Articles | Volume 19, issue 9
https://doi.org/10.5194/hess-19-3875-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/hess-19-3875-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Performance evaluation of groundwater model hydrostratigraphy from airborne electromagnetic data and lithological borehole logs
P. A. Marker
CORRESPONDING AUTHOR
Department of Environmental Engineering, Technical University of Denmark, Kgs. Lyngby, Denmark
N. Foged
HydroGeophysics Group, Department of Geoscience, Aarhus University, Aarhus, Denmark
Geological Survey of Denmark and Greenland, Copenhagen, Denmark
A. V. Christiansen
HydroGeophysics Group, Department of Geoscience, Aarhus University, Aarhus, Denmark
J. C. Refsgaard
Geological Survey of Denmark and Greenland, Copenhagen, Denmark
E. Auken
HydroGeophysics Group, Department of Geoscience, Aarhus University, Aarhus, Denmark
P. Bauer-Gottwein
Department of Environmental Engineering, Technical University of Denmark, Kgs. Lyngby, Denmark
Related authors
N. Foged, P. A. Marker, A. V. Christansen, P. Bauer-Gottwein, F. Jørgensen, A.-S. Høyer, and E. Auken
Hydrol. Earth Syst. Sci., 18, 4349–4362, https://doi.org/10.5194/hess-18-4349-2014, https://doi.org/10.5194/hess-18-4349-2014, 2014
Theerapol Charoensuk, Claudia Katrine Corvenius Lorentzen, Anne Beukel Bak, Jakob Luchner, Christian Tøttrup, and Peter Bauer-Gottwein
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-175, https://doi.org/10.5194/hess-2024-175, 2024
Revised manuscript under review for HESS
Short summary
Short summary
The objective of this study is to enhance the performance of 1D-2D flood models using satellite Earth observation data. The main factor influencing the 1D-2D flood model is the accuracy of DEM. This study introduces 2 workflows to improve the 1D-2D flood model: 1) DEM analysis workflow evaluates 10 DEM products using the ICESat-2 ATL08 benchmark, and 2) flood map analysis workflow involves comparing flood extent maps derived from multi-mission satellite datasets with simulated flood maps.
Muhammad Rizwan Asif, Nikolaj Foged, Thue Bording, Jakob Juul Larsen, and Anders Vest Christiansen
Earth Syst. Sci. Data, 15, 1389–1401, https://doi.org/10.5194/essd-15-1389-2023, https://doi.org/10.5194/essd-15-1389-2023, 2023
Short summary
Short summary
To apply a deep learning (DL) algorithm to electromagnetic (EM) methods, subsurface resistivity models and/or the corresponding EM responses are often required. To date, there are no standardized EM datasets, which hinders the progress and evolution of DL methods due to data inconsistency. Therefore, we present a large-scale physics-driven model database of geologically plausible and EM-resolvable subsurface models to incorporate consistency and reliability into DL applications for EM methods.
Monica Coppo Frias, Suxia Liu, Xingguo Mo, Karina Nielsen, Heidi Ranndal, Liguang Jiang, Jun Ma, and Peter Bauer-Gottwein
Hydrol. Earth Syst. Sci., 27, 1011–1032, https://doi.org/10.5194/hess-27-1011-2023, https://doi.org/10.5194/hess-27-1011-2023, 2023
Short summary
Short summary
This paper uses remote sensing data from ICESat-2 to calibrate a 1D hydraulic model. With the model, we can make estimations of discharge and water surface elevation, which are important indicators in flooding risk assessment. ICESat-2 data give an added value, thanks to the 0.7 m resolution, which allows the measurement of narrow river streams. In addition, ICESat-2 provides measurements on the river dry portion geometry that can be included in the model.
Youjiang Shen, Dedi Liu, Liguang Jiang, Karina Nielsen, Jiabo Yin, Jun Liu, and Peter Bauer-Gottwein
Earth Syst. Sci. Data, 14, 5671–5694, https://doi.org/10.5194/essd-14-5671-2022, https://doi.org/10.5194/essd-14-5671-2022, 2022
Short summary
Short summary
A data gap of 338 Chinese reservoirs with their surface water area (SWA), water surface elevation (WSE), and reservoir water storage change (RWSC) during 2010–2021. Validation against the in situ observations of 93 reservoirs indicates the relatively high accuracy and reliability of the datasets. The unique and novel remotely sensed dataset would benefit studies involving many aspects (e.g., hydrological models, water resources related studies, and more).
Hilary A. Dugan, Peter T. Doran, Denys Grombacher, Esben Auken, Thue Bording, Nikolaj Foged, Neil Foley, Jill Mikucki, Ross A. Virginia, and Slawek Tulaczyk
The Cryosphere, 16, 4977–4983, https://doi.org/10.5194/tc-16-4977-2022, https://doi.org/10.5194/tc-16-4977-2022, 2022
Short summary
Short summary
In the McMurdo Dry Valleys of Antarctica, a deep groundwater system has been hypothesized to connect Don Juan Pond and Lake Vanda, both surface waterbodies that contain very high concentrations of salt. This is unusual, since permafrost in polar landscapes is thought to prevent subsurface hydrologic connectivity. We show results from an airborne geophysical survey that reveals widespread unfrozen brine in Wright Valley and points to the potential for deep valley-wide brine conduits.
Eva Sebok, Hans Jørgen Henriksen, Ernesto Pastén-Zapata, Peter Berg, Guillaume Thirel, Anthony Lemoine, Andrea Lira-Loarca, Christiana Photiadou, Rafael Pimentel, Paul Royer-Gaspard, Erik Kjellström, Jens Hesselbjerg Christensen, Jean Philippe Vidal, Philippe Lucas-Picher, Markus G. Donat, Giovanni Besio, María José Polo, Simon Stisen, Yvan Caballero, Ilias G. Pechlivanidis, Lars Troldborg, and Jens Christian Refsgaard
Hydrol. Earth Syst. Sci., 26, 5605–5625, https://doi.org/10.5194/hess-26-5605-2022, https://doi.org/10.5194/hess-26-5605-2022, 2022
Short summary
Short summary
Hydrological models projecting the impact of changing climate carry a lot of uncertainty. Thus, these models usually have a multitude of simulations using different future climate data. This study used the subjective opinion of experts to assess which climate and hydrological models are the most likely to correctly predict climate impacts, thereby easing the computational burden. The experts could select more likely hydrological models, while the climate models were deemed equally probable.
Pradip Kumar Maurya, Frederik Ersted Christensen, Masson Andy Kass, Jesper B. Pedersen, Rasmus R. Frederiksen, Nikolaj Foged, Anders Vest Christiansen, and Esben Auken
Hydrol. Earth Syst. Sci., 26, 2813–2827, https://doi.org/10.5194/hess-26-2813-2022, https://doi.org/10.5194/hess-26-2813-2022, 2022
Short summary
Short summary
In this paper, we present an application of the electromagnetic method to image the subsurface below rivers, lakes, or any surface water body. The scanning of the subsurface is carried out by sailing an electromagnetic sensor called FloaTEM. Imaging results show a 3D distribution of different sediment types below the freshwater lakes. In the case of saline water, the system is capable of identifying the probable location of groundwater discharge into seawater.
Ida Karlsson Seidenfaden, Torben Obel Sonnenborg, Jens Christian Refsgaard, Christen Duus Børgesen, Jørgen Eivind Olesen, and Dennis Trolle
Hydrol. Earth Syst. Sci., 26, 955–973, https://doi.org/10.5194/hess-26-955-2022, https://doi.org/10.5194/hess-26-955-2022, 2022
Short summary
Short summary
This study investigates how the spatial nitrate reduction in the subsurface may shift under changing climate and land use conditions. This change is investigated by comparing maps showing the spatial nitrate reduction in an agricultural catchment for current conditions, with maps generated for future projected climate and land use conditions. Results show that future climate flow paths may shift the catchment reduction noticeably, while implications of land use changes were less substantial.
Liguang Jiang, Silja Westphal Christensen, and Peter Bauer-Gottwein
Hydrol. Earth Syst. Sci., 25, 6359–6379, https://doi.org/10.5194/hess-25-6359-2021, https://doi.org/10.5194/hess-25-6359-2021, 2021
Short summary
Short summary
River roughness and geometry are essential to hydraulic river models. However, measurements of these quantities are not available in most rivers globally. Nevertheless, simultaneous calibration of channel geometric parameters and roughness is difficult as they compensate for each other. This study introduces an alternative approach of parameterization and calibration that reduces parameter correlations by combining cross-section geometry and roughness into a conveyance parameter.
Krista F. Myers, Peter T. Doran, Slawek M. Tulaczyk, Neil T. Foley, Thue S. Bording, Esben Auken, Hilary A. Dugan, Jill A. Mikucki, Nikolaj Foged, Denys Grombacher, and Ross A. Virginia
The Cryosphere, 15, 3577–3593, https://doi.org/10.5194/tc-15-3577-2021, https://doi.org/10.5194/tc-15-3577-2021, 2021
Short summary
Short summary
Lake Fryxell, Antarctica, has undergone hundreds of meters of change in recent geologic history. However, there is disagreement on when lake levels were higher and by how much. This study uses resistivity data to map the subsurface conditions (frozen versus unfrozen ground) to map ancient shorelines. Our models indicate that Lake Fryxell was up to 60 m higher just 1500 to 4000 years ago. This amount of lake level change shows how sensitive these systems are to small changes in temperature.
Jakob Juul Larsen, Stine Søgaard Pedersen, Nikolaj Foged, and Esben Auken
Geosci. Instrum. Method. Data Syst., 10, 81–90, https://doi.org/10.5194/gi-10-81-2021, https://doi.org/10.5194/gi-10-81-2021, 2021
Short summary
Short summary
The transient electromagnetic method (TEM) is widely used for mapping subsurface resistivity structures, but data are inevitably contaminated by noise from various sources including radio signals in the very low frequency (VLF) 3–30 kHz band. We present an approach where VLF noise is effectively suppressed with a new post-processing scheme where boxcar gates are combined into semi-tapered gates. The result is a 20 % increase in the depth of investigation for the presented test survey.
Cecile M. M. Kittel, Liguang Jiang, Christian Tøttrup, and Peter Bauer-Gottwein
Hydrol. Earth Syst. Sci., 25, 333–357, https://doi.org/10.5194/hess-25-333-2021, https://doi.org/10.5194/hess-25-333-2021, 2021
Short summary
Short summary
In poorly instrumented catchments, satellite altimetry offers a unique possibility to obtain water level observations. Improvements in instrument design have increased the capabilities of altimeters to observe inland water bodies, including rivers. In this study, we demonstrate how a dense Sentinel-3 water surface elevation monitoring network can be established at catchment scale using publicly accessible processing platforms. The network can serve as a useful supplement to ground observations.
Sheng Wang, Monica Garcia, Andreas Ibrom, and Peter Bauer-Gottwein
Hydrol. Earth Syst. Sci., 24, 3643–3661, https://doi.org/10.5194/hess-24-3643-2020, https://doi.org/10.5194/hess-24-3643-2020, 2020
Short summary
Short summary
Remote sensing only provides snapshots of rapidly changing land surface variables; this limits its application for water resources and ecosystem management. To obtain continuous estimates of surface temperature, soil moisture, evapotranspiration, and ecosystem productivity, a simple and operational modelling scheme is presented. We demonstrate it with temporally sparse optical and thermal remote sensing data from an unmanned aerial system at a Danish bioenergy plantation eddy covariance site.
Raphaël Payet-Burin, Mikkel Kromann, Silvio Pereira-Cardenal, Kenneth Marc Strzepek, and Peter Bauer-Gottwein
Hydrol. Earth Syst. Sci., 23, 4129–4152, https://doi.org/10.5194/hess-23-4129-2019, https://doi.org/10.5194/hess-23-4129-2019, 2019
Short summary
Short summary
We present an open-source tool for water infrastructure investment planning considering interrelations between the water, food, and energy systems. We apply it to the Zambezi River basin to evaluate economic impacts of hydropower and irrigation development plans. We find trade-offs between the development plans and sensitivity to uncertainties (e.g. climate change, carbon taxes, capital costs of solar technologies, environmental policies) demonstrating the necessity for an integrated approach.
Diana Lucatero, Henrik Madsen, Jens C. Refsgaard, Jacob Kidmose, and Karsten H. Jensen
Hydrol. Earth Syst. Sci., 22, 6591–6609, https://doi.org/10.5194/hess-22-6591-2018, https://doi.org/10.5194/hess-22-6591-2018, 2018
Short summary
Short summary
The present study evaluates the skill of a seasonal forecasting system for hydrological relevant variables in Denmark. Linear scaling and quantile mapping were used to correct the forecasts. Uncorrected forecasts tend to be more skillful than climatology, in general, for the first month lead time only. Corrected forecasts show a reduced bias in the mean; are more consistent; and show a level of accuracy that is closer to, although no higher than, that of ensemble climatology, in general.
Filippo Bandini, Daniel Olesen, Jakob Jakobsen, Cecile Marie Margaretha Kittel, Sheng Wang, Monica Garcia, and Peter Bauer-Gottwein
Hydrol. Earth Syst. Sci., 22, 4165–4181, https://doi.org/10.5194/hess-22-4165-2018, https://doi.org/10.5194/hess-22-4165-2018, 2018
Short summary
Short summary
Water depth observations are essential data to forecast flood hazard, predict sediment transport, or monitor in-stream habitats. We retrieved bathymetry with a sonar wired to a drone. This system can improve the speed and spatial scale at which water depth observations are retrieved. Observations can be retrieved also in unnavigable or inaccessible rivers. Water depth observations showed an accuracy of ca. 2.1 % of actual depth, without being affected by water turbidity or bed material.
Diana Lucatero, Henrik Madsen, Jens C. Refsgaard, Jacob Kidmose, and Karsten H. Jensen
Hydrol. Earth Syst. Sci., 22, 3601–3617, https://doi.org/10.5194/hess-22-3601-2018, https://doi.org/10.5194/hess-22-3601-2018, 2018
Short summary
Short summary
The skill of an experimental streamflow forecast system in the Ahlergaarde catchment, Denmark, is analyzed. Inputs to generate the forecasts are taken from the ECMWF System 4 seasonal forecasting system and an ensemble of observations (ESP). Reduction of biases is achieved by processing the meteorological and/or streamflow forecasts. In general, this is not sufficient to ensure a higher level of accuracy than the ESP, indicating a modest added value of a seasonal meteorological system.
Cecile M. M. Kittel, Karina Nielsen, Christian Tøttrup, and Peter Bauer-Gottwein
Hydrol. Earth Syst. Sci., 22, 1453–1472, https://doi.org/10.5194/hess-22-1453-2018, https://doi.org/10.5194/hess-22-1453-2018, 2018
Short summary
Short summary
In this study, we integrate free, global Earth observations in a user-friendly and flexible model to reliably characterize an otherwise unmonitored river basin. The proposed model is the best baseline characterization of the Ogooué basin in light of available observations. Furthermore, the study shows the potential of using new, publicly available Earth observations and a suitable model structure to obtain new information in poorly monitored or remote areas and to support user requirements.
Raphael Schneider, Peter Nygaard Godiksen, Heidi Villadsen, Henrik Madsen, and Peter Bauer-Gottwein
Hydrol. Earth Syst. Sci., 21, 751–764, https://doi.org/10.5194/hess-21-751-2017, https://doi.org/10.5194/hess-21-751-2017, 2017
Short summary
Short summary
We use water level observations from the CryoSat-2 satellite in combination with a river model of the Brahmaputra River, extracting satellite data over a dynamic river mask derived from Landsat imagery. The novelty of this work is the use of the CryoSat-2 water level observations, collected using a complex spatio-temporal sampling scheme, to calibrate a hydrodynamic river model. The resulting model accurately reproduces water levels, without precise knowledge of river bathymetry.
Donghua Zhang, Henrik Madsen, Marc E. Ridler, Jacob Kidmose, Karsten H. Jensen, and Jens C. Refsgaard
Hydrol. Earth Syst. Sci., 20, 4341–4357, https://doi.org/10.5194/hess-20-4341-2016, https://doi.org/10.5194/hess-20-4341-2016, 2016
Short summary
Short summary
We present a method to assimilate observed groundwater head and soil moisture profiles into an integrated hydrological model. The study uses the ensemble transform Kalman filter method and the MIKE SHE hydrological model code. The proposed method is shown to be more robust and provide better results for two cases in Denmark, and is also validated using real data. The hydrological model with assimilation overall improved performance compared to the model without assimilation.
Jørn Rasmussen, Henrik Madsen, Karsten Høgh Jensen, and Jens Christian Refsgaard
Hydrol. Earth Syst. Sci., 20, 2103–2118, https://doi.org/10.5194/hess-20-2103-2016, https://doi.org/10.5194/hess-20-2103-2016, 2016
Short summary
Short summary
In the paper, observations are assimilated into a hydrological model in order to improve the model performance. Two methods for detecting and correcting systematic errors (bias) in groundwater head observations are used leading to improved results compared to standard assimilation methods which ignores any bias. This is demonstrated using both synthetic (user generated) observations and real-world observations.
Claus Davidsen, Suxia Liu, Xingguo Mo, Dan Rosbjerg, and Peter Bauer-Gottwein
Hydrol. Earth Syst. Sci., 20, 771–785, https://doi.org/10.5194/hess-20-771-2016, https://doi.org/10.5194/hess-20-771-2016, 2016
Short summary
Short summary
In northern China, rivers run dry and groundwater tables drop, causing economic losses for all water use sectors. We present a groundwater-surface water allocation decision support tool for cost-effective long-term recovery of an overpumped aquifer. The tool is demonstrated for a part of the North China Plain and can support the implementation of the recent China No. 1 Document in a rational and economically efficient way.
T. O. Sonnenborg, D. Seifert, and J. C. Refsgaard
Hydrol. Earth Syst. Sci., 19, 3891–3901, https://doi.org/10.5194/hess-19-3891-2015, https://doi.org/10.5194/hess-19-3891-2015, 2015
Short summary
Short summary
The impacts of climate model uncertainty and geological model uncertainty on hydraulic head, stream flow, travel time and capture zones are evaluated. Six versions of a physically based and distributed hydrological model, each containing a unique interpretation of the geological structure of the model area, are forced by 11 climate model projections. Geology is the dominating uncertainty source for travel time and capture zones, while climate dominates for hydraulic heads and steam flow.
J. Rasmussen, H. Madsen, K. H. Jensen, and J. C. Refsgaard
Hydrol. Earth Syst. Sci., 19, 2999–3013, https://doi.org/10.5194/hess-19-2999-2015, https://doi.org/10.5194/hess-19-2999-2015, 2015
P. Bauer-Gottwein, I. H. Jensen, R. Guzinski, G. K. T. Bredtoft, S. Hansen, and C. I. Michailovsky
Hydrol. Earth Syst. Sci., 19, 1469–1485, https://doi.org/10.5194/hess-19-1469-2015, https://doi.org/10.5194/hess-19-1469-2015, 2015
M. A. D. Larsen, J. C. Refsgaard, M. Drews, M. B. Butts, K. H. Jensen, J. H. Christensen, and O. B. Christensen
Hydrol. Earth Syst. Sci., 18, 4733–4749, https://doi.org/10.5194/hess-18-4733-2014, https://doi.org/10.5194/hess-18-4733-2014, 2014
Short summary
Short summary
The paper presents results from a novel dynamical coupling between a hydrology model and a regional climate model developed to include a wider range of processes, land-surface/atmosphere interaction and finer spatio-temporal scales. The coupled performance was largely dependent on the data exchange frequency between the two model components, and longer-term precipitation was somewhat improved by the coupled system whereas the short-term dynamics for a range of variables was less accurate.
N. Foged, P. A. Marker, A. V. Christansen, P. Bauer-Gottwein, F. Jørgensen, A.-S. Høyer, and E. Auken
Hydrol. Earth Syst. Sci., 18, 4349–4362, https://doi.org/10.5194/hess-18-4349-2014, https://doi.org/10.5194/hess-18-4349-2014, 2014
J. Koch, X. He, K. H. Jensen, and J. C. Refsgaard
Hydrol. Earth Syst. Sci., 18, 2907–2923, https://doi.org/10.5194/hess-18-2907-2014, https://doi.org/10.5194/hess-18-2907-2014, 2014
C. I. Michailovsky and P. Bauer-Gottwein
Hydrol. Earth Syst. Sci., 18, 997–1007, https://doi.org/10.5194/hess-18-997-2014, https://doi.org/10.5194/hess-18-997-2014, 2014
I. B. Karlsson, T. O. Sonnenborg, K. H. Jensen, and J. C. Refsgaard
Hydrol. Earth Syst. Sci., 18, 595–610, https://doi.org/10.5194/hess-18-595-2014, https://doi.org/10.5194/hess-18-595-2014, 2014
D. Herckenrath, G. Fiandaca, E. Auken, and P. Bauer-Gottwein
Hydrol. Earth Syst. Sci., 17, 4043–4060, https://doi.org/10.5194/hess-17-4043-2013, https://doi.org/10.5194/hess-17-4043-2013, 2013
H. Qin, G. Cao, M. Kristensen, J. C. Refsgaard, M. O. Rasmussen, X. He, J. Liu, Y. Shu, and C. Zheng
Hydrol. Earth Syst. Sci., 17, 3759–3778, https://doi.org/10.5194/hess-17-3759-2013, https://doi.org/10.5194/hess-17-3759-2013, 2013
J. Kidmose, J. C. Refsgaard, L. Troldborg, L. P. Seaby, and M. M. Escrivà
Hydrol. Earth Syst. Sci., 17, 1619–1634, https://doi.org/10.5194/hess-17-1619-2013, https://doi.org/10.5194/hess-17-1619-2013, 2013
Related subject area
Subject: Engineering Hydrology | Techniques and Approaches: Modelling approaches
Soil moisture modeling with ERA5-Land retrievals, topographic indices, and in situ measurements and its use for predicting ruts
A systematic review of climate change science relevant to Australian design flood estimation
Technical Note: Resolution enhancement of flood inundation grids
Floods and droughts: a multivariate perspective
Technical note: Statistical generation of climate-perturbed flow duration curves
Deep learning methods for flood mapping: a review of existing applications and future research directions
Extreme floods in Europe: going beyond observations using reforecast ensemble pooling
Hydroinformatics education – the Water Informatics in Science and Engineering (WISE) Centre for Doctoral Training
Wetropolis extreme rainfall and flood demonstrator: from mathematical design to outreach
Technical note: The beneficial role of a natural permeable layer in slope stabilization by drainage trenches
Assessing the impacts of reservoirs on downstream flood frequency by coupling the effect of scheduling-related multivariate rainfall with an indicator of reservoir effects
Observation operators for assimilation of satellite observations in fluvial inundation forecasting
Contribution of potential evaporation forecasts to 10-day streamflow forecast skill for the Rhine River
Inundation mapping based on reach-scale effective geometry
Effects of variability in probable maximum precipitation patterns on flood losses
The challenge of forecasting impacts of flash floods: test of a simplified hydraulic approach and validation based on insurance claim data
A comparison of the discrete cosine and wavelet transforms for hydrologic model input data reduction
Hydrological modeling of the Peruvian–Ecuadorian Amazon Basin using GPM-IMERG satellite-based precipitation dataset
Technical note: Design flood under hydrological uncertainty
Topography- and nightlight-based national flood risk assessment in Canada
Regime shifts in annual maximum rainfall across Australia – implications for intensity–frequency–duration (IFD) relationships
A continuous rainfall model based on vine copulas
Estimates of global dew collection potential on artificial surfaces
Climate changes of hydrometeorological and hydrological extremes in the Paute basin, Ecuadorean Andes
An assessment of the ability of Bartlett–Lewis type of rainfall models to reproduce drought statistics
Modeling root reinforcement using a root-failure Weibull survival function
Socio-hydrology: conceptualising human-flood interactions
Application of a model-based rainfall-runoff database as efficient tool for flood risk management
Estimating actual, potential, reference crop and pan evaporation using standard meteorological data: a pragmatic synthesis
HydroViz: design and evaluation of a Web-based tool for improving hydrology education
Web 2.0 collaboration tool to support student research in hydrology – an opinion
SCS-CN parameter determination using rainfall-runoff data in heterogeneous watersheds – the two-CN system approach
Discharge estimation combining flow routing and occasional measurements of velocity
Experimental investigation of the predictive capabilities of data driven modeling techniques in hydrology - Part 2: Application
Comment on "A praxis-oriented perspective of streamflow inference from stage observations – the method of Dottori et al. (2009) and the alternative of the Jones Formula, with the kinematic wave celerity computed on the looped rating curve" by Koussis (2009)
An evaluation of the Canadian global meteorological ensemble prediction system for short-term hydrological forecasting
Marian Schönauer, Anneli M. Ågren, Klaus Katzensteiner, Florian Hartsch, Paul Arp, Simon Drollinger, and Dirk Jaeger
Hydrol. Earth Syst. Sci., 28, 2617–2633, https://doi.org/10.5194/hess-28-2617-2024, https://doi.org/10.5194/hess-28-2617-2024, 2024
Short summary
Short summary
This work employs innovative spatiotemporal modeling to predict soil moisture, with implications for sustainable forest management. By correlating predicted soil moisture with rut depth, it addresses a critical concern of soil damage and ecological impact – and its prevention through adequate planning of forest operations.
Conrad Wasko, Seth Westra, Rory Nathan, Acacia Pepler, Timothy H. Raupach, Andrew Dowdy, Fiona Johnson, Michelle Ho, Kathleen L. McInnes, Doerte Jakob, Jason Evans, Gabriele Villarini, and Hayley J. Fowler
Hydrol. Earth Syst. Sci., 28, 1251–1285, https://doi.org/10.5194/hess-28-1251-2024, https://doi.org/10.5194/hess-28-1251-2024, 2024
Short summary
Short summary
In response to flood risk, design flood estimation is a cornerstone of infrastructure design and emergency response planning, but design flood estimation guidance under climate change is still in its infancy. We perform the first published systematic review of the impact of climate change on design flood estimation and conduct a meta-analysis to provide quantitative estimates of possible future changes in extreme rainfall.
Seth Bryant, Guy Schumann, Heiko Apel, Heidi Kreibich, and Bruno Merz
Hydrol. Earth Syst. Sci., 28, 575–588, https://doi.org/10.5194/hess-28-575-2024, https://doi.org/10.5194/hess-28-575-2024, 2024
Short summary
Short summary
A new algorithm has been developed to quickly produce high-resolution flood maps. It is faster and more accurate than current methods and is available as open-source scripts. This can help communities better prepare for and mitigate flood damages without expensive modelling.
Manuela Irene Brunner
Hydrol. Earth Syst. Sci., 27, 2479–2497, https://doi.org/10.5194/hess-27-2479-2023, https://doi.org/10.5194/hess-27-2479-2023, 2023
Short summary
Short summary
I discuss different types of multivariate hydrological extremes and their dependencies, including regional extremes affecting multiple locations, such as spatially connected flood events; consecutive extremes occurring in close temporal succession, such as successive droughts; extremes characterized by multiple characteristics, such as floods with jointly high peak discharge and flood volume; and transitions between different types of extremes, such as drought-to-flood transitions.
Veysel Yildiz, Robert Milton, Solomon Brown, and Charles Rougé
Hydrol. Earth Syst. Sci., 27, 2499–2507, https://doi.org/10.5194/hess-27-2499-2023, https://doi.org/10.5194/hess-27-2499-2023, 2023
Short summary
Short summary
The proposed approach is based on the parameterisation of flow duration curves (FDCs) to generate hypothetical streamflow futures. (1) We sample a broad range of future climates with modified values of three key streamflow statistics. (2) We generate an FDC for each hydro-climate future. (3) The resulting ensemble is ready to support robustness assessments in a changing climate. Our approach seamlessly represents a large range of futures with increased frequencies of both high and low flows.
Roberto Bentivoglio, Elvin Isufi, Sebastian Nicolaas Jonkman, and Riccardo Taormina
Hydrol. Earth Syst. Sci., 26, 4345–4378, https://doi.org/10.5194/hess-26-4345-2022, https://doi.org/10.5194/hess-26-4345-2022, 2022
Short summary
Short summary
Deep learning methods have been increasingly used in flood management to improve traditional techniques. While promising results have been obtained, our review shows significant challenges in building deep learning models that can (i) generalize across multiple scenarios, (ii) account for complex interactions, and (iii) perform probabilistic predictions. We argue that these shortcomings could be addressed by transferring recent fundamental advancements in deep learning to flood mapping.
Manuela I. Brunner and Louise J. Slater
Hydrol. Earth Syst. Sci., 26, 469–482, https://doi.org/10.5194/hess-26-469-2022, https://doi.org/10.5194/hess-26-469-2022, 2022
Short summary
Short summary
Assessing the rarity and magnitude of very extreme flood events occurring less than twice a century is challenging due to the lack of observations of such rare events. Here we develop a new approach, pooling reforecast ensemble members from the European Flood Awareness System to increase the sample size available to estimate the frequency of extreme flood events. We demonstrate that such ensemble pooling produces more robust estimates than observation-based estimates.
Thorsten Wagener, Dragan Savic, David Butler, Reza Ahmadian, Tom Arnot, Jonathan Dawes, Slobodan Djordjevic, Roger Falconer, Raziyeh Farmani, Debbie Ford, Jan Hofman, Zoran Kapelan, Shunqi Pan, and Ross Woods
Hydrol. Earth Syst. Sci., 25, 2721–2738, https://doi.org/10.5194/hess-25-2721-2021, https://doi.org/10.5194/hess-25-2721-2021, 2021
Short summary
Short summary
How can we effectively train PhD candidates both (i) across different knowledge domains in water science and engineering and (ii) in computer science? To address this issue, the Water Informatics in Science and Engineering Centre for Doctoral Training (WISE CDT) offers a postgraduate programme that fosters enhanced levels of innovation and collaboration by training a cohort of engineers and scientists at the boundary of water informatics, science and engineering.
Onno Bokhove, Tiffany Hicks, Wout Zweers, and Thomas Kent
Hydrol. Earth Syst. Sci., 24, 2483–2503, https://doi.org/10.5194/hess-24-2483-2020, https://doi.org/10.5194/hess-24-2483-2020, 2020
Short summary
Short summary
Wetropolis is a
table-topdemonstration model with extreme rainfall and flooding, including random rainfall, river flow, flood plains, an upland reservoir, a porous moor, and a city which can flood. It lets the viewer experience extreme rainfall and flood events in a physical model on reduced spatial and temporal scales with an event return period of 6.06 min rather than, say, 200 years. We disseminate its mathematical design and how it has been shown most prominently to over 500 flood victims.
Gianfranco Urciuoli, Luca Comegna, Marianna Pirone, and Luciano Picarelli
Hydrol. Earth Syst. Sci., 24, 1669–1676, https://doi.org/10.5194/hess-24-1669-2020, https://doi.org/10.5194/hess-24-1669-2020, 2020
Short summary
Short summary
The aim of this paper is to demonstrate, through a numerical approach, that the presence of soil layers of higher permeability, a not unlikely condition in some deep landslides in clay, may be exploited to improve the efficiency of systems of drainage trenches for slope stabilization. The problem has been examined for the case that a unique pervious layer, parallel to the ground surface, is present at an elevation higher than the bottom of the trenches.
Bin Xiong, Lihua Xiong, Jun Xia, Chong-Yu Xu, Cong Jiang, and Tao Du
Hydrol. Earth Syst. Sci., 23, 4453–4470, https://doi.org/10.5194/hess-23-4453-2019, https://doi.org/10.5194/hess-23-4453-2019, 2019
Short summary
Short summary
We develop a new indicator of reservoir effects, called the rainfall–reservoir composite index (RRCI). RRCI, coupled with the effects of static reservoir capacity and scheduling-related multivariate rainfall, has a better performance than the previous indicator in terms of explaining the variation in the downstream floods affected by reservoir operation. A covariate-based flood frequency analysis using RRCI can provide more reliable downstream flood risk estimation.
Elizabeth S. Cooper, Sarah L. Dance, Javier García-Pintado, Nancy K. Nichols, and Polly J. Smith
Hydrol. Earth Syst. Sci., 23, 2541–2559, https://doi.org/10.5194/hess-23-2541-2019, https://doi.org/10.5194/hess-23-2541-2019, 2019
Short summary
Short summary
Flooding from rivers is a huge and costly problem worldwide. Computer simulations can help to warn people if and when they are likely to be affected by river floodwater, but such predictions are not always accurate or reliable. Information about flood extent from satellites can help to keep these forecasts on track. Here we investigate different ways of using information from satellite images and look at the effect on computer predictions. This will help to develop flood warning systems.
Bart van Osnabrugge, Remko Uijlenhoet, and Albrecht Weerts
Hydrol. Earth Syst. Sci., 23, 1453–1467, https://doi.org/10.5194/hess-23-1453-2019, https://doi.org/10.5194/hess-23-1453-2019, 2019
Short summary
Short summary
A correct estimate of the amount of future precipitation is the most important factor in making a good streamflow forecast, but evaporation is also an important component that determines the discharge of a river. However, in this study for the Rhine River we found that evaporation forecasts only give an almost negligible improvement compared to methods that use statistical information on climatology for a 10-day streamflow forecast. This is important to guide research on low flow forecasts.
Cédric Rebolho, Vazken Andréassian, and Nicolas Le Moine
Hydrol. Earth Syst. Sci., 22, 5967–5985, https://doi.org/10.5194/hess-22-5967-2018, https://doi.org/10.5194/hess-22-5967-2018, 2018
Short summary
Short summary
Inundation models are useful for hazard management and prevention. They are traditionally based on hydraulic partial differential equations (with satisfying results but large data and computational requirements). This study presents a simplified approach combining reach-scale geometric properties with steady uniform flow equations. The model shows promising results overall, although difficulties persist in the most complex urbanised reaches.
Andreas Paul Zischg, Guido Felder, Rolf Weingartner, Niall Quinn, Gemma Coxon, Jeffrey Neal, Jim Freer, and Paul Bates
Hydrol. Earth Syst. Sci., 22, 2759–2773, https://doi.org/10.5194/hess-22-2759-2018, https://doi.org/10.5194/hess-22-2759-2018, 2018
Short summary
Short summary
We developed a model experiment and distributed different rainfall patterns over a mountain river basin. For each rainfall scenario, we computed the flood losses with a model chain. The experiment shows that flood losses vary considerably within the river basin and depend on the timing of the flood peaks from the basin's sub-catchments. Basin-specific characteristics such as the location of the main settlements within the floodplains play an additional important role in determining flood losses.
Guillaume Le Bihan, Olivier Payrastre, Eric Gaume, David Moncoulon, and Frédéric Pons
Hydrol. Earth Syst. Sci., 21, 5911–5928, https://doi.org/10.5194/hess-21-5911-2017, https://doi.org/10.5194/hess-21-5911-2017, 2017
Short summary
Short summary
This paper illustrates how an integrated flash flood monitoring (or forecasting) system may be designed to directly provide information on possibly flooded areas and associated impacts on a very detailed river network and over large territories. The approach is extensively tested in the regions of Alès and Draguignan, located in south-eastern France. Validation results are presented in terms of accuracy of the estimated flood extents and related impacts (based on insurance claim data).
Ashley Wright, Jeffrey P. Walker, David E. Robertson, and Valentijn R. N. Pauwels
Hydrol. Earth Syst. Sci., 21, 3827–3838, https://doi.org/10.5194/hess-21-3827-2017, https://doi.org/10.5194/hess-21-3827-2017, 2017
Short summary
Short summary
The accurate reduction of hydrologic model input data is an impediment towards understanding input uncertainty and model structural errors. This paper compares the ability of two transforms to reduce rainfall input data. The resultant transforms are compressed to varying extents and reconstructed before being evaluated with standard simulation performance summary metrics and descriptive statistics. It is concluded the discrete wavelet transform is most capable of preserving rainfall time series.
Ricardo Zubieta, Augusto Getirana, Jhan Carlo Espinoza, Waldo Lavado-Casimiro, and Luis Aragon
Hydrol. Earth Syst. Sci., 21, 3543–3555, https://doi.org/10.5194/hess-21-3543-2017, https://doi.org/10.5194/hess-21-3543-2017, 2017
Short summary
Short summary
This paper indicates that precipitation data derived from GPM-IMERG correspond more closely to TMPA V7 than TMPA RT datasets, but both GPM-IMERG and TMPA V7 precipitation data tend to overestimate, in comparison to observed rainfall (by 11.1 % and 15.7 %, respectively). Statistical analysis indicates that GPM-IMERG is as useful as TMPA V7 or TMPA RT datasets for estimating observed streamflows in Andean–Amazonian regions (Ucayali Basin, southern regions of the Amazon Basin of Peru and Ecuador).
Anna Botto, Daniele Ganora, Pierluigi Claps, and Francesco Laio
Hydrol. Earth Syst. Sci., 21, 3353–3358, https://doi.org/10.5194/hess-21-3353-2017, https://doi.org/10.5194/hess-21-3353-2017, 2017
Short summary
Short summary
The paper provides an easy-to-use implementation of the UNCODE framework, which allows one to estimate the design flood value by directly accounting for sample uncertainty. Other than a design tool, this methodology is also a practical way to quantify the value of data in the design process.
Amin Elshorbagy, Raja Bharath, Anchit Lakhanpal, Serena Ceola, Alberto Montanari, and Karl-Erich Lindenschmidt
Hydrol. Earth Syst. Sci., 21, 2219–2232, https://doi.org/10.5194/hess-21-2219-2017, https://doi.org/10.5194/hess-21-2219-2017, 2017
Short summary
Short summary
Flood mapping is one of Canada's major national interests. This work presents a simple and effective method for large-scale flood hazard and risk mapping, applied in this study to Canada. Readily available data, such as remote sensing night-light data, topography, and stream network were used to create the maps.
D. C. Verdon-Kidd and A. S. Kiem
Hydrol. Earth Syst. Sci., 19, 4735–4746, https://doi.org/10.5194/hess-19-4735-2015, https://doi.org/10.5194/hess-19-4735-2015, 2015
Short summary
Short summary
Rainfall intensity-frequency-duration (IFD) relationships are required for the design and planning of water supply and management systems around the world. Currently IFD information is based on the "stationary climate assumption". However, this paper provides evidence of regime shifts in annual maxima rainfall time series using 96 daily rainfall stations and 66 sub-daily rainfall stations across Australia. Importantly, current IFD relationships may under- or overestimate the design rainfall.
H. Vernieuwe, S. Vandenberghe, B. De Baets, and N. E. C. Verhoest
Hydrol. Earth Syst. Sci., 19, 2685–2699, https://doi.org/10.5194/hess-19-2685-2015, https://doi.org/10.5194/hess-19-2685-2015, 2015
H. Vuollekoski, M. Vogt, V. A. Sinclair, J. Duplissy, H. Järvinen, E.-M. Kyrö, R. Makkonen, T. Petäjä, N. L. Prisle, P. Räisänen, M. Sipilä, J. Ylhäisi, and M. Kulmala
Hydrol. Earth Syst. Sci., 19, 601–613, https://doi.org/10.5194/hess-19-601-2015, https://doi.org/10.5194/hess-19-601-2015, 2015
Short summary
Short summary
The global potential for collecting usable water from dew on an
artificial collector sheet was investigated by utilising 34 years of
meteorological reanalysis data as input to a dew formation model. Continental dew formation was found to be frequent and common, but daily yields were
mostly below 0.1mm.
D. E. Mora, L. Campozano, F. Cisneros, G. Wyseure, and P. Willems
Hydrol. Earth Syst. Sci., 18, 631–648, https://doi.org/10.5194/hess-18-631-2014, https://doi.org/10.5194/hess-18-631-2014, 2014
M. T. Pham, W. J. Vanhaute, S. Vandenberghe, B. De Baets, and N. E. C. Verhoest
Hydrol. Earth Syst. Sci., 17, 5167–5183, https://doi.org/10.5194/hess-17-5167-2013, https://doi.org/10.5194/hess-17-5167-2013, 2013
M. Schwarz, F. Giadrossich, and D. Cohen
Hydrol. Earth Syst. Sci., 17, 4367–4377, https://doi.org/10.5194/hess-17-4367-2013, https://doi.org/10.5194/hess-17-4367-2013, 2013
G. Di Baldassarre, A. Viglione, G. Carr, L. Kuil, J. L. Salinas, and G. Blöschl
Hydrol. Earth Syst. Sci., 17, 3295–3303, https://doi.org/10.5194/hess-17-3295-2013, https://doi.org/10.5194/hess-17-3295-2013, 2013
L. Brocca, S. Liersch, F. Melone, T. Moramarco, and M. Volk
Hydrol. Earth Syst. Sci., 17, 3159–3169, https://doi.org/10.5194/hess-17-3159-2013, https://doi.org/10.5194/hess-17-3159-2013, 2013
T. A. McMahon, M. C. Peel, L. Lowe, R. Srikanthan, and T. R. McVicar
Hydrol. Earth Syst. Sci., 17, 1331–1363, https://doi.org/10.5194/hess-17-1331-2013, https://doi.org/10.5194/hess-17-1331-2013, 2013
E. Habib, Y. Ma, D. Williams, H. O. Sharif, and F. Hossain
Hydrol. Earth Syst. Sci., 16, 3767–3781, https://doi.org/10.5194/hess-16-3767-2012, https://doi.org/10.5194/hess-16-3767-2012, 2012
A. Pathirana, B. Gersonius, and M. Radhakrishnan
Hydrol. Earth Syst. Sci., 16, 2499–2509, https://doi.org/10.5194/hess-16-2499-2012, https://doi.org/10.5194/hess-16-2499-2012, 2012
K. X. Soulis and J. D. Valiantzas
Hydrol. Earth Syst. Sci., 16, 1001–1015, https://doi.org/10.5194/hess-16-1001-2012, https://doi.org/10.5194/hess-16-1001-2012, 2012
G. Corato, T. Moramarco, and T. Tucciarelli
Hydrol. Earth Syst. Sci., 15, 2979–2994, https://doi.org/10.5194/hess-15-2979-2011, https://doi.org/10.5194/hess-15-2979-2011, 2011
A. Elshorbagy, G. Corzo, S. Srinivasulu, and D. P. Solomatine
Hydrol. Earth Syst. Sci., 14, 1943–1961, https://doi.org/10.5194/hess-14-1943-2010, https://doi.org/10.5194/hess-14-1943-2010, 2010
A. D. Koussis
Hydrol. Earth Syst. Sci., 14, 1093–1097, https://doi.org/10.5194/hess-14-1093-2010, https://doi.org/10.5194/hess-14-1093-2010, 2010
J. A. Velázquez, T. Petit, A. Lavoie, M.-A. Boucher, R. Turcotte, V. Fortin, and F. Anctil
Hydrol. Earth Syst. Sci., 13, 2221–2231, https://doi.org/10.5194/hess-13-2221-2009, https://doi.org/10.5194/hess-13-2221-2009, 2009
Cited articles
Abbott, M. B., Bathurst, J. C., Cunge, J. A., O'Connell, P. E., and Rasmussen, J.: An introduction to the European Hydrological System – Systeme Hydrologique Europeen, "SHE", 2: Structure of a physically-based, distributed modelling system, J. Hydrol., 87, 61–77, https://doi.org/10.1016/0022-1694(86)90115-0, 1986.
Auken, E. and Christiansen, A. V.: Layered and laterally constrained 2D inversion of resistivity data, Geophysics, 69, 752–761, https://doi.org/10.1190/1.1759461, 2004.
Bedrosian, P. A., Maercklin, N., Weckmann, U., Bartov, Y., Ryberg, T., and Ritter, O.: Lithology-derived structure classification from the joint interpretation of magnetotelluric and seismic models, Geophys. J. Int., 170, 737–748, https://doi.org/10.1111/j.1365-246X.2007.03440.x, 2007.
Beven, K.: Changing ideas in hydrology – The case of physically-based models, J. Hydrol., 105, 157–172, https://doi.org/10.1016/0022-1694(89)90101-7, 1989.
Binley, A., Winship, P., Middleton, R., Pokar, M., and West, J.: High-resolution characterization of vadose zone dynamics using cross-borehole radar, Water Resour. Res., 37, 2639–2652, https://doi.org/10.1029/2000WR000089, 2001.
Blicher, A. S.: Usikkerhed på bearbejdning af data fra vandføringsstationer, Publication nr. 1 from Fagdatacenter for Hydrometriske Data, Hedeselskabet, Viborg, 1991.
Borgesen, C. and Schaap, M.: Point and parameter pedotransfer functions for water retention predictions for Danish soils, Geoderma, 127, 154–167, https://doi.org/10.1016/j.geoderma.2004.11.025, 2005.
Bosch, J. H. A., Bakker, M. A. J., Gunnink, J. L., and Paap, B. F.: Airborne electromagnetic measurements as basis for a 3D geological model of an Elsterian incision
– Hubschrauberelektromagnetische Messungen als Grundlage für das geologische 3D-Modell einer glazialen Rinne aus der Elsterzeit, Z. Dtsch. Gesell. Geowissen., 160, 249–258, https://doi.org/10.1127/1860-1804/2009/0160-0258, 2009.
– Hubschrauberelektromagnetische Messungen als Grundlage für das geologische 3D-Modell einer glazialen Rinne aus der Elsterzeit, Z. Dtsch. Gesell. Geowissen., 160, 249–258, https://doi.org/10.1127/1860-1804/2009/0160-0258, 2009.
Burschil, T., Scheer, W., Kirsch, R., and Wiederhold, H.: Compiling geophysical and geological information into a 3-D model of the glacially-affected island of Föhr, Hydrol. Earth Syst. Sci., 16, 3485–3498, https://doi.org/10.5194/hess-16-3485-2012, 2012.
Caers, J. and Hoffman, T.: The Probability Perturbation Method: A New Look at Bayesian Inverse Modeling, Math. Geol., 38, 81–100, https://doi.org/10.1007/s11004-005-9005-9, 2006.
Christensen, S., Rasmussen, K. R., and Moller, K.: Prediction of Regional Ground Water Flow to Streams, Ground Water, 36, 351–360, https://doi.org/10.1111/j.1745-6584.1998.tb01100.x, 1998.
Christiansen, A. V., Auken, E., Foged, N., and Sorensen, K. I.: Mutually and laterally constrained inversion of CVES and TEM data: a case study, Near Surf. Geophys., 5, 115–123, 2007.
Christiansen, A. V., Foged, N., and Auken, E.: A concept for calculating accumulated clay thickness from borehole lithological logs and resistivity models for nitrate vulnerability assessment, J. Appl. Geophys., 108, 69–77, https://doi.org/10.1016/j.jappgeo.2014.06.010, 2014.
Dam, D. and Christensen, S.: Including Geophysical Data in Ground Water Model Inverse Calibration, Ground Water, 41, 178–189, https://doi.org/10.1111/j.1745-6584.2003.tb02581.x, 2003.
DHI: MIKE SHE User Manual: Reference Guide, Hørsholm, Denmark, 2012.
Di Giuseppe, M. G., Troiano, A., Troise, C., and De Natale, G.: k-Means clustering as tool for multivariate geophysical data analysis. An application to shallow fault zone imaging, J. Appl. Geophys., 101, 108–115, https://doi.org/10.1016/j.jappgeo.2013.12.004, 2014.
Doetsch, J., Linde, N., Coscia, I., Greenhalgh, S. A., and Green, A. G.: Zonation for 3D aquifer characterization based on joint inversions of multimethod crosshole geophysical data, Geophysics, 75, G53–G64, https://doi.org/10.1190/1.3496476, 2010.
Doherty, J.: PEST: Model-Independent Parameter Estimation, User Manual, 5th Edition, Brisbane, QLD, Australia, 2005.
Ferré, T., Bentley, L., Binley, A., Linde, N., Kemna, A., Singha, K., Holliger, K., Huisman, J. A., and Minsley, B.: Critical Steps for the Continuing Advancement of Hydrogeophysics, Eos Trans. Am. Geophys. Union, 90, 200, https://doi.org/10.1029/2009EO230004, 2009.
Foged, N., Marker, P. A., Christansen, A. V., Bauer-Gottwein, P., Jørgensen, F., Høyer, A.-S., and Auken, E.: Large-scale 3-D modeling by integration of resistivity models and borehole data through inversion, Hydrol. Earth Syst. Sci., 18, 4349–4362, https://doi.org/10.5194/hess-18-4349-2014, 2014.
Gallardo, L. A.: Characterization of heterogeneous near-surface materials by joint 2D inversion of dc resistivity and seismic data, Geophys. Res. Lett., 30, 1658, https://doi.org/10.1029/2003GL017370, 2003.
Gräbe, A., Rödiger, T., Rink, K., Fischer, T., Sun, F., Wang, W., Siebert, C., and Kolditz, O.: Numerical analysis of the groundwater regime in the western Dead Sea escarpment, Israel + West Bank, Environ. Earth Sci., 69, 571–585, https://doi.org/10.1007/s12665-012-1795-8, 2012.
Graham, D. N. and Butts, M. B.: Flexible integrated watershed modeling with MIKE SHE, in: Watershed Models, edited by: Singh, V. P. and Frever, D. K., CRC Press, Boca Raton, FL, 245–272, 2005.
Greve, M. H., Greve, M. B., Bøcher, P. K., Balstrøm, T., Breuning-Madsen, H., and Krogh, L.: Generating a Danish raster-based topsoil property map combining choropleth maps and point information, Geogr. Tidsskr. J. Geogr., 107, 1–12, https://doi.org/10.1080/00167223.2007.10649565, 2007.
Gunnink, J. L., Bosch, J. H. A., Siemon, B., Roth, B., and Auken, E.: Combining ground-based and airborne EM through Artificial Neural Networks for modelling glacial till under saline groundwater conditions, Hydrol. Earth Syst. Sci., 16, 3061–3074, https://doi.org/10.5194/hess-16-3061-2012, 2012.
Haber, E. and Oldenburg, D.: Joint inversion: a structural approach, Inverse Probl., 13, 63–77, https://doi.org/10.1088/0266-5611/13/1/006, 1997.
Hansen, A. L., Refsgaard, J. C., Christensen, B. S. B., and Jensen, K. H.: Importance of including small-scale tile drain discharge in the calibration of a coupled groundwater-surface water catchment model, Water Resour. Res., 49, 585–603, https://doi.org/10.1029/2011wr011783, 2013.
Härdle, W. K. and Simar, L.: Applied multivariate statistical analysis, 3rd Edn., Springer, Berlin, Heidelberg, 2012.
He, X., Sonnenborg, T. O., Jørgensen, F., Høyer, A.-S., Møller, R. R., and Jensen, K. H.: Analyzing the effects of geological and parameter uncertainty on prediction of groundwater head and travel time, Hydrol. Earth Syst. Sci., 17, 3245–3260, https://doi.org/10.5194/hess-17-3245-2013, 2013.
He, X., Koch, J., Sonnenborg, T. O., Jørgensen, F., Schamper, C., and Christian Refsgaard, J.: Transition probability-based stochastic geological modeling using airborne geophysical data and borehole data, Water Resour. Res., 50, 3147–3169, https://doi.org/10.1002/2013WR014593, 2014.
He, X., Højberg, A. L., Jørgensen, F., and Refsgaard, J. C.: Assessing hydrological model predictive uncertainty using stochastically generated geological models, Hydrol. Process., 29, 4293–4311, https://doi.org/10.1002/hyp.10488, 2015.
Henriksen, H. J., Troldborg, L., Nyegaard, P., Sonnenborg, T. O., Refsgaard, J. C., and Madsen, B.: Methodology for construction, calibration and validation of a national hydrological model for Denmark, J. Hydrol., 280, 52–71, https://doi.org/10.1016/s0022-1694(03)00186-0, 2003.
Herckenrath, D., Fiandaca, G., Auken, E., and Bauer-Gottwein, P.: Sequential and joint hydrogeophysical inversion using a field-scale groundwater model with ERT and TDEM data, Hydrol. Earth Syst. Sci., 17, 4043–4060, https://doi.org/10.5194/hess-17-4043-2013, 2013.
Hill, M. C. and Tiedeman, C. R.: Effective groundwater model calibration with analysis of data, sensitives, predictions, and uncertainty, John Wiley & Sons, New York, 2007.
Hinnell, A. C., Ferre, T. P. A., Vrugt, J. A., Huisman, J. A., Moysey, S., Rings, J., and Kowalsky, M. B.: Improved extraction of hydrologic information from geophysical data through coupled hydrogeophysical inversion, Water Resour. Res., 46, W00D40, https://doi.org/10.1029/2008wr007060, 2010.
Højberg, A. L., Nyegaard, P., Stisen, S., Troldborg, L., Ondracek, M., and Christensen, B. S. B.: DK-model2009, Modelopstilling og kalibrering for Midtjylland, GEUS, København, 2010.
Hotelling, H.: Analysis of a complex of statistical variables into principal components, J. Educ. Psychol., 24, 417–441, https://doi.org/10.1037/h0071325, 1933.
Høyer, A.-S., Lykke-Andersen, H., Jørgensen, F., and Auken, E.: Combined interpretation of SkyTEM and high-resolution seismic data, Phys. Chem. Earth Pt. A/B/C, 36, 1386–1397, https://doi.org/10.1016/j.pce.2011.01.001, 2011.
Hyndman, D. W. and Gorelick, S. M.: Estimating lithologic and transport properties in three dimensions using seismic and tracer data: The Kesterson aquifer, Water Resour. Res., 32, 2659–2670, https://doi.org/10.1029/96wr01269, 1996.
Hyndman, D. W., Harris, J. M., and Gorelick, S. M.: Coupled seismic and tracer test inversion for aquifer property characterization, Water Resour. Res., 30, 1965–1977, https://doi.org/10.1029/94wr00950, 1994.
Jørgensen, F., Sandersen, P., Auken, E., Lykke-Andersen, H., and Sørensen, K.: Contributions to the geological mapping of Mors, Denmark – A study based on a large-scale TEM survey, Bull. Geol. Soc. Denmark, 52, 53–75, 2005.
Jørgensen, F., Müller, R. R., Sandersen, P. B. E., and Nebel, L.: 3-D geological modelling of the Egebjerg area, Denmark, based on hydrogeophysical data, Geol. Surv. Denmark Greenl. Bull., 20, 27–30, 2010.
Jørgensen, F. and Sandersen, P. B. E.: Buried and open tunnel valleys in Denmark – erosion beneath multiple ice sheets, Quaternary Sci. Rev., 25, 1339–1363, https://doi.org/10.1016/j.quascirev.2005.11.006, 2006.
Jørgensen, F., Møller, R. R., Nebel, L., Jensen, N.-P., Christiansen, A. V. and Sandersen, P. B. E.: A method for cognitive 3D geological voxel modelling of AEM data, Bull. Eng. Geol. Environ., 72, 421–432, https://doi.org/10.1007/s10064-013-0487-2, 2013.
Kemna, A., Kulessa, B., and Vereecken, H.: Imaging and characterisation of subsurface solute transport using electrical resistivity tomography (ERT) and equivalent transport models, J. Hydrol., 267, 125–146, https://doi.org/10.1016/S0022-1694(02)00145-2, 2002.
Kowalsky, M. B., Finsterle, S., Peterson, J., Hubbard, S., Rubin, Y., Majer, E., Ward, A., and Gee, G.: Estimation of field-scale soil hydraulic and dielectric parameters through joint inversion of GPR and hydrological data, Water Resour. Res., 41, W11425, https://doi.org/10.1029/2005wr004237, 2005.
Lange, K., Frydendall, J., Cordua, K. S., Hansen, T. M., Melnikova, Y., and Mosegaard, K.: A Frequency Matching Method: Solving Inverse Problems by Use of Geologically Realistic Prior Information, Math. Geosci., 44, 783–803, https://doi.org/10.1007/s11004-012-9417-2, 2012.
Laronne Ben-Itzhak, L. and Gvirtzman, H.: Groundwater flow along and across structural folding: an example from the Judean Desert, Israel, J. Hydrol., 312, 51–69, https://doi.org/10.1016/j.jhydrol.2005.02.009, 2005.
Li, R. and Merchant, J. W.: Modeling vulnerability of groundwater to pollution under future scenarios of climate change and biofuels-related land use change: a case study in North Dakota, USA, Sci. Total Environ., 447, 32–45, https://doi.org/10.1016/j.scitotenv.2013.01.011, 2013.
Linde, N., Finsterle, S., and Hubbard, S.: Inversion of tracer test data using tomographic constraints, Water Resour. Res., 42, W04410, https://doi.org/10.1029/2004wr003806, 2006.
Lochbuhler, T., Vrugt, J. A., Sadegh, M., and Linde, N.: Summary statistics from training images as prior information in probabilistic inversion, Geophys. J. Int., 201, 157–171, https://doi.org/10.1093/gji/ggv008, 2015.
Madsen, H.: Parameter estimation in distributed hydrological catchment modelling using automatic calibration with multiple objectives, Adv. Water Resour., 26, 205–216, https://doi.org/10.1016/S0309-1708(02)00092-1, 2003.
Makkink, G. F.: Testing the Penman formula by means of lysimeters, J. Inst. Water Eng., 11, 277–288, 1957.
Moutsopoulos, K. N., Gemitzi, A., and Tsihrintzis, V. A.: Delineation of groundwater protection zones by the backward particle tracking method: theoretical background and GIS-based stochastic analysis, Environ. Geol., 54, 1081–1090, https://doi.org/10.1007/s00254-007-0879-3, 2007.
Mukherjee, A., Fryar, A. E. and Howell, P. D.: Regional hydrostratigraphy and groundwater flow modeling in the arsenic-affected areas of the western Bengal basin, West Bengal, India, Hydrogeol. J., 15, 1397–1418, https://doi.org/10.1007/s10040-007-0208-7, 2007.
Paasche, H. and Tronicke, J.: Cooperative inversion of 2D geophysical data sets: A zonal approach based on fuzzy c-means cluster analysis, Geophysics, 72, A35–A39, https://doi.org/10.1190/1.2670341, 2007.
Paasche, H., Tronicke, J., Holliger, K., Green, A. G., and Maurer, H.: Integration of diverse physical-property models: Subsurface zonation and petrophysical parameter estimation based on fuzzy c-means cluster analyses, Geophysics, 71, H33–H44, https://doi.org/10.1190/1.2192927, 2006.
Park, H., Scheidt, C., Fenwick, D., Boucher, A., and Caers, J.: History matching and uncertainty quantification of facies models with multiple geological interpretations, Comput. Geosci., 17, 609–621, https://doi.org/10.1007/s10596-013-9343-5, 2013.
Purvance, D. T. and Andricevic, R.: On the electrical-hydraulic conductivity correlation in aquifers, Water Resour. Res., 36, 2905–2913, https://doi.org/10.1029/2000WR900165, 2000.
Raaschou, P.: Vejledning i Bearbejdning af data fra vandføringsstationer. Publication nr. 7 from Fagdatacenter for Hydrometriske Data, Hedeselskabet, Viborg, 1991.
Refsgaard, J. C., Højberg, A. L., Møller, I., Hansen, M., and Søndergaard, V.: Groundwater modeling in integrated water resources management–visions for 2020, Ground Water, 48, 633–648, https://doi.org/10.1111/j.1745-6584.2009.00634.x, 2010.
Refsgaard, J. C., Christensen, S., Sonnenborg, T. O., Seifert, D., Hojberg, A. L., and Troldborg, L.: Review of strategies for handling geological uncertainty in groundwater flow and transport modeling, Adv. Water Resour., 36, 36–50, https://doi.org/10.1016/j.advwatres.2011.04.006, 2012.
Rossman, N. R. and Zlotnik, V. A.: Review: Regional groundwater flow modeling in heavily irrigated basins of selected states in the western United States, Hydrogeol. J., 21, 1173–1192, https://doi.org/10.1007/s10040-013-1010-3, 2013.
Royse, K. R.: Combining numerical and cognitive 3D modelling approaches in order to determine the structure of the Chalk in the London Basin, Comput. Geosci., 36, 500–511, https://doi.org/10.1016/j.cageo.2009.10.001, 2010.
Sandersen, P. B. E., Jørgensen, F., Larsen, N. K., Westergaard, J. H., and Auken, E.: Rapid tunnel-valley formation beneath the receding Late Weichselian ice sheet in Vendsyssel, Denmark, Boreas, 38, 834–851, https://doi.org/10.1111/j.1502-3885.2009.00105.x, 2009.
Scanlon, B. R., Faunt, C. C., Longuevergne, L., Reedy, R. C., Alley, W. M., McGuire, V. L., and McMahon, P. B.: Groundwater depletion and sustainability of irrigation in the US High Plains and Central Valley, P. Natl. Acad. Sci. USA, 109, 9320–9325, https://doi.org/10.1073/pnas.1200311109, 2012.
Schamper, C., Jørgensen, F., Auken, E., and Effersø, F.: Assessment of near-surface mapping capabilities by airborne transient electromagnetic data – An extensive comparison to conventional borehole data, Geophysics, 79, B187–B199, https://doi.org/10.1190/geo2013-0256.1, 2014.
Scharling, P. B., Rasmussen, E. S., Sonnenborg, T. O., Engesgaard, P., and Hinsby, K.: Three-dimensional regional-scale hydrostratigraphic modeling based on sequence stratigraphic methods: a case study of the Miocene succession in Denmark, Hydrogeol. J., 17, 1913–1933, https://doi.org/10.1007/s10040-009-0475-6, 2009.
Seifert, D., Sonnenborg, T. O., Refsgaard, J. C., Hojberg, A. L., and Troldborg, L.: Assessment of hydrological model predictive ability given multiple conceptual geological models, Water Resour. Res., 48, W06503, https://doi.org/10.1029/2011wr011149, 2012.
Selle, B., Rink, K., and Kolditz, O.: Recharge and discharge controls on groundwater travel times and flow paths to production wells for the Ammer catchment in southwestern Germany, Environ. Earth Sci., 69, 443–452, https://doi.org/10.1007/s12665-013-2333-z, 2013.
Sharpe, D. R., Russell, H. A. J., and Logan, C.: A 3-dimensional geological model of the Oak Ridges Moraine area, Ontario, Canada, J. Maps, v2007, 239–253, 2007.
Sonnenborg, T. O. and Henriksen, H. J.: Håndbog i grundvandsmodellering, GEUS, København, 2005.
Steinmetz, D., Winsemann, J., Brandes, C., Siemon, B., Ullmann, A., Wiederhold, H., and Meyer, U.: Towards an improved geological interpretation of airborne electromagnetic data: a case study from the Cuxhaven tunnel valley and its Neogene host sediments (northwest Germany), Netherlands J. Geosci., 94, 201–227, https://doi.org/10.1017/njg.2014.39, 2014.
Stisen, S., Sonnenborg, T. O., Hojberg, A. L., Troldborg, L., and Refsgaard, J. C.: Evaluation of Climate Input Biases and Water Balance Issues Using a Coupled Surface-Subsurface Model, Vadose Zone J., 10, 37–53, https://doi.org/10.2136/vzj2010.0001, 2011.
Strebelle, S.: Conditional simulation of complex geological structures using multiple-point statistics, Math. Geol., 34, 1–21, https://doi.org/10.1023/A:1014009426274, 2002.
Triantafilis, J. and Buchanan, S. M.: Identifying common near-surface and subsurface stratigraphic units using EM34 signal data and fuzzy k-means analysis in the Darling River valley, Aust. J. Earth Sci., 56, 535–558, https://doi.org/10.1080/08120090902806289, 2009.
Vazquez, R. F., Willems, P., and Feyen, J.: Improving the predictions of a MIKE SHE catchment-scale application by using a multi-criteria approach, Hydrol. Process., 22, 2159–2179, https://doi.org/10.1002/hyp.6815, 2008.
Vilhelmsen, T. N., Behroozmand, A. A., Christensen, S., and Nielsen, T. H.: Joint inversion of aquifer test, MRS, and TEM data, Water Resour. Res., 50, 3956–3975, https://doi.org/10.1002/2013WR014679, 2014.
Wu, J.: Advances in K-means Clustering, Springer, Berlin, Heidelberg, 2012.
Yan, J. and Smith, K.: Simulation of integrated surface-water and ground-water systems – model formulation, Water Resour. Bull., 30, 879–890, 1994.
Zhou, H. Y., Gomez-Hernandez, J. J., and Li, L. P.: Inverse methods in hydrogeology: Evolution and recent trends, Adv. Water Resour., 63, 22–37, https://doi.org/10.1016/j.advwatres.2013.10.014, 2014.