Articles | Volume 19, issue 8
Hydrol. Earth Syst. Sci., 19, 3571–3584, 2015
https://doi.org/10.5194/hess-19-3571-2015
Hydrol. Earth Syst. Sci., 19, 3571–3584, 2015
https://doi.org/10.5194/hess-19-3571-2015
Research article
14 Aug 2015
Research article | 14 Aug 2015

Measurement and interpolation uncertainties in rainfall maps from cellular communication networks

M. F. Rios Gaona et al.

Related authors

stoPET v1.0: A stochastic potential evapotranspiration generator for simulation of climate change impacts
Dagmawi Teklu Asfaw, Michael Bliss Singer, Rafael Rosolem, David MacLeod, Mark Cuthbert, Edisson Quichimbo Miguitama, Manuel F. Rios Gaona, and Katerina Michaelides
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2022-128,https://doi.org/10.5194/gmd-2022-128, 2022
Revised manuscript under review for GMD
Short summary
Rainfall retrieval with commercial microwave links in São Paulo, Brazil
Manuel F. Rios Gaona, Aart Overeem, Timothy H. Raupach, Hidde Leijnse, and Remko Uijlenhoet
Atmos. Meas. Tech., 11, 4465–4476, https://doi.org/10.5194/amt-11-4465-2018,https://doi.org/10.5194/amt-11-4465-2018, 2018
Short summary

Related subject area

Subject: Hydrometeorology | Techniques and Approaches: Uncertainty analysis
Quantifying the uncertainty of precipitation forecasting using probabilistic deep learning
Lei Xu, Nengcheng Chen, Chao Yang, Hongchu Yu, and Zeqiang Chen
Hydrol. Earth Syst. Sci., 26, 2923–2938, https://doi.org/10.5194/hess-26-2923-2022,https://doi.org/10.5194/hess-26-2923-2022, 2022
Short summary
Unraveling the contribution of potential evaporation formulation to uncertainty under climate change
Thibault Lemaitre-Basset, Ludovic Oudin, Guillaume Thirel, and Lila Collet
Hydrol. Earth Syst. Sci., 26, 2147–2159, https://doi.org/10.5194/hess-26-2147-2022,https://doi.org/10.5194/hess-26-2147-2022, 2022
Short summary
Exploring hydrologic post-processing of ensemble streamflow forecasts based on affine kernel dressing and non-dominated sorting genetic algorithm II
Jing Xu, François Anctil, and Marie-Amélie Boucher
Hydrol. Earth Syst. Sci., 26, 1001–1017, https://doi.org/10.5194/hess-26-1001-2022,https://doi.org/10.5194/hess-26-1001-2022, 2022
Short summary
Choosing between post-processing precipitation forecasts or chaining several uncertainty quantification tools in hydrological forecasting systems
Emixi Sthefany Valdez, François Anctil, and Maria-Helena Ramos
Hydrol. Earth Syst. Sci., 26, 197–220, https://doi.org/10.5194/hess-26-197-2022,https://doi.org/10.5194/hess-26-197-2022, 2022
Short summary
Performance of the Global Forecast System's medium-range precipitation forecasts in the Niger river basin using multiple satellite-based products
Haowen Yue, Mekonnen Gebremichael, and Vahid Nourani
Hydrol. Earth Syst. Sci., 26, 167–181, https://doi.org/10.5194/hess-26-167-2022,https://doi.org/10.5194/hess-26-167-2022, 2022
Short summary

Cited articles

Amani, A. and Lebel, T.: Lagrangian kriging for the estimation of Sahelian rainfall at small time steps, J. Hydrol., 192, 125–157, https://doi.org/10.1016/S0022-1694(96)03104-6, 1997.
Atlas, D. and Ulbrich, C. W.: Path- and area-integrated rainfall measurement by microwave attenuation in the 1–3 cm band, J. Appl. Meteorol., 16, 1322–1331, https://doi.org/10.1175/1520-0450(1977)016<1322:PAAIRM>2.0.CO;2, 1977.
Berne, A. and Uijlenhoet, R.: Path-averaged rainfall estimation using microwave links: uncertainty due to spatial rainfall variability, Geophys. Res. Lett., 34, L07403, https://doi.org/10.1029/2007GL029409, 2007.
Chwala, C., Kunstmann, H., Hipp, S., and Siart, U.: A monostatic microwave transmission experiment for line integrated precipitation and humidity remote sensing, Atmos. Res., 144, 57–72, https://doi.org/10.1016/j.atmosres.2013.05.014, 2014.
Cressie, N.: The origins of kriging, Math. Geol., 22, 239–252, https://doi.org/10.1007/BF00889887, 1990.
Download
Short summary
Commercial cellular networks are built for telecommunication purposes. These kinds of networks have lately been used to obtain rainfall maps at country-wide scales. From previous studies, we now quantify the uncertainties associated with such maps. To do so, we divided the sources or error into two categories: from microwave link measurements and from mapping. It was found that the former is the source that contributes the most to the overall error in rainfall maps from microwave link network.