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Abstract. Data fusion aims at integrating multiple data

sources that can be redundant or complementary to produce

complete, accurate information of the parameter of interest.

In this work, data fusion of precipitable water vapor (PWV)

estimated from remote sensing observations and data from

the Weather Research and Forecasting (WRF) modeling sys-

tem are applied to provide complete grids of PWV with high

quality. Our goal is to correctly infer PWV at spatially con-

tinuous, highly resolved grids from heterogeneous data sets.

This is done by a geostatistical data fusion approach based on

the method of fixed-rank kriging. The first data set contains

absolute maps of atmospheric PWV produced by combin-

ing observations from the Global Navigation Satellite Sys-

tems (GNSS) and Interferometric Synthetic Aperture Radar

(InSAR). These PWV maps have a high spatial density and

a millimeter accuracy; however, the data are missing in re-

gions of low coherence (e.g., forests and vegetated areas).

The PWV maps simulated by the WRF model represent the

second data set. The model maps are available for wide areas,

but they have a coarse spatial resolution and a still limited ac-

curacy. The PWV maps inferred by the data fusion at any spa-

tial resolution show better qualities than those inferred from

single data sets. In addition, by using the fixed-rank kriging

method, the computational burden is significantly lower than

that for ordinary kriging.

1 Introduction

Water vapor is a vital constituent of the Earth’s electrically

neutral atmosphere (neutrosphere). Although the ratio of wa-

ter vapor partial to total atmospheric pressure is typically

below 4 %, it is an important constituent in many respects.

Due to the dynamic nature of the neutrosphere and the com-

plex energy exchange with the Earth’s surface, the spatio-

temporal distribution of water vapor can be highly variable.

Accurate information about its content and tendency is the

main prerequisite for the prediction of clouds and precipi-

tation. Water vapor is important for studies of climate and

natural disasters such as floods, droughts or glacier melting.

On the other hand, radio signals transmitted from spaceborne

sensors are refracted when traversing the Earth’s neutro-

sphere. The neutrospheric water vapor contributes less than

10 % of the signal path delay; however, this error source is

not easily eliminated. Accurate information about the water

vapor concentration along the signal path is required, which

is not always obtainable. Although many efforts have been

made to produce accurate information about water vapor us-

ing ground-based, space-based or numerical methods, the

available information is often limited in the temporal resolu-

tion, spatial resolution or accuracy (Bevis et al., 1992). Nu-

merical atmospheric prediction models are increasingly used

to provide simulations of the atmospheric parameters. Vari-

ous studies suggested the assimilation of atmospheric param-

eters, such as water vapor, estimated from the Global Posi-

tioning System (GPS) or Interferometric Synthetic Aperture

Radar (InSAR), into these models to improve the quality of
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the simulated parameters (Pichelli et al., 2010; Bennitt and

Jupp, 2008). We want to comprehend whether the model sim-

ulations of water vapor, in their current quality, can be used

to even out the deficits of the measurement-based estimates,

particularly in regions with no measurements. To achieve this

purpose, a statistical data fusion approach is applied. The

output water vapor maps can be used in tomographic ap-

proaches to provide 3-D water vapor grids and to adjust the

parameters of numerical atmospheric prediction models. The

remainder of this section presents the recent related research

on water vapor using remote sensing data and atmospheric

models.

The amount of remote sensing data available for moni-

toring the Earth and its atmosphere is growing in a rapid,

continuous way. InSAR has proved its capability for detect-

ing surface deformation, landslides, and tectonic movements

(Massonnet et al., 1993; Zebker et al., 1994), and for deriv-

ing digital elevation models (Zebker and Goldstein, 1986).

The influence of water vapor in the observations can be re-

duced by averaging a large number of interferograms (Zebker

et al., 1997) or by time series analysis that indicates the sta-

ble persistent scatterers (Ferretti et al., 2001; Hooper et al.,

2007). Besides, InSAR has recently been used to derive the

phase shift caused due to the propagation in the Earth’s at-

mosphere from the interferograms or by time series analy-

sis (Hanssen, 2001; Meyer et al., 2008; Pichelli et al., 2010;

Alshawaf et al., 2012). Global Navigation Satellite Systems

(GNSS), however, have been considered since the 1990s as

an efficient microwave-based tool for atmospheric sounding

(Bevis et al., 1992; Rocken et al., 1995). Since then, numer-

ous methods have exploited the GNSS observations to pro-

duce estimates of the integrated atmospheric water vapor and

to generate water vapor maps (Luo et al., 2008; Jade and Vi-

jayan, 2008; Karabatić et al., 2011). InSAR and GNSS, sig-

nals are affected in a similar way by the atmosphere (Onn and

Zebker, 2006). Therefore, Alshawaf et al. (2015b) presented

a new approach to deriving absolute, high-resolution maps

of precipitable water vapor (PWV) by combining data from

InSAR and GNSS. The SAR systems acquire the images at

repeat cycles of multiples of days. Enivsat images, which are

used in this work, are available in multiples of 35 days. The

availability of the data over time can be increased by pro-

cessing data from ascending and descending modes. In addi-

tion, new SAR missions have shorter repeat cycles, 11 days

for TerraSAR-X and 6 days for Sentinel-1. The InSAR-based

PWV estimates cannot be used to observe the variability of

water vapor over a short time, but they are important in dif-

ferent aspects. This geodetic-based method produces maps of

the PWV at a high spatial resolution without additional costs.

These data can be exploited, first, to model the spatial varia-

tions of atmospheric turbulent and non-turbulent effects. Sec-

ond, they can be used to observe the variation of water con-

tent over long time periods to detect, for example, unusual

trends. Third, they can be used to adjust/readjust the initial

and boundary conditions in atmospheric prediction models.

Atmospheric modeling systems are standard approaches

to simulate 3-D distributions of the neutrospheric water va-

por at various temporal and spatial samplings. Dynamic local

area models (LAMs) are common tools for scaling down the

coarse grids of global circulation models to meso-scale ap-

plicability. Several studies employed the Weather Research

and Forecasting modeling system (WRF, Skamarock and

Klemp, 2008) to compare the LAM simulations of PWV

with GNSS point estimates (Mateus et al., 2010; Bender

et al., 2008; Cimini et al., 2012) and PWV maps from

MERIS (MEdium Resolution Imaging Spectrometer) (Al-

shawaf et al., 2012). These studies conclude that the medium-

to long-scale (greater than 20 km) water vapor signals can

be well predicted, whereas short-scale fluctuations are often

hardly captured in a realistic way.

Despite manifold improvements over the last years, con-

siderable uncertainties are still connected with the parameter-

ization of physical processes in mesoscale-atmospheric mod-

els and biases of the driving model (Prein et al., 2015). This,

in addition to the configuration of the model domains, can

significantly impact the simulation output (Gong et al., 2010)

as well as the model intrinsic water balance (Awan et al.,

2011; Fersch et al., 2012; Fersch and Kunstmann, 2014).

Therefore, the setup of the local area model is crucial, and

it has to be proper for the study region and the research ob-

jectives.

Due to the availability of various data sources, which can

be complementary or redundant, data fusion has received in-

creasing attention in the Earth observation studies. The focus

is put on the combination of multiple sources, which may be

spatially, temporally, or spectrally inhomogeneous, to pro-

duce a more complete representation of a geophysical pro-

cess. In this work, we use remote sensing data and numerical

atmospheric models through a data fusion approach to pro-

vide improved information about the distribution of atmo-

spheric water vapor. This information is important not only

for weather forecasting and climate research, but also for

better understanding how the InSAR interferograms are af-

fected by water vapor, and for selecting the most appropriate

method for reducing this noise. In turn, reliable local water

vapor maps can support adaptation of the WRF model con-

figurations and, hence, may improve the model performance.

In the following, we present water vapor maps derived

from microwave remote sensing data and numerical atmo-

spheric models. Since the available data have different spatial

levels of aggregation, it is important to discuss the change of

support problem. Then, we present the data fusion approach

based on the kriging or fixed-rank kriging techniques. We

first describe the ordinary kriging and how it can be extended

for fusing multiple data sets. Then, we present the reasons

behind using the fixed-rank kriging. We use the data fusion

approach for predicting maps of the atmospheric PWV from

remote sensing data and atmospheric models.
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Figure 1. Maps of the absolute atmospheric PWV derived by combining PSI and GNSS data and the corresponding map from MERIS. The

spatial correlation is 95 % and the rms value of the differences is 0.68 mm.

2 Atmospheric water vapor

Several observation systems are commonly used to contin-

uously monitor the vertical and horizontal distributions of

water vapor in the atmosphere. These devices are used ei-

ther from the ground, such as radiosondes and ground-based

water vapor radiometers, or from space, such as space-based

water vapor radiometers and infrared sensors. In this work,

we employ microwave remote sensing systems as well as nu-

merical atmospheric models to provide accurate maps of the

atmospheric water vapor at a high spatial resolution.

2.1 Water vapor from remote sensing data

Alshawaf et al. (2015b) presented a new approach to derive

absolute, high-resolution maps of PWV by combining data

from InSAR and GNSS. The data are collected in the region

of Upper Rhine Graben in Germany and France over the pe-

riod 2003–2008. Persistent scatterer InSAR (PSI) using the

Stanford Method for Persistent Scatterers (StaMPS, Hooper

et al., 2007) was applied to derive PWV maps from the In-

SAR interferograms. These maps contain the water vapor

signal of short-scale spatial variations, while the elevation-

dependent and long wavelength water vapor components are

eliminated when forming the interferograms or by phase fil-

tering. Therefore, GNSS-based PWV estimates were used to

reconstruct the missing components. The approach for com-

bining InSAR and GNSS data is presented in detail in Al-

shawaf et al. (2015a) and Alshawaf et al. (2015b). Figure 1

shows a map of PWV derived by combining PSI and GNSS

data and the corresponding map extracted from MERIS ob-

servations. MERIS is a passive imaging spectrometer located

on board the Envisat platform. It measures the solar radiation

reflected from the Earth’s surface or clouds. The ratio of the

radiance values measured at channels 14 and 15, located re-

spectively at 885 and 900 nm, are used to determine the verti-

cal PWV content in the neutrosphere (Fischer and Bennartz,

1997). MERIS provides maps of the PWV at a spatial reso-

lution of 260 m× 290 m (full-resolution mode). Under cloud

weather conditions MERIS measurements are highly under-

estimated since the measured PWV represents only the water

vapor existing between the sensor and cloud top; therefore,

only five MERIS PWV images were available for this study.

The PSI method produces information where stable per-

sistent scatterers are identified, which requires a high coher-

ence between the SAR images. In forests and vegetated ar-

eas, the probability of identifying persistent scatterers is low;

therefore, in these regions, only sparse points are found. The

white areas within the left figure indicate regions of low co-

herence and the corresponding data from MERIS are masked

out. The spatial correlation between the maps is 95 % and the

root mean square (rms) value of the differences is 0.68 mm.

We can observe that the persistent scatterers are dense in the

urban areas, while they almost disappear in the low coher-

ence regions. Since PWV data are spatial, their covariance

function is exploited by geostatistical techniques to reason-

ably infer the PWV at regular grids. In order to improve the

inferred PWV maps, especially in the areas where the PWV

estimates are sparse, we apply data fusion of the remotely

sensed PWV maps with maps produced by the WRF model.

2.2 Water vapor from regional atmospheric models

As depicted in Fig. 2, the WRF model (version 3.1.1, Ska-

marock et al., 2008) was set up with a parent domain of

27 km× 27 km resolution and two nests with 9 km× 9 km

and 3 km× 3 km, respectively. Feedback from the nests to

their parent domain was not activated. Vertically, the model

is divided into 42 layers with variable distance. The reso-

lution is increased for the lower troposphere where most of

the atmospheric vapor resides. The model top is defined at

50 hPa. The selection of the physical modules is based on

the study of Berg et al. (2013); accordingly, the WRF single-

moment (WSM) 5-class scheme (Hong et al., 2004) was

selected for microphysics. Shortwave and longwave radia-
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Figure 2. WRF model set up with a parent domain of resolution

27 km× 27 km and two nests of 9 km× 9 km and 3 km× 3 km, re-

spectively.

tion was computed with the community atmospheric model

(CAM) scheme (Collins et al., 2004). The processes in the

planetary boundary layer were represented by the Yonsai

University scheme (Hong et al., 2006). The surface layer was

simulated with the Monin–Obukhov scheme, and the Noah

land-surface model (Chen and Dudhia, 2001) was applied for

the surface physics. Sub-grid convective processes were in-

cluded with the Kain–Fritsch parametrization (Kain, 2004).

The global dynamic boundary conditions were ingested from

the European Center for Medium-Range Weather Forecasts

(ECMWF) ERA-INTERIM reanalysis at a 6 h interval (Up-

pala et al., 2008). In ERA-INTERIM, a broad range of dif-

ferent data sources is assimilated. For the atmospheric mois-

ture analysis, ground-based station observations, radiosonde

profiles, and GPS radio occultation are exploited. Addition-

ally, total column water vapor information from the Special

Sensor Microwave/Imager (SSM/I) and the Advanced Mi-

crowave Scanning Radiometer for the Earth Observing Sys-

tem (AMSR-E) is assimilated (Dee et al., 2011). MERIS re-

trievals of column water vapor are not ingested into ERA-

INTERIM, and thus they depict an independent data set for

our approach.

The WRF simulations cover the period between July 2004

and September 2005, such that the first 5 months were con-

sidered as spin-up. The PWV content was determined at ev-

ery output time step (10 min) by a vertical integration of

all moisture fields from the land surface to the model top.

Two output time slices were compared with the simultane-

ous MERIS observations. The long-scale signal is modeled

by a linear trend and subtracted from the maps; hence, neg-

ative values are observed on the color bars. From the com-

pared maps shown in Fig. 3, we observe that the spatial at-

mospheric patterns are not always correctly resembled by the

model. On 27 June 2005 (09:51 UTC), WRF and MERIS

PWV maps are strongly correlated with a coefficient of

0.8, whereas the analysis of 5 September 2005 (09:51 UTC)

shows a lower spatial correlation (0.71). While the patterns

east of the Upper Rhine valley are reasonably resembled,

an unexpected discontinuity exists in the area around 7.7◦ E,

48.7◦ N.

At the lateral boundaries, WRF ingests the mixing ratio

concentration from the global model. Thus, for the presented

simulation, the global climate model lateral boundary condi-

tions were applied to the first (outer) domain. Neither grid-

ded nor spectral nudging was activated in order to conserve

the model’s internal water balance. Hence the GCM bound-

ary fluxes and the local area model physics solely determine

the propagation of moisture through the respective domains.

For the analysis of 27 June 2005, the atmospheric conditions

were rather unexcited and varied slowly, resulting in a good

agreement between MERIS and WRF data. On 5 September,

a quickly moving frontal system with a strong west-to-east

gradient and a notch in the atmospheric vapor over the Up-

per Rhine Graben characterized the study region. It is not

clearly distinguishable whether the structure and dynamics

of the ERA-INTERIM boundaries or the WRF model con-

figurations are responsible for the discontinuity in PWV.

3 Change of support problem

Spatial data, for which close observations correlate more than

distant ones, can be collected at points or areal units. The

former are called point-level data or simply point data and

the latter are areal-level or block data (Gelfand et al., 2001).

In geostatistics, this defines the spatial support of the data.

When both data types are available, data fusion can be ap-

plied to infer the underlying process at any level of support.

The change of support problem is concerned with the infer-

ence of the underlying process at point levels or block lev-

els different from those at which the data are available. This

also includes fusing data at different support levels. Based

on the available input data and the desired output grid, there

are four prediction possibilities: points to points, points to

blocks, blocks to points, or blocks to blocks. These prediction

possibilities may be collected under the umbrella of kriging

(Cressie, 1993).

For block data that can be expressed as an average of point

data as if it is collected within the block, such as rainfall,

temperature, surface elevation, and atmospheric water vapor,

the following model is appropriate:

Y (Bi)=
1

|Bi |

∫
Bi

Y (s)ds, (1)

where Y (Bi) and Y (s) define the block and point data, re-

spectively (Fig. 4). Bi refers to the block over which the data

are aggregated and |Bi | is the volume (or cardinality) of the
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Figure 3. Maps of PWV content as received from MERIS and WRF, where a linear trend is subtracted from each map. The upper data are

received on 27 June 2005 (09:51 UTC), the lower data on 5 September 2005 (09:51 UTC). Gaussian averaging is applied to scale the MERIS

data at WRF resolution, 3 km× 3 km. The spatial correlation coefficient between the upper maps is 0.8 and 0.71 for the lower maps.

data. The block-level covariance can then be related to the

point-level covariance as follows:

C(Bi,Bj )= cov

 1

|Bi |

∫
Bi

Y (u)du,
1

|Bj |

∫
Bj

Y (v)dv

 (2)

=
1

|Bi ||Bj |

∫
Bi

∫
Bj

C(u,v)dudv, (3)

where C(Bi,Bj ) is the block-to-block or block covariance

function and C(u,v) is the point covariance function.

4 Spatial data fusion using kriging methods

4.1 Ordinary kriging

In geostatistics, a spatial process can be inferred over a con-

tinuous spatial domain by exploiting the covariance func-

tion as an important source of information. Predictions are

obtained based either on single or multiple sets. Kriging is

a geostatistical interpolation technique that infers values at
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+ +
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+ Observed samples locations
Regularly-spaced locations 
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Bi→Y(Bi)

s→Y(s)

Figure 4. Point and block data, such that for spatial data, Y (Bi)

represents the average of the point data within the block.

new locations by considering spatial correlations (Cressie,

1993). The spatial density of the data points has to be enough

to capture the covariance structure of the process. This infor-

mation is represented by a variogram or covariance function,

which is used to determine the predictions. If the considered

spatial data set is denoted by Z, then the kriging estimator
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Ŷ (s0) at the location s0 is determined as follows:

Ŷ (s0)= a
′Z̃, (4)

where the vector a contains the kriging weighting coeffi-

cients and Z̃ is the centered data set (see Eq. 7). The best

linear unbiased estimator is found by solving the following

constrained minimization problem:

min
a

E
{
(Ŷ (s)−Y (s))2

}
subject to

E{Ŷ (s)} = E{Y (s)}. (5)

The constraint is added to guarantee that the estimator is

unbiased with respect to the true process Y (s). A semivar-

iogram function that reflects the spatial correlations is re-

quired to solve the minimization problem, which is deter-

mined from the detrended data in Eq. A6.

The kriging method extends the spatial process using the

following linear model:

Z(s)= T(s) ·α+ ν(s)︸ ︷︷ ︸
Y (s)

+ ε(s)︸︷︷︸
noise

, (6)

where ε(s) is an independent error term, which is assumed to

be a white noise process with a mean zero and variance σ 2
ε .

T(s) ·α defines a deterministic linear trend, T has a size of

N×3 and each row has the following entries: [1 longitude(s)

latitude(s)].N is the number of observations and α is a vector

of the least squares regression coefficient. ν(s) captures the

spatial covariance structure of the process, and it is assumed

to have a mean zero and generally a non-stationary covari-

ance function. Before inferring the signal at a new location,

it is required to center the data by estimating and subtracting

the linear trend, i.e.,

Z̃ = Z−Tα̂ with α̂ = (TT′)−1T′Z. (7)

The detrended signal Z̃ is used to determine the predictions

in Eq. (4) and the deterministic signal is calculated from

T (s0)α̂. The sum of the two terms gives the total estimated

value of Y (s0). In the next section, a similar strategy is fol-

lowed to solve for the best unbiased estimator using two data

sets as presented in Braverman et al. (2009).

4.2 Spatial statistical data fusion

Spatial statistical data fusion (SSDF) is a method that statisti-

cally combines two data sets to optimally infer the quantity of

interest and calculate the corresponding uncertainties at any

predefined grid (Nguyen, 2009; Braverman et al., 2009). This

method extends the kriging technique described above to find

the optimal estimator using multiple data sets. Let the under-

lying process Y (s) to be estimated at the location s from the

data inZ1 andZ2 with the sizesN1 andN2, respectively. The

estimator Ŷ (s) at the location s is obtained from the two data

sets as follows:

Ŷ (s)= a′1Z̃1+ a
′

2Z̃2, (8)

where a1 and a2 are the fusion weighting coefficients, and

Z̃1 and Z̃2 are detrended data sets of Z1 and Z2, respectively.

Following Eq. (5) and Eq. (8), the Lagrangian function L for

the minimization problem under the unbiasedness constraint

is

L= a′1611a1+ a
′

2622a2+ 2a′1612a
′

2− 2a′1c1− 2a′2c2

+ 2m(a′11N1
+ a′21N2

− 1), (9)

where 6ii = cov(Z̃i), 6ij = cov(Z̃i, Z̃j ), and

ci = cov(Z̃i,Y (s)) are the covariance functions. 1Ni is

a vector with all entries 1 and a length Ni , and m denotes

the Lagrange multiplier. The last term of L accounts for the

unbiasedness constraint. By differentiating L with respect

to a1,a2,m and assigning the results to zero, we get, in the

following system of equations,

611 612 1N1

621 622 1N2

1′N1
1′N2

0

a1

a2

m

=
c1

c2

1

 (10)

and hencea1

a2

m

=
611 612 1N1

621 622 1N2

1′N1
1′N2

0

−1c1

c2

1

 . (11)

There are several important discussion points for the solu-

tion in Eq. (11). The covariance matrices 6ij should be de-

termined without assuming that the underlying process is

isotropic or stationary. This is important for atmospheric pa-

rameters, particularly the atmospheric water vapor that shows

spatial anisotropy as observed from the spatial autocorrela-

tion function in Fig. 5. The covariance function ci should ac-

count for the change in the support between the input and the

output data. For massive data sets, the size of the covariance

matrix is huge and the solution in Eq. (11) is not feasible any-

more. Also, the covariance matrices should be modeled such

that they would allow data prediction to any level of aggrega-

tion. The fixed-rank kriging covariance model suggested by

Cressie and Johannesson (2008) provides a comprehensive

solution for these problems for single data sets and the gen-

eralized model for fusing multiple data sets was presented by

Nguyen (2009) and Braverman et al. (2009). In the next sec-

tion, we describe the fixed-rank kriging method and the as-

sociated covariance model. Then, we describe how the data

fusion approach is applied to our data sets.

4.3 Fixed-rank kriging

The fixed-rank kriging (FRK) approach splits the spatial pro-

cess into two or three components depending on the spatial

wavelength, i.e,

Y (s)= T(s) ·α︸ ︷︷ ︸
linear trend

+S(s) · η+ ζ(s)︸ ︷︷ ︸
ν(s)

. (12)

Hydrol. Earth Syst. Sci., 19, 4747–4764, 2015 www.hydrol-earth-syst-sci.net/19/4747/2015/
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Figure 5. Spatial autocorrelation function for a PWV map, with

the long-wavelength component removed, computed from remote

sensing data acquired on 5 September 2005, 10:51 UTC.

The model in Eq. (12) is called the spatial random effects

(SRE) model (Cressie and Johannesson, 2008). The first

component represents a deterministic linear trend that re-

flects the large-scale spatial variations. The second compo-

nent S(s) ·η captures the relatively smooth spatial variations,

which form the covariance structure of the process. That is,

cov(S(u) · η,S(v) · η)= S(u)KS′(v), with K the covariance

function of η. This component is modeled by a linear com-

bination of spatial random effects at multiple spatial scales.

The vector η contains r hidden spatial random effects, which

are estimated from the data at predefined nodes. Therefore,

we should be able to estimate η regardless of the aggrega-

tion level of the input data. When neglecting the last term

in Eq. (12), the weighted sum
∑r
j=1Sj (s)ηj should give the

detrended value of Y at the location s.

The weights stored in the matrix S for each location s de-

pend on the distance between s and each node. The weighting

function S(s) has the following form:

S(s)=

{[
1− (||s−mi ||/ri)

2
]2
, for ||s−mi || ≤ ri,

0 otherwise.
(13)

mi is the node location and ri is a predefined effective ra-

dius. The formula in Eq. (13) represents a bi-square bell-

shaped function that has its maximum value at mi and de-

creases smoothly until it reaches zero outside the circle. To

demonstrate this, a schematic diagram for the node setup

is shown in Fig. 6. Within the domain of the data, four

nodes, m1, · · ·,m4, are defined with a corresponding radius.

In Fig. 6, if s is located within the radius of a certain node, it

gets a positive weight; otherwise, the weight is zero. Hence,

S(s)= [0, 0, 0, S(s)].

The last component in Eq. (12) accounts for the variations

of the process that has not been captured so far (Kang and

m1 m2

d2

m3 m4

d4
d3

d1

s

Figure 6. The observation domain with the black dots defines the

locations at which the data are available. The black little squares

indicate the nodes. The weights for each location s are related to

the distances di . The dashed circles define the radius for each node.

Cressie, 2011). The component ζ is assumed to be an un-

correlated Gaussian process with a mean zero and a variance

σ 2
ζ .

Based on the model in Eq. (12), the FRK estimator is

found when η and ζ are determined; i.e.,

Ŷ (so)= Sp(so) · η̂+ ζ̂ (so)

= Sp(so)KS′6−1Z̃+ σ 2
ζE(so = s)6

−1Z̃, (14)

where Sp(so) is the weighting matrix for the prediction lo-

cation and 6 is the covariance matrix of the input data. The

matrix E in Eq. (14) has a value of one if s = so and zero

elsewhere. Ŷ represents the detrended estimator. η̂ and ζ̂ are

the optimal a posteriori estimates of η and ζ , respectively

(Braverman et al., 2011). In order to get the total value of Ŷt ,

we calculate

Ŷt (so)= T (so) · α̂+ Ŷ (so). (15)

The steps followed to obtain the predictions based on the

FRK method are summarized in Fig. 7. The methods to esti-

mate the noise variance σ 2
ε , the covariance matrix K, and the

variance of the fine-scale signal σ 2
ζ are shown in Appendix A.

We classify the spatial variations of the atmospheric wa-

ter vapor signal into three components: long wavelength,

medium to short wavelength, and uncorrelated fine scale.

Therefore, we split the water vapor signal using the linear

model in Eq. (12) and use the FRK method for prediction.

We applied the OK and FRK to estimate the zenith-

directed wet delay derived from remote sensing data. For the
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Nodes setup 
→ construct Si

Estimate error variance

Estimate covariance 
parameters K, σξ

2

Input data sets

Estimate → detrend
the data

Define prediction 
locations → construct Sp

Obtain predictions 
and calculate the 

corresponding
MSPEs

Figure 7. Obtaining predictions via the FRK method.
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Figure 8. FRK nodes or center locations of 93 basis functions at

three spatial resolutions. The first resolution is 40 km, the second

resolution is 20 km, and the third resolution is 10 km.

FRK, the matrix S is constructed using the node setup shown

in Fig. 8. The nodes or center locations of 93 basis functions

are established at three spatial resolutions: the first resolu-

tion is 40 km, the second resolution is 20 km, and the third

resolution is 10 km. The semivariogram and the fitted spher-

ical variogram model are shown in Fig. 9a, while the covari-

ance matrix determined using the FRK method is shown in

Fig. 9b. The predicted maps with 3 km× 3 km resolution are

shown in Fig. 10. Due to the lack of ground truth data that

should be used to estimate the bias in the model data, we

do not add the long-wavelength component into the figures

to enable unbiased comparison. We observe similar results

from both ordinary kriging and fixed-rank kriging that agree

with the original WRF map. The spatial correlation coeffi-

cients with the corresponding WRF data are approximately

85 and 83 % for FRK and OK, respectively. When using OK,

we assumed the signal to be spatially isotropic to ease the

computations; therefore, the OK prediction map shows re-

sults sightly different from the FRK. The most impressive

point here is the computational time reported for both algo-

rithms. The FRK algorithm is fast, so that it requires signif-

icantly shorter time to produce the predictions. Most of the

time is invested in the calculations of the covariance model

parameters and constructing the matrices S and6. We imple-

mented the OK algorithm such that the predictions are found

iteratively. Also, to estimate a value at location s, we do not

use the entire data, but only those that exist within a prede-

fined radius around the prediction location. Nevertheless, the

OK algorithm requires computational time with an order of

magnitude higher than that required by the FRK method, on

the same machine.

In the next section, we describe the extension of the FRK

method for predicting the atmospheric PWV by fusing re-

mote sensing data and the WRF model.

5 Data fusion for water vapor estimation

In this section, we fuse the PWV maps derived from the re-

mote sensing data and WRF model. Since we classify the

spatial variations of the atmospheric water vapor signal into

long wavelength, medium to short wavelength, and uncor-

related fine-scale components, we use the following model

setup for prediction.

5.1 Model setup

PWV maps will be derived from the remote sensing data,

denoted Z1, and those from the WRF model denoted Z2

with the sizes N1 and N2, respectively. Z1 contains the point

PWV estimates from remote sensing data and Z2 contains

the block WRF data. Following the SME model in Eq. (12),

the two data sets can be expressed as[
Z1

Z2

]
=

[
T1

T2

]
α+

[
S1

S2

]
η+

[
ζ 1

0

]
+

[
ε1

ε2

]
. (16)

The regression coefficient α should be estimated jointly from

both data sets. However, we do not have a priori information

about the biases; therefore, we estimate α in this contribu-

tion independently for each data set. The matrices S1 and S2

contain the weights of each location for each data set. To dis-

tinguish between point and block data, we used the notation

S2 for block-level data. The model components for point and

block data are given in Table 1. The WRF data are available
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(a) (b)

Range

Sill

Figure 9. (a) The experimental semivariogram and the fitted spherical variogram model. (b) Covariance matrix used to predict the wet delay

maps in Fig. 10.

Figure 10. Wet delay prediction map using block OK and FRK. The resolution of the grid is 3 km× 3 km. A point-level wet delay map, on

23 May 2005 at 09:51 UTC, is used as input to the algorithms.

at a resolution of 3 km× 3km; therefore, the highly variable

signal of water vapor is smoothed. Hence, we do not add the

component ζ for the model data.

To solve the system in Eq. (11), we determine the covari-

ance structure associated with each SRE model in Eq. (16),

i.e.,

611 = var(Z̃1)= S1KS′1+ σ
2
ζ Vζ + σ

2
ε1

Vε1
, (17)

622 = var(Z̃2)= S̃2KS̃′2+ σ
2
ε2

Vε2
, (18)

612 = cov(Z̃1, Z̃2)= S1KS̃′2 =6
′

21, (19)

where σ 2
ζ Vζ and σ 2

ε Vε are diagonal covariance matrices for

ζ and ε, respectively. Note that when computing the cross-

covariance functions 612 and 621, the only part of the sig-

nals that is assumed correlated is η. In order to solve Eq. (11),

we need not only to specify the covariance matrices of the

input data, but also to find the covariance between the obser-

vations and the spatial process at the prediction locations.

The covariance terms are obtained from

c1 = cov(Z̃1(s),Y (so))

= Sp(so)KS′1(s)+ σ
2
ζ E(s = so); (20)

c2 = cov(Z̃2,Y (so))= Sp(so)KS̃′2. (21)

The matrix E in Eq. (20) has a value of one if s = so and zero

elsewhere. By solving for a1 and a2 in Eq. (11) and substi-

tuting the results in Eq. (8), the estimator Ŷ (so) becomes

Ŷ (so)=

(
Sp(so)K

[
S′

1
S̃′

2

]
+

[
σ 2
ζ E

0

])[
611 612
621 622

]−1 [
Z̃1

Z̃2

]
. (22)

The mean squared prediction error (MSPE) corresponding to

Ŷ can be obtained from

MSPE= a′1611a1+ a
′

2622a2+ 2a′1612a2− 2a′1c1− 2a′2c2. (23)

Using the FRK covariance model in Eq. (19) makes the

matrix inversion of Eq. (22) scalable. That is, the matrix in-

version can be achieved by applying a recursive block-wise

inversion as follows:[
A B

C D

]−1

=

[
O1 O2

O3 O4

]
, (24)
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Table 1. Model components from point-level and areal-level data.

Point data Block data

True process Y (s) Y (Bi)=
1
|Bi |

∑
s⊂Bi

Y (s)

Trend T(s)α

(
1
|Bi |

∑
s⊂Bi

T (s)

)
α

Weighting matrix S(s) S̃(Bi)=
1
|Bi |

∑
s⊂Bi

S(s)

Medium-scale signal S(s)η S̃(Bi)η

Fine-scale signal ζ(s) ζ(Bi)=
1
|Bi |

∑
s⊂Bi

ζ(s)

Error ε(s) ε(Bi)

where

O1 = A−1
+A−1B(D−CA−1B)−1CA−1,

O2 =−A−1B(D−CA−1B)−1,

O3 =−(D−CA−1B)−1CA−1,

O4 = (D−CA−1B)−1,

and A,B,C, and D are matrices of any size, and A and

D must be square. The inversion of individual matrices

in Eq. (24) is achieved by applying the formula of Sherman–

Morrison–Woodbury, which is made possible due to the FRK

covariance structure,

6−1
ii = (Di +SiKiS

′

i)
−1

= D−1
i −D−1

i Si(K
−1
+S′iD

−1
i Si)

−1S′iD
−1
i . (25)

The computations require the inversion of the matrices K and

(K−1
+S′iD

−1
i Si), where each of them has the size r×r with

r significantly smaller than the data size. Note that Di is a di-

agonal matrix, for which the inversion is achieved by invert-

ing the diagonal elements. Using the FRK covariance model

makes the computational burden for the matrix inversion lin-

ear with the data size (Cressie and Johannesson, 2008).

5.2 Application to the data

In this section, we build PWV maps from remote sensing

and WRF model data using a spatial statistical data fusion

method. The first PWV map, derived by combining GNSS

and PSI, has 169 688 data points. The WRF model provides

a block-level map of 1296 cells of the size 3 km× 3 km. The

data to be fused have different qualities, a huge size, different

spatial supports, and gaps in the remote sensing data. The

output grid is defined at 3 km× 3 km (block-level support)

and MERIS PWV maps are used for evaluation.

Following the work flow in Fig. 7, we first estimate the

long wavelength trends and remove them from the data using

Eq. (7). By comparing the PWV from the WRF model and

Figure 11. PWV maps from the PSI + GNSS combination and WRF

on 5 September 2005, with a linear trend subtracted from each map.

PSI + GNSS provide point-level observations, while WRF generates

block data with a block size of 3 km× 3 km. The predictions will be

obtained within the area indicated by the black box.

remote sensing data, we found it is most likely that the model

data have a bias. Due to the lack of a priori information about

the bias and the absence of accurate ground truth data to esti-

mate it, we estimated α independently for each data set. The

centered maps are shown in Fig. 11.

Second, the matrices S1 and S2 are constructed for the

first data set (remote sensing data) and the second data set

(model data). The node setup is shown in Fig. 8. The number

of nodes must be the same for both data sets, and they are

selected such that S does not contain columns of zeros; oth-

erwise, the corresponding node has to be removed. If PWV

data are available at point level, a weighting value is calcu-

lated for each point with respect to all nodes. However, the

WRF model simulates data at block level; hence, we super-

impose the model grid with a lattice of regular points such

that each cell in the WRF grid contains nine points. A weight-

ing value is calculated for each point; these values are aver-

aged to get one weighing value for each WRF cell to form

the matrix S2. Building the matrix Sp for the prediction loca-
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Table 2. Spatial correlation coefficients (CC) and rms values when comparing the prediction maps with MERIS PWV maps.

Method 5 September 2005 27 June 2005

Spatial CC rms (mm) Spatial CC rms (mm)

WRF data 0.70 1.33 0.85 0.87

Remote sensing data 0.87 0.90 0.72 1.13

Data fusion 0.91 0.82 0.86 0.92

tions is done in a similar way, either at point level or block

level, depending on the output grid.

In the third step, the covariance parameters (K,σ 2
ζ ,σ

2
ε ) are

estimated from the centered data Z̃1 and Z̃2. The error vari-

ances for both data sets, K and σ 2
ζ , are estimated as described

in Appendix A. Note that when the two data sets are com-

bined to infer a single process, i.e., PWV, one K is estimated

for all data sets.

Results

So far, all components required to produce the predictions

using Eq. (22) have been obtained. In Fig. 12, we show the

prediction maps obtained by applying FRK to individual data

sets as well as the map obtained by data fusion. The figure

also shows the MSPE maps associated with each prediction

map. We compare the interpolations obtained by applying

FRK to single data sets with those obtained by SSDF, and

we compare both with the MERIS data. The results show that

the map obtained by data fusion correlates more consistently

with the map predicted only from PSI + GNSS (Table 2). In

the PWV map generated by WRF, shown in Fig. 11, the area

in the lower left corner shows artifacts that do not reflect the

correct values of PWV as observed from the MERIS PWV

map (Fig. 3c and d). Applying FRK to the WRF data does

not remove these artifacts from the prediction map. How-

ever, in the map obtained by the fusion of both data sets,

the artifacts in the lower corner disappeared, but the corre-

sponding MSPE values are large for this region. The MSPE

values corresponding to the SSDF predictions are generally

smaller, and we should note that in the regions of sparse ob-

servations, the corresponding MSPE values tend to increase.

For regions of sparse observations in the PWV map (Fig. 11),

i.e., the areas in the west of the Rhine valley or in the lower

right corner, the map from the WRF model contributes to im-

proving the estimation of the PWV values in the prediction

map. The region in the lower right corner has a higher to-

pography and the wet delay values are expected to decrease,

as we observe from the map of WRF. In the prediction map

obtained by applying FRK to PWV from PSI and GNSS, the

predicted values tend to increase since the data in this area are

sparse and partially biased. By applying the SSDF approach,

the data available from WRF influence the predictions such

that the PWV values in this area are more reasonable, and

they decrease by moving to the lower right corner. In a sim-

ilar way, the data from WRF improve the predictions in the

region around 7.8◦ E, 49.25◦ N, where only sparse PWV data

exist. The data from the model, however, affect the prediction

in the lower left corner such that they are smaller than those

observed in the MERIS map.

In addition, we show the PWV profiles over the line drawn

horizontally at the latitude 49.37◦ N in Fig. 12h. It is ob-

served from the plots that the predictions made by data fusion

are affected more by the data from WRF in region A, where

the remote sensing data are sparse. However, in region B, the

WRF data are significantly overestimated. In the prediction

map made by data fusion, these data have a lower effect in

than those received from the remote sensing data. The map

received by applying the data fusion shows the best spatial

correlation with the data from MERIS and the smallest rms

value (see Table 2).

In the above example, the data from remote sensing have a

more significant influence on the output. In Fig. 13, we show

another example where the model highly affects the pre-

dicted map. The predicted map based on model data shows a

better spatial correlation and a lower uncertainty value com-

pared to the map predicted using remote sensing data. In this

case, the fusion map is more affected by the model data. The

spatial correlation coefficients and the values of uncertainty

are given in Table 2. In the first example (Fig. 12), the effect

of the remote sensing data on the prediction map is signifi-

cant. The other examples in Fig. 13 and Table 2 show that the

model has a larger effect on the output map.

6 Conclusions and outlook

We presented a method to obtain the atmospheric PWV over

any aggregation level by the fusion of remote sensing data

and atmospheric models. The PWV maps derived by com-

bining data from PSI and GNSS are available at discrete

points that are absent in regions of low coherence. On the

other hand, the WRF model provides simulations of PWV

in the atmosphere on regular grids at a coarse spatial resolu-

tion. Both the quality of the model data and the model skills

for representing mesoscale atmospheric structures should be

improved. The quality of the prediction maps should be im-

proved by data fusion. For data fusion, the method of spatial

statistical data fusion, first presented in (Nguyen, 2009), was

employed. This method is based on the fixed-rank kriging ap-
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Figure 12. PWV prediction and MSPE maps obtained by data fusion of PWV estimates from PSI and GNSS and maps from WRF as well

as predictions obtained by applying FRK to individual data sets. The data are available on 5 September 2005 at 09:51 UTC. The output

grid has a block size of 3 km× 3 km. The label A defines a region of sparse remote sensing data and the model data in region B are highly

overestimated.
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Figure 13. PWV maps from remote sensing (PSI+GNSS) and WRF model data on 27 June 2005 at 09:51 UTC as well as prediction maps

obtained by data fusion and individual data sets. The output grid has a block size of 3 km× 3 km over the area indicated by the black box in

(a) and (b).

proach that attempts to solve the problems of computational

complexity of huge data sets, change of support, and bias.

We inferred PWV data on a grid of 3 km× 3 km and com-

pared the results with PWV maps inferred from MERIS data

on the same grid. The results show a strong correlation be-

tween data fusion maps and those maps from MERIS. The

difference between both maps shows uncertainty values of

less than 1 mm, which is lower than that obtained from infer-

ring data based on single sets.

To further improve the results, we suggest the following.

The matrix Si has so far been constructed for each data

source by defining a set of spatial nodes. The number of

the nodes is empirically adjusted such that the covariance

function computed for the data set based on the estimated
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matrix K approximates the empirical covariance. In future

work, the size and the locations of nodes have to be opti-

mized by minimizing the difference between the empirical

and the estimated covariance functions. We should also esti-

mate the biases for each data set (if they exist), so that they

can be accounted for in the fusion approach. The data fu-

sion approach can be extended such that more than two data

sets are used, for example, by including the MERIS maps

in the fusion. With the increasing number of satellite mis-

sions and improved atmospheric models, we are able to pro-

duce complete, accurate information about the Earth’s atmo-

sphere based on data fusion approaches. Moreover, the im-

proved PWV maps can be iteratively assimilated into the lo-

cal area atmospheric model to generate more accurate 3-D

water vapor fields. Also, testing other combinations of phys-

ical schemes within the WRF model can further improve the

resulting water vapor maps. In this paper, we compared the

prediction maps with the data from MERIS; however, in fu-

ture work, the results should be validated using bootstrapping

or jackknifing techniques.
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Appendix A: Estimation covariance parameters

Predicting the stochastic component of the atmospheric sig-

nal using kriging requires obtaining the covariance function

6 and fitting a covariance model. Using the FRK covariance

model, we need to estimate the matrix K, the noise variance

σ 2
ε , and the variance of the fine-scale signal σ 2

ζ . The first

method proposed to estimate K is called the binned method

of moments (MM) (Cressie and Johannesson, 2008; Nguyen,

2009). This approach derives the empirical estimator for 6

and obtains K such that ||6̂−6||F is minimum, where ||·||F
refers to the Frobenius norm.

Another approach proposed by Katzfuss and Cressie

(2009) targets determination of the covariance parameters us-

ing the algorithm of maximum likelihood estimation (MLE).

Furthermore, they estimated the covariance parameters using

the expectation–maximization (E–M) algorithm (Dempster

et al., 1977) to reduce the computational burden. This algo-

rithm provides estimates not only of K, but also of σ 2
ζ , where

the solution for the MLEs is found iteratively. Within each it-

eration the algorithm performs two steps, the expectation and

the maximization. In the following, we present a description

of how to obtain the maximum likelihood estimates of the

covariance model parameters via the E–M algorithm.

Assume that the observations in Z̃ follow a multivariate

Gaussian distribution; that is, Z̃ ∼N(0,6). Let the param-

eters of interest K and σ 2
ζ be summarized in the vector 2;

then, the likelihood function L(2) is (Katzfuss and Cressie,

2009)

−2logL(2)=−2f (Z̃;2)

= log det 6+ Z̃
′
6−1Z̃+ c

= log det 6+ tr (6−1Z̃Z̃
′
)+ c, (A1)

where c = (N/2) log2π is a constant independent of 2, and

hence it cancels out in the maximization step. tr(·) denotes

the trace operator of a square matrix, with tr (A)=
∑n
i=1aii .

In the expectation step of the algorithm, we calculate

Q(2;2[t])= E2[t]{−2logL(η,ζ ;2)|Z̃}, (A2)

given that

−2logL(η,ζ ;2)= log det K+ tr (K−1ηη′)+N logσ 2
ζ

+ σ−2
ζ tr (ζζ ′)+N logσ 2

ε + σ
−2
ε tr (εε′).

Then Eq. (A2) becomes

Q(2;2[t])=−
1

2

[
log det K+ tr (K−1E2[t]{ηη

′
|Z̃})

+N logσ 2
ζ + σ

−2
ζ tr (V−1

ζ E2[t]{ζζ
′
|Z̃}) (A3)

+N logσ 2
ε + σ

−2
ε tr (V−1

ε E2[t]{εε
′
|Z̃})

]
.

We should remind the reader that the parameters to be esti-

mated here are K and σ 2
ζ , while σ 2

ε is estimated from the ro-

bust semivariogram, as described later. To proceed with the

solution, we are required to quantify the conditional expec-

tations in Eq. (A3). Using the standard formula required for

calculating conditional expectations for multivariate normal

distribution, the expectations will have the following form

(Katzfuss and Cressie, 2009):

E2[t]{ηη
′
|Z̃} = 6[t]η +µ

[t]
η µ
′[t]
η ,

E2[t]{ζζ
′
|Z̃} = 6

[t]
ζ +µ

[t]
ζ µ
′[t]
ζ ,

with

µη
[t]
= E2[t]{η|Z̃} =K[t]S′6t

−1
Z̃,

µζ
[t]
= E2[t]{ζ |Z̃} = σ

2
ζ

[t]
Vζ6

[t]−1
Z̃,

6[t]η = cov2[t](η|Z̃)=K[t]−K[t]S′6[t]
−1

SK[t], and

6
[t]
ζ = cov2[t](ζ |Z̃)= σ

2
ζ

[t]
Vζ − σ

2
ζ

[t]
Vζ6

[t]−1
σ 2
ζ

[t]
Vζ .

After the expectation step, we perform a maximization step.

The parameters K and σ 2
ζ in Eq. (A3) should be selected such

that Q(·) is maximized. The partial derivative is taken with

respect to both parameters and the result is assigned to zero.

Finding the derivative here is rather simple since η and ζ

do not show dependency on each other, as observed from

Eq. (A3). The updating scheme of the E–M algorithm in each

iteration is

K[t+1]
=K[t]+K[t]

(
S′6[t]

−1
(
Z̃Z̃
′
6[t]
−1
− IN

)
S
)

K[t]; (A4)

σ 2
ζ

[t+1]
= σ 2

ζ

[t]
+ σ 2

ζ

[t]
tr

(
1

N
6[t]
−1
(
Z̃Z̃
′
6[t]
−1
− IN

)
Vζ

)
σ 2
ζ

[t]
. (A5)

We keep updating the solution until the algorithm converges.

One criterion to monitor convergence is to calculate the norm

of the difference between the current and last update of the

vector 2 (which is of size r2
+ 1). That means ||2[t+1]

−

2[t]||< b should hold for a small enough and positive value

of b. Following Katzfuss and Cressie (2009), b is assigned

a value of 10−6r2. The starting choice of K and σ 2
ζ should be

valid; strictly speaking, K[0] must be symmetric and positive-

definite and σ 2
ζ

[0]
must be positive; i.e., K[0] = 0.9 ·var(Z̃)Ir

and σ 2
ζ

[0]
= 0.1 · var(Z̃).

The measurement error variance σ 2
ε is estimated separately

from the empirical semivariogram of the data. Estimating

both σ 2
ε and σ 2

ζ from the data is not a trivial task. That is be-

cause the nugget effect in the semivariogram reflects not only

the error variance, but may also be affected by the fine-scale

variance. Therefore, having information about the error dis-

tribution and variance is worthwhile. In our case we estimate

σ 2
ε using the method of a robust semivariogram (Cressie,

1993),

2γ (h)=

(
1

|N(h)|

∑
N(h)

∣∣∣Z(ui)−Z(uj )∣∣∣1/2)4

(
0.457+ 0.494

|N(h)|

) , (A6)
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Figure A1. Estimate of the covariance matrix K using the E–M al-

gorithm and the corresponding covariance matrix for the wet delay

map from PSI + GNSS. The wet delay observations are aggregated

into maps of 7× 7 km2 cells before their covariance matrices are

computed.

where h is the separation distance, assuming the signal is spa-

tially isotropic. To obtain an estimate of σ 2
ε , a straight line is

fitted to the estimated semivariogram at short h. Since the

slope of the structure function (variogram) describing atmo-

spheric turbulence is expected to vary with h, we made the

line fitting based on the estimates of the first 3 km (empiri-

cally defined). Let the line fit be γ̂ (h)= γ̂ (0+)+ bh; then,

the estimate of σ 2
ε is

σ̂ 2
ε = γ̂ (0+). (A7)

Should γ̂ (0+) have a negative value, σ̂ 2
ε is set to zero.

The estimate of K using the detrended PWV maps esti-

mated from the PSI + GNSS and model data on 5 Septem-

ber 2005 is shown in Fig. A1. The corresponding covari-

ance function is also shown. The matrix S is constructed

as described in Sect. 4.3 using the nodes setup in Fig. 8.

The KEM has a maximum value for the element (29,29),

which is equivalent to estimating at the node in the lower

right corner at the location (8.524◦ E, 48.69◦ N); see Fig. 8.

This can be explained by the sparseness of PWV estimates

close to this node, and the PWV values from PSI and GNSS

are significantly higher than those from the model. The co-

variance matrix is computed for the observations binned into

7 km× 7 km blocks to demonstrate covariance structure. We

observe from the covariance matrices that the variances, on

the main diagonal, increase in areas of sparse observations.

The reader should note that the observations do not exist on

a regular grid (due to the spatial distribution of PS points);

hence, the covariance values in the off-diagonal cells can be

negative and then again positive.

Hydrol. Earth Syst. Sci., 19, 4747–4764, 2015 www.hydrol-earth-syst-sci.net/19/4747/2015/



F. Alshawaf et al.: Atmospheric water vapor by data fusion 4763

Acknowledgements. The authors would like to thank the GNSS

data providers: RENAG, RGP, Teria, and Orpheon (France),

SAPOS®-Baden-Württemberg and Rheinland-Pfalz (Germany),

the European Permanent Network, and IGS. We thank the ESA for

the ASAR and MERIS data. We also acknowledge the ECWMF for

providing the ERA-INTERIM reanalysis data.

The article processing charges for this open-access

publication were covered by a Research

Centre of the Helmholtz Association.

Edited by: E. Zehe

References

Alshawaf, F., Fersch, B., Hinz, S., Kunstmann, H., Mayer, M.,

Thiele, A., Westerhaus, M., and Meyer, F.: Analysis of atmo-

spheric signals in spaceborne InSAR – toward water vapor map-

ping based on multiple sources, in: Geoscience and Remote

Sensing Symposium (IGARSS), 2012 IEEE International, 1960–

1963, 2012.

Alshawaf, F., Fuhrmann, T., Knopfler, A., Luo, X., Mayer, M.,

Hinz, S., and Heck, B.: Accurate Estimation of Atmospheric

Water Vapor Using GNSS Observations and Surface Meteoro-

logical Data, IEEE T. Geosci. Remote Sens., 53, 3764–3771,

doi:10.1109/TGRS.2014.2382713, 2015a.

Alshawaf, F., Hinz, S., Mayer, M., and Meyer, F. J.: Constructing

accurate maps of atmospheric water vapor by combining inter-

ferometric synthetic aperture radar and GNSS observations, J.

Geophys. Res.-Atmos., 120, 1391–1403, 2015b.

Awan, N. K., Truhetz, H., and Gobiet, A.: Parametrization-Induced

Error Characteristics of MM5 and WRF Operated in Climate

Mode over the Alpine Region: An Ensemble-Based Analysis.,

J. Climate, 24, 3107–3123, 2011.

Bender, M., Dick, G., Wickert, J., Schmidt, T., Song, S., Gendt, G.,

Ge, M., and Rothacher, M.: Validation of GPS slant delays using

water vapor radiometers and weather models, Meteorol. Z., 17,

807–812, 2008.

Bennitt, G. and Rupp, A.: Operational assimilation of GPS zenith

total delay observations into the Met Office numerical weather

prediction models, Mon. Weather Rev., 140, 2706–2719, 2012.

Berg, P., Wagner, S., Kunstmann, H., and Schädler, G.: High reso-

lution regional climate model simulations for Germany: part I –

validation, Clim. Dynam., 40, 401–414, 2013.

Bevis, M., Businger, S., Herring, T. A., Rocken, C., Anthes, R. A.,

and Ware, R. H.: GPS meteorology: remote sensing of atmo-

spheric water vapor using the global positioning system, J. Geo-

phys. Res.-Atmos., 97, 15787–15801, 1992.

Braverman, A., Nguyen, H., and Olsen, E.: Space-Time Data Fu-

sion, Earth Science, Earth Science Technology Forum, Pasadena,

California, 2011.

Braverman, A. J., Cressie, N., Katzfuss, M., Michalak, A. M.,

Miller, C. E., Nguyen, H., Olsen, E. T., and Wang, R.: Geosta-

tistical data fusion for remote sensing applications, AGU Fall

Meeting Abstracts, p. C1014, 2009.

Chen, F. and Dudhia, J.: Coupling an advanced land surface-

hydrology model with the Penn State–NCAR MM5 Modeling

System. Part I: Model implementation and sensitivity, Mon.

Weather Rev., 129, 569–585, 2001.

Cimini, D., Pierdicca, N., Pichelli, E., Ferretti, R., Mattioli, V.,

Bonafoni, S., Montopoli, M., and Perissin, D.: On the accuracy

of integrated water vapor observations and the potential for miti-

gating electromagnetic path delay error in InSAR, Atmos. Meas.

Tech., 5, 1015–1030, doi:10.5194/amt-5-1015-2012, 2012.

Collins, W. D., Rasch, P. J., Boville, B. A., Hack, J. J., McCaa, J. R.,

Williamson, D. L., Kiehl, J. T., Briegleb, B., Bitz, C., Lin, S.,

Zhang, M., and Dai, Y.: Description of the NCAR Community

Atmosphere Model (CAM 3.0), Tech. rep., Climate And Global

Dynamics Division National Center For Atmospheric Research

Boulder, Colorado, 2004.

Cressie, N.: Statistics for Spatial Data, Wiley, New York, 1993.

Cressie, N. and Johannesson, G.: Fixed rank kriging for very large

spatial data sets, J. Roy. Stat. Soc. B Met., 70, 209–226, 2008.

Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli,

P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G.,

Bauer, P., Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bid-

lot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer,

A. J., Haimberger, L., Healy, S. B., Hersbach, H., Holm, E. V.,

Isaksen, L., Kallberg, P., Köhler, M., Matricardi, M., McNally,

A. P., Monge-Sanz, B. M., Morcrette, J.-J., Park, B.-K., Peubey,

C., de Rosnay, P., Tavolato, C., Thepaut, J.-N., and Vitart, F.: The

ERA-Interim reanalysis: configuration and performance of the

data assimilation system, Q. J. Roy. Meteor. Soc., 137, 553–597,

doi:10.1002/qj.828, 2011.

Dempster, A. P., Laird, N. M., and Rubin, D. B.: Maximum likeli-

hood from incomplete data via the EM algorithm, J. Roy. Stat.

Soc. B, 39, 1–38, 1977.

Ferretti, A., Prati, C., and Rocca, F.: Permanent scatterers in SAR

interferometry, IEEE T. Geosci. Remote, 39, 8–20, 2001.

Fersch, B. and Kunstmann, H.: Atmospheric and terrestrial wa-

ter budgets: sensitivity and performance of configurations and

global driving data for long term continental scale WRF simula-

tions, Clim. Dynam., 42, 2367–2396, 2014.

Fersch, B., Kunstmann, H., Devaraju, B., and Sneeuw, N.: Large

scale water storage variations from regional atmospheric water

budgets and comparison to the GRACE spaceborne gravimetry,

J. Hydrometeorol., 13, 1589–1603, 2012.

Fischer, J. and Bennartz, R.: Retrieval of Total Water Vapour Con-

tent from MERIS Measurements: Algorithm Theoretical Basis

Document ; ATBD 2.4, Freie Universität Berlin, Berlin, Ger-

many, 1997.

Gelfand, A. E., Zhu, L., and Carlin, B. P.: On the change of support

problem for spatio-temporal data, Biostatistics, 2, 31–45, 2001.

Gong, W., Meyer, F., Webley, P., Morton, D., and Liu, S.: Perfor-

mance analysis of atmospheric correction in InSAR data based

on the Weather Research and Forecasting Model (WRF), in: Geo-

science and Remote Sensing Symposium (IGARSS), 2010 IEEE

International, 25–30 July 2010, Honolulu, Hawaii, USA, 2900–

2903, 2010.

Hanssen, R.: Radar Interferometry: Data Interpretation and Error

Analysis, Kluwer Academic Publishers, Dordrecht, the Nether-

lands, 2001.

Hong, S.-Y., Dudhia, J., and Chen, S.-H.: A revised approach to ice

microphysical processes for the bulk parameterization of clouds

and precipitation, Mon. Weather Rev., 132, 103–120, 2004.

www.hydrol-earth-syst-sci.net/19/4747/2015/ Hydrol. Earth Syst. Sci., 19, 4747–4764, 2015

http://dx.doi.org/10.1109/TGRS.2014.2382713
http://dx.doi.org/10.5194/amt-5-1015-2012
http://dx.doi.org/10.1002/qj.828


4764 F. Alshawaf et al.: Atmospheric water vapor by data fusion

Hong, S.-Y., Noh, Y., and Dudhia, J.: A new vertical diffusion pack-

age with an explicit treatment of entrainment processes, Mon.

Weather Rev., 134, 2318–2341, 2006.

Hooper, A., Segall, P., and Zebker, H.: Persistent scatterer interfer-

ometric synthetic aperture radar for crustal deformation analysis,

with application to Volcán Alcedo, Galápagos, J. Geophys. Res.-

Solid Earth, 112, B07407, doi:10.1029/2006JB004763, 2007.

Jade, S. and Vijayan, M.: GPS-based atmospheric precipitable water

vapor estimation using meteorological parameters interpolated

from NCEP global reanalysis data, J. Geophys. Res.-Atmos.,

113, D03106, doi:10.1029/2007JD008758, 2008.

Kain, J. S.: The Kain–Fritsch convective parameterization: an up-

date, J. Appl. Meteorol., 43, 170–181, 2004.

Kang, E. L. and Cressie, N.: Bayesian inference for the spatial ran-

dom effects model, J. Am. Stat. Assoc., 106, 972–983, 2011.
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