, T., Song, S., Gendt, G., Ge, M., and Rothacher, M.: Validation of GPS slant delays using water vapor radiometers and weather models, Meteorol. Z., 17, 807–812, 2008.
Download
Short summary
This work aims at deriving high spatially resolved maps of atmospheric water vapor by the fusion data from Interferometric Synthetic Aperture Radar (InSAR), Global Navigation Satellite Systems (GNSS), and the Weather Research and Forecasting (WRF) model. The data fusion approach exploits the redundant and complementary spatial properties of all data sets to provide more accurate and high-resolution maps of water vapor. The comparison with maps from MERIS shows rms values of less than 1 mm.