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Abstract. Accurate measurements of rainfall are important

in many hydrological and meteorological applications, for

instance, flash-flood early-warning systems, hydraulic struc-

tures design, irrigation, weather forecasting, and climate

modelling. Whenever possible, link networks measure and

store the received power of the electromagnetic signal at reg-

ular intervals. The decrease in power can be converted to

rainfall intensity, and is largely due to the attenuation by rain-

drops along the link paths. Such an alternative technique ful-

fils the continuous effort to obtain measurements of rainfall

in time and space at higher resolutions, especially in places

where traditional rain gauge networks are scarce or poorly

maintained.

Rainfall maps from microwave link networks have re-

cently been introduced at country-wide scales. Despite their

potential in rainfall estimation at high spatiotemporal resolu-

tions, the uncertainties present in rainfall maps from link net-

works are not yet fully comprehended. The aim of this work

is to identify and quantify the sources of uncertainty present

in interpolated rainfall maps from link rainfall depths. In or-

der to disentangle these sources of uncertainty, we classified

them into two categories: (1) those associated with the indi-

vidual microwave link measurements, i.e. the errors involved

in link rainfall retrievals, such as wet antenna attenuation,

sampling interval of measurements, wet/dry period classifi-

cation, dry weather baseline attenuation, quantization of the

received power, drop size distribution (DSD), and multi-path

propagation; and (2) those associated with mapping, i.e. the

combined effect of the interpolation methodology and the

spatial density of link measurements.

We computed ∼ 3500 rainfall maps from real and sim-

ulated link rainfall depths for 12 days for the land sur-

face of the Netherlands. Simulated link rainfall depths re-

fer to path-averaged rainfall depths obtained from radar data.

The ∼ 3500 real and simulated rainfall maps were compared

against quality-controlled gauge-adjusted radar rainfall fields

(assumed to be the ground truth). Thus, we were able to

not only identify and quantify the sources of uncertainty in

such rainfall maps, but also test the actual and optimal per-

formance of one commercial microwave network from one

of the cellular providers in the Netherlands. Errors in mi-

crowave link measurements were found to be the source that

contributes most to the overall uncertainty.

1 Introduction

Accurate rainfall estimates are crucial inputs for hydrologi-

cal models, especially those employed for forecasting flash

floods, due to the short timescales in which they develop.

Rainfall rates can be retrieved from microwave links because

rain droplets attenuate the electromagnetic signal between

transmitter and receiver along the microwave link path. The

principles behind rainfall estimates from microwave attenu-

ation were investigated by Atlas and Ulbrich (1977). They

established the nearly linear relationship between the rainfall

intensity and the specific attenuation of the signal for fre-

quencies between 10 and 35 GHz.

Messer et al. (2006) and Leijnse et al. (2007) used com-

mercial microwave links to estimate rainfall rates. Note that

networks of such links have not been designed for that pur-
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pose. In the last decade several studies have developed meth-

ods to improve rainfall estimates from microwave link mea-

surements (Leijnse et al., 2008, 2010; Overeem et al., 2011;

Schleiss et al., 2013; Chwala et al., 2014). In addition, Gold-

shtein et al. (2009) and Zinevich et al. (2008, 2009, 2010)

proposed methods to estimate rainfall fields via commercial

microwave networks. Giuli et al. (1991) had previously re-

constructed rainfall fields from simulated microwave atten-

uation measurements. Overeem et al. (2011) developed an

algorithm to estimate rainfall from minimum and maximum

received signal levels over 15 min intervals, in which the wet

antenna effect is corrected for, and where wet and dry spells

are identified from the removal of signal losses not related to

rainfall by using nearby links.

Rainfall fields can generally be retrieved from commer-

cial microwave link networks at a higher resolution than rain

gauge networks. This holds not only for the spatial resolu-

tion (usually microwave links outnumber rain gauges) but

also for the temporal resolution (microwave link measure-

ments can be obtained for 1 s, 1 min, 15 min, or daily inter-

vals at either instantaneous or minimum and maximum sam-

ples of received signal level (RSL) measurements; Messer

et al., 2012). The massive deployment of microwave links

provides a complementary network to measure rainfall, es-

pecially in countries where rain gauges are scarce or poorly

maintained, and where ground-based weather radars are not

(yet) deployed (Doumounia et al., 2014).

Recently, Overeem et al. (2013) obtained 15 min and daily

rainfall depths from one commercial microwave link net-

work for 12 days for the land surface of the Netherlands

(∼ 35 000 km2; ∼ 1750 links). They interpolated these rain-

fall depths to obtain rainfall fields to be compared against

gauge-adjusted radar rainfall maps. Although the associated

biases were small, the corresponding uncertainties were not.

The coefficient of determination, i.e. the square of the cor-

relation coefficient, between link-based and gauge-adjusted

radar rainfall maps was 0.49 for the 15 min timescale, and

0.73 for the daily timescale. They did not explore the sources

of error that impeded these correlations to reach higher val-

ues, though. Here, we address this issue with the aim to un-

ravel and understand the sources of error (and their uncer-

tainties) present in the methodology proposed by Overeem

et al. (2013) to estimate rainfall fields. We split the over-

all uncertainty in rainfall maps from commercial microwave

networks into two main sources of error: (1) those associated

with the individual microwave link measurements, such as

wet antenna attenuation, sampling interval of measurements,

wet/dry period classification, dry weather baseline attenua-

tion, drop size distribution (DSD), and multi-path propaga-

tion; and (2) those associated with mapping, that is, the com-

bined effect of the interpolation methodology and the spatial

density of microwave link measurements. Note that not all

the links in the network continuously report data. Only the

overall effects of measurement and interpolation errors are

addressed here, not all measurement errors separately.

This paper is organized as follows: Sect. 2 describes the

data sets and methodology developed by Overeem et al.

(2013) to estimate rainfall maps, jointly with the method-

ologies for this work to derive rainfall maps to identify and

quantify error sources. Section 3 compares the results ob-

tained here with those presented in Overeem et al. (2013).

Section 4 highlights our major findings. Finally, Sects. 5 and

6 provide a summary, conclusions, and recommendations.

2 Materials and methods

2.1 Data

Two categories of data were used: link data and radar data.

These two data sets are fully independent given that each

one originates from a different source: microwave link mea-

surements, and a combination of radar and rain gauge mea-

surements, respectively. Link and radar data contain rainfall

depths from the 12-day validation period studied by Overeem

et al. (2013), which is spread across the months of June, Au-

gust, and September 2011. This validation period was se-

lected because of its large number of rainfall events. Figure 1

conceptually illustrates the steps we followed to quantify un-

certainties in rainfall maps from link networks.

2.1.1 Link data

Link data refer to rainfall depths retrieved from measure-

ments of the attenuation of electromagnetic signals from

one commercial microwave link network in the Nether-

lands. Overeem et al. (2011, 2013) thoroughly explained

the methodology to convert measurements of the decrease

in the received power to rainfall depths, with reference to

a level representative of dry weather. Briefly explained, their

methodology is based on four steps: (1) a link is considered

to be affected by rainfall if the received power jointly de-

creases with that of nearby links; (2) a reference signal level

representative of dry weather, i.e. the median signal level of

all dry periods in the previous 24 h, is determined, and the

signal is subtracted from this reference level; the result is

the attenuation estimate; (3) microwave links for which accu-

mulated (over 1 day) specific attenuation deviates too much

(from that of nearby links) are excluded from the analysis;

and (4) 15 min average rainfall intensities are computed from

a weighted average of minimum and maximum rainfall inten-

sities obtained by a power-law correlation of specific attenu-

ation (Atlas and Ulbrich, 1977). These rainfall intensities are

expressed as path-averaged rainfall depths, and are assumed

to be representative of the rainfall across the link path. Full

details of the algorithm can be found in Overeem et al. (2011,

2013).

Data from up to 1751 link paths are available, with path

lengths from 0.13 to 20.26 km, and frequencies from 12.8 to

39.4 GHz (Fig. 2). It is also clear that the network is designed

such that the link frequency decreases as path length in-
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Figure 1. Flowchart to visualize the hierarchical process to iden-

tify and quantify uncertainties in rainfall maps from link networks.

From top to bottom: (1–2) raw data are selected and rainfall depths

simulated; (3–4) through the interpolation methodology rainfall

maps are obtained; (5) from the comparison between rainfall maps

scatter plots are created; and (6) from the comparison between these

scatter plots (and their metrics), the error sources are quantified. ε1

and ε2 represent the categories in which the sources of error are

classified. Specifically, ε1 indicates the error from microwave link

rainfall retrievals, and ε2 indicates the error related to mapping. ε∗
2

indicates the best case for the mapping-related error (i.e. all links

are available all of the time). The number between brackets (1–2)

indicates the number of data for every single map or data set.

creases, mainly because low-frequency links suffer less from

rain attenuation.

Figure 3 presents the spatial distribution of one commer-

cial link network from one of the providers in the Nether-

lands, as well as the temporal availability for each link path.

Due to data storage problems, wet/dry classification, and out-

lier removal, it is not feasible to have link data for all the pos-

sible link paths in the network (1751) for every time step. The

temporal availability per link varies from 0.9 to 99.9 %, with

a global average over the entire 12-day data set of 83.5 %.
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Figure 2. Scatter density plot of microwave link frequencies vs.

link-path lengths for the 12-day validation period. The colour scale

is logarithmic.

The spatial distribution of the network has two character-

istics: (1) there is a strong contrast between urban and rural

areas with regard to the spatial distribution of the network;

and (2) there are gaps in the network, because of a com-

plete absence of link data or low data availability. Analyses

of the link-path orientations show no preferred orientations,

i.e. a uniform distribution (such analyses are not presented in

this paper).

2.1.2 Radar data

Radar data are taken from the climatological rainfall data

set1 of two C-band Doppler weather radars operated by

the Royal Netherlands Meteorological Institute (KNMI)

(Overeem et al., 2009a, b, 2011). The composite image of

rainfall depths has a temporal resolution of 5 min, and a spa-

tial resolution (pixel size) of 0.92 km2 (rounded to 1 km2 in

figures, tables, and subsequent analyses), for the entire land

surface of the Netherlands (38 063 pixels). This composite

image is adjusted with rainfall depths from one automatic

and one manual rain gauge network (32 and 325 gauges, re-

spectively) also operated by KNMI. The spatial and tempo-

ral resolution, and its accuracy, make this data set a reliable

source of rainfall data. We used the same radar data set as

that used in Overeem et al. (2013).

2.2 Simulated link rainfall depths

Simulated link rainfall depths are averages of radar data

based on the topology and time-availability features of the

link network. The purpose of simulated link rainfall depths

is twofold: (1) to evaluate the performance of the link net-

1KNMI climatological rainfall data sets are freely

available at the IS-ENES climate4impact portal: http:

//climate4impact.eu/impactportal/data/catalogbrowser.jsp?catalog=

http://opendap.knmi.nl/knmi/thredds/./radarprecipclim.xml.
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work assuming that all links provide perfect measurements of

path-averaged rainfall at the 15 min interval, and (2) to eval-

uate the performance of the link network if all links would

be available all the time.

Because link data were obtained in intervals of 15 min,

sets of three consecutive 5 min radar composite images were

summed up on a pixel-by-pixel basis. The simulation allows

us to separate mapping errors from other errors. For detailed

studies on the effects of link length and frequency, temporal

sampling, power resolution, and wet antenna attenuation in

link measurements see Leijnse et al. (2008, 2010). After the

addition of 5 min radar composite images, the link network

topology was overlaid on the 15 min radar composite image,

and all pixels under every link path were selected. Then, for

every link path and its associated pixels, rainfall depths were

averaged. This was a weighted average in which the weight

was taken as the fraction of the total link path that overlaps

one radar pixel. For instance, if a 1 km link path was located

0.6 km over one pixel and 0.4 km over a contiguous pixel, the

average rainfall depth was the sum of 60 % of the first pixel’s

rainfall depth plus 40 % of the second pixel’s rainfall depth.

Not all link data are available for all the possible link paths

in the network (1751) at every time step. In addition to the

performance of the actual topology of the network, the com-

plete availability of radar data allowed us to simulate the op-

timal performance of the link network, i.e. the performance

that could theoretically be achieved if all links (1751) would

be available all the time.

2.3 Rainfall maps

The rainfall depths from actual link measurements and both

types of simulations (actual and 100 % network availability)

were spatially interpolated to obtain 15 min rainfall maps

with a spatial resolution of 1 km2. In all rainfall maps the

land surface of the Netherlands was represented by 38 063

pixels. For any given time step, interpolated rainfall maps

were compared on a pixel-by-pixel basis against the radar

rainfall fields. Hence, 15 min rainfall maps were obtained for

the 12-day validation period, i.e. 1152 rainfall maps in total

for each of the four sets of rainfall maps considered (namely,

radar, actual links, simulated links with partial availability,

and simulated links with 100 % availability). In subsequent

figures and tables, these four data sets will be identified as

“RADAR”, “LINK”, “partSIM”, and “fullSIM”, respectively

(see Fig. 1); 15 min rainfall maps were accumulated to daily

rainfall maps, i.e. 12 daily rainfall maps per data set.

Ordinary kriging (OK) was employed to generate rain-

fall maps, because it is the simplest and most straightfor-

ward method that accounts for the local variability of the

stochastic process, rainfall in this case (Cressie, 1990; Hain-

ing et al., 2010). Kriging is ideally suited for interpolation

of highly irregularly spaced data points. Nevertheless, this

method comes with its own limitations, and a number of as-

sumptions should be made for the method to be valid, e.g.

%

75−100
50−75
25−50
0−25

Figure 3. Topology of the T-Mobile NL microwave link network

used for this study. The colour scale of the microwave network rep-

resents the temporal availability of the link data for the 12-day val-

idation period. The average availability is 83.5 %.

isotropy and statistical stationarity. These assumptions are

further explained in Sect. 6. The path-averaged link rainfall

estimates are assigned to the point at the centre of the link,

so that these point data can be used in the OK interpolation.

This conversion from line-scale to point-scale data is part of

our mapping method, and hence errors resulting from this

conversion are part of the mapping uncertainty.

Any kriging method heavily relies on the function that de-

scribes the spatial covariance, i.e. the semi-variogram. The

semi-variogram is a continuous function that describes how

the spatial dependence of a random variable changes with

distance and direction (Isaaks and Srivastava, 1989, chap. 7).

Like Overeem et al. (2013), we chose the semi-variogram

approach of van de Beek et al. (2011) because it is a sim-

ple isotropic spherical model developed for the Netherlands

on the basis of a 30-year climatological rainfall data set.

van de Beek et al. (2011) concluded that the seasonality in

range and sill of the semi-variogram can be described by

cosine-function models with the day-of-year as the indepen-

dent variable. Note that they assumed the nugget to be zero.

van de Beek et al. (2012) also developed two methodologies

that allowed for the spherical semi-variogram to be down-

scaled from daily to hourly time steps. We chose their second

methodology, namely, power-law scaling of cosine-function

parameters, because it was shown to perform better. This
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downscaling methodology was based on hourly rainfall data

aggregated to 2, 3, 4, 6, 8, 12, and 24 h. Here we extended

this power-law downscaling to smaller timescales, namely,

0.25 h, i.e. 15 min.

For the LINK, partSIM, and fullSIM data sets, 15 min rain-

fall maps were obtained as follows: first, the spherical semi-

variogram parameters were computed and downscaled for

the given day of the year. Hence, a single semi-variogram

is applied to all 15 min time steps within that given day. The

nugget was defined as 10 % of the sill. Second, rainfall depths

were assigned to the coordinates of the link paths’ middle

points. Third, rainfall depths were interpolated over the spa-

tial grid of the radar data set. The interpolation algorithm al-

ways selects the closest 100 rainfall depths to the pixel for

which the interpolation is carried out. This selection was es-

tablished to speed up the interpolation process; 24 h rainfall

maps were obtained from the aggregation of 15 min rainfall

maps.

2.4 Error and uncertainty metrics

To quantify the uncertainty in rainfall maps from microwave

link networks, we used three metrics: (1) the relative bias,

(2) the coefficient of variation, and (3) the coefficient of de-

termination.

The relative bias is a relative measure of the average error

between the interpolated and radar rainfall fields (considered

to be the ground truth):

relative bias=
Rres

Rradar

=

n∑
i=1

Rres,i

n∑
i=1

Rradar,i

, (1)

where Rres,i = Rint,i −Rradar,i . In Eq. (1), n represents all

possible pixels and time steps for the 12-day validation pe-

riod.

The coefficient of variation is a dimensionless measure of

dispersion, which is defined as the standard deviation divided

by the mean (Haan, 1977). In this case we took the standard

deviation of the residuals divided by the mean of the refer-

ence field (i.e. the mean of the radar rainfall field):

CV=

√
1

n−1

n∑
i=1

(
Rres,i −Rres

)2
Rradar

. (2)

The coefficient of variation is a measure of uncertainty

(similar to the root mean squared error). For instance, a CV=

0 would indicate a hypothetical case with no bias and no un-

certainty, i.e. a case in which all data points would fall exactly

on the 1 : 1 line.

The coefficient of determination is a measure of the

strength of the linear dependence between two random vari-

ables, interpolated and radar rainfall depths, in this case. It

is simply defined as the square of the correlation coefficient

between the interpolated and radar rainfall depths:

r2
=

[
n∑

i=1

(
Rradar,i −Rradar

)
·
(
Rint,i −Rint

)]2

[
n∑

i=1

(
Rradar,i −Rradar

)2]
·

[
n∑

i=1

(
Rint,i −Rint

)2] . (3)

The coefficient of determination represents the fraction of

the variance of the reference variable that can be explained

by a linear regression. In a case of perfect linear correlation,

i.e. r2
= 1, all data points would fall on a straight line with-

out any scatter. Hence, the linear regression would be able

to explain 100 % of the variance of the reference variable in

that case. However, perfect linearity does not imply unbiased

estimation because the regression line could not necessarily

coincide with the 1 : 1 line, even if it captures all variability.

3 Results

From the actual and simulated link rainfall depths, rainfall

maps were obtained for three cases: (1) 15 min rainfall maps

from interpolation of 15 min rainfall depths; (2) 24 h rain-

fall maps from the sum of these 15 min rainfall maps; and

(3) 15 min rainfall maps from interpolation of 15 min rain-

fall depths, in which each pixel (interpolated rainfall depth)

was averaged with the surrounding pixels within a 9×9 pixel

square. The reason for this posterior average of the rain-

fall depths was to limit representativeness errors in time

(Overeem et al., 2013). Incidentally, this area (∼ 81 km2)

roughly corresponds to the spatial extent of typical water

management units in the Netherlands.

Appendix A presents five examples of 24 h and 15 min

rainfall maps. Overeem et al. (2013, Supplement) showed

daily comparisons between actual link rainfall maps and

radar rainfall fields for the 12-day validation period. Here, we

present 5 of those 12 cases for reference. These comparisons

are extended to both types of simulated link rainfall maps

(actual and 100 % network availability) (Fig. A1). Five com-

parisons of 15 min rainfall maps are also presented (Fig. A2).

These examples provide information on the improvement in

rainfall fields when the sources of error studied here are re-

moved.

For any given time step, interpolated rainfall maps were

compared on a pixel-by-pixel basis against radar rainfall

fields. This pixel-by-pixel comparison was done via scat-

ter density plots of interpolated against radar rainfall depths

(ground truth). Figure 4 presents an array of scatter plots,

for the three cases of spatiotemporal aggregation, for the ac-

tual and both types of simulated link rainfall depths (actual

and 100 % network availability). Each of the scatter plots in

Fig. 4 corresponds to all 15 min (or 24 h) rainfall maps within

the 12-day validation period. These plots show paired rainfall

www.hydrol-earth-syst-sci.net/19/3571/2015/ Hydrol. Earth Syst. Sci., 19, 3571–3584, 2015
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Figure 4. Scatter density plots of interpolated link rainfall depths vs. radar rainfall depths for 15 min and 24 h. Top row (a, b, c): 15 min

rainfall depths; middle row (d, e, f): 15 min rainfall depths averaged with the surrounding pixels within a 9× 9 pixel square; bottom row

(g, h, i): daily sum of 15 min rainfall depths. Left column (a, d, g): actual link rainfall maps vs. radar rainfall fields; centre column (b,

e, h): simulated link rainfall maps (actual availability) vs. radar rainfall fields; right column (c, f, i): simulated link rainfall maps (100 %

availability) vs. radar rainfall maps. (d) and (g) are comparable to Overeem et al. (2013). The colour scale is logarithmic.

depths of interpolated and radar rainfall maps, for any pair in

which the radar rainfall depth is larger than 0.1 mm.

The scatter density plot of Fig. 5 corresponds to the actual

and simulated link rainfall depths (actual availability) at the

locations of the links, i.e. before any interpolation was ap-

plied. Only those pairs for which at least one rainfall depth

exceeded 0.1 mm were plotted.

Table 1 summarizes the values of the relative bias, the co-

efficient of variation (of the residuals), and the coefficient of

determination (i.e. the squared correlation coefficient) for the

three cases of spatiotemporal aggregation, for the actual and

both types of simulated link rainfall depths.

4 Discussion

From left to right and from top to bottom, the general picture

that arises from Fig. 4 and Table 1 is (1) a reduced system-

atic error (relative bias); (2) a smaller random error (CV); and

(3) a stronger linear dependence (r2). This suggests a general

improvement of the interpolated link rainfall depths with re-

spect to the radar rainfall depths, as more sources of error are

removed from the analysis.

Figure 4a, d, and g show the relation between the actual

link and radar rainfall depths, for the three cases of spa-

tiotemporal aggregation. The scatter in these plots can be at-

tributed to all possible sources of error in rainfall maps from

microwave link measurements, i.e. those associated with the
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Figure 5. Scatter density plot of simulated link rainfall depths (ac-

tual availability) vs. actual link rainfall depths for all 15 min time

steps in the 12-day validation period. Both simulated and actual link

rainfall depths are path-averaged rainfall depths. The colour scale is

logarithmic.

link measurements themselves and those associated with the

interpolation of individual measurements (mapping).

The dark blue shading close to the 1 : 1 line for small rain-

fall depths in all panels of Fig. 4 indicates a good agreement

between rainfall estimates from microwave links and radar

(note that the colour scale is logarithmic). Conversely, for

larger rainfall depths the scatter seems to relatively increase

for the actual link measurements (panels a, d, g), while it de-

creases for the simulated link measurements (all other pan-

els). Such deviations must be the result of errors in individ-

ual link measurements as well as the combination of limited

spatial coverage of the link network (Fig. 3) with the strong

variability of rainfall in space. The relative contribution of

the measurement errors to the total error hence increases with

rainfall amounts.

From Fig. 4 and Table 1, it is clear as well that the relative

bias is most sensitive to the spatial and temporal aggregation

level. If all paired rainfall accumulations would have been

used (and not only those in which at least the radar rainfall

depth exceeds 0.1 mm) one would expect the relative bias to

be exactly the same for all aggregation levels, because both

aggregation and computation of the bias are linear operators

(Eq. 1).

There is a limited improvement in terms of the coefficients

of variation and determination, when the scatter plots in the

second column of Fig. 4 are compared to those in the third

column, as well as their respective statistics in Table 1. This

means that the main reduction of uncertainty is achieved

when the actual link measurements are replaced with the

simulated microwave link measurements, rather than to in-

crease the actual link network availability to 100 % for all

links. This implies that a significant fraction of the overall

uncertainty must be due to errors and uncertainties in the link

measurements themselves, rather than due to errors and un-

Table 1. Relative bias, and coefficients of variation and determi-

nation for the three cases of spatiotemporal aggregation (15 min

[1 km2], 15 min [81 km2], 24 h [1 km2]), for the three sets of link

measurements, i.e. the actual and both types of simulated link rain-

fall depths (actual and 100 % network availability).

LINK partSIM fullSIM

Relative bias [%]

15 min [1 km2] −14.3 −13.0 −9.3

15 min [81 km2] −9.1 −9.1 −5.6

24 h [1 km2] +1.6 −0.8 +0.7

Coefficient of variation – CV

15 min [1 km2] 1.216 0.871 0.748

15 min [81 km2] 0.995 0.586 0.435

24 h [1 km2] 0.523 0.262 0.224

Coefficient of determination – r2

15 min [1 km2] 0.366 0.605 0.709

15 min [81 km2] 0.496 0.770 0.873

24 h [1 km2] 0.720 0.903 0.928

certainties associated with mapping, at which rainfall maps

are reconstructed.

Figure 4c, f, and i and the last column of Table 1 indi-

cate the best possible performance that can be achieved with

the employed link network (if all links would yield perfect

measurements of path-averaged rainfall all the time). The re-

maining scatter can be attributed to the interpolation method-

ology (including the assignment of path-averaged rainfall in-

tensities to the link’s centre point), the spatial variability of

rainfall, and the effect of other factors such as the variable

and limited density of the link network (more links in urban

than in rural areas).

When 15 min rainfall depths at the 1 km2 spatial scale

(Fig. 4a–c) are summed to daily rainfall depths (Fig. 4g–i),

the discrepancies in rainfall estimates at 15 min tend to can-

cel each other. This explains the sharp decrease in the coef-

ficient of variation, and the sharp increase in the coefficient

of determination between 15 min and 24 h rainfall accumula-

tions, which implies a certain degree of independence among

the errors in the 15 min accumulations.

Figure 5 compares simulated against actual link rainfall

depths, before any interpolation was applied. This indicates

the performance of the 1751 individual links in terms of rain-

fall retrieval, regardless of the errors and uncertainties intro-

duced by interpolation (mapping). Note that the coefficient

of variation is larger than that of the 1 km2, 15 min rain-

fall accumulations presented in panel a of Fig. 4; and that

the coefficient of determination is between those coefficients

presented in panels a and d of Fig. 4. If we would assume

that rainfall retrieval and mapping errors are independent, we

would expect the CV in Fig. 4 to be greater than that in Fig. 5.
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Figure 6. Scatter density plots of coefficient of determination (r2) and coefficient of variation (CV) vs. microwave link density (averaged

over 155 km2), for the fullSIM case at 15 min and 1 km2 spatial scale. The colour scale is logarithmic.

This means that there is a clear interplay between these two

types of errors, and that the assumption of independence does

not hold. This may be explained by the fact that we use krig-

ing with a variogram that includes a nugget. In areas with

a dense link network, the weight of each individual link is

relatively small in the computation of the interpolated rainfall

field. This reduces the effect of large errors in a given link.

In areas with lower link densities the nugget of the employed

variogram has a similar reducing effect on large errors.

From Fig. 6 it can be seen that a higher density in the

link network guarantees good correlation between the es-

timated values of rainfall and the ground truth, and a low

coefficient of variation of the residuals. From the left panel

(Fig. 6a), it can be concluded that lower link densities also

contribute (and in large proportion) to higher correlation co-

efficients. This means that without considering errors in link

measurements, these latter being the largest source of uncer-

tainty in country-wide rainfall fields, the network density and

the mapping methodology considered here are, respectively,

high and good enough to retrieve accurate rainfall fields at

such country-wide scales (at least in the Netherlands).

5 Summary and conclusions

Our goal was to quantify the errors and uncertainties in rain-

fall maps from commercial microwave link networks. In gen-

eral, these errors can be attributed to different sources like

wet antenna attenuation, sampling interval of measurements,

wet/dry period classification, dry weather baseline attenua-

tion, drop size distribution (DSD), multi-path propagation,

interpolation methodology and algorithm, the availability of

microwave link measurements, and the variability of rainfall

itself across time and space. For the purpose of this paper we

classified all possible sources of error into two categories:

(1) those associated with the link measurements themselves

(retrieval algorithm included), and (2) those associated with

mapping. Only the overall effects of physical and interpola-

tion errors were addressed here, not all physical errors sepa-

rately.

To quantify the errors and uncertainties that can be at-

tributed to these two categories, rainfall maps created from

three sets of link rainfall depths were compared: actual link

measurements, simulated link measurements with the actual

network availability, and simulated link measurements with

100 % network availability assumed. Simulated link rainfall

depths are not affected by errors and uncertainties attributed

to actual link measurements; therefore, we could estimate un-

certainties attributed to mapping. Based on a pixel-by-pixel

comparison, interpolated rainfall maps of the Netherlands

were compared against radar rainfall fields (considered to be

the ground truth). These comparisons were carried out on the

basis of scatter density plots and three metrics: relative bias,

coefficient of variation (CV), and coefficient of determina-

tion (r2).

We found that measurement errors themselves are the

source of error that contributes most to the overall uncer-

tainty in rainfall maps from commercial microwave link net-

works.

In a standard operational framework, data from commer-

cial microwave link networks may not be continuously avail-

able for the entire network. Such data gaps affect the accu-

racy of the retrieved rainfall intensities. Because we were

able to simulate rainfall depths on the basis of radar com-

posites, we could investigate the hypothetical case in which

data from a commercial link network would be available for

all time steps, and for all possible link paths in the network.

This best-case scenario could explain an additional 10 % of

the variance explained by error-free link measurements with

actual network availability for the 15 min accumulation (3 %

for the 24 h accumulation). Note that these percentages are

particular for the region and period considered in this study.

Nevertheless, even the best-case scenario showed a remain-

ing and significant amount of uncertainty that could not be

removed in rainfall maps. This means that the space–time

variability of rainfall is such that it would require an even
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more dense and robust network of microwave links to gener-

ate more accurate rainfall maps at country-wide scales. The

uncertainties in link rainfall retrievals found in this paper are

partly explained by the combined effects of rainfall space

variability along the link, non-linearity of the retrieval rela-

tion, imperfect temporal sampling strategy, quantization of

the received power (data stored in integer number of dBs),

and wet antenna attenuation (and correction) investigated by

Leijnse et al. (2008, in particular Fig. 13, upper right panel

on p. 1487). They reported a CV of ∼ 1.0, which explains

a significant part of the CV (1.44) given in Fig. 5. Daily

rainfall maps from microwave links showed less uncertainty

compared to 15 min rainfall maps, because errors present in

15 min rainfall maps tend to cancel each other when 15 min

rainfall maps are aggregated.

6 Constraints and recommendations

The kriging algorithm we used was that of Pebesma (1997)

and Pebesma and Wesseling (1998). The interpolated maps

from simulated link rainfall depths represent the outcome

of a process in which a linear feature (link path) obtained

from the average of volume samples (radar data) is assigned

to a point (link-path middle point). Each of these features

(area, line, volume, point) represents what in geostatistics is

referred to as support, i.e. the spatial resolution at which the

random variable is analyzed (Cressie and Wikle, 2011, chap

4.1). The arbitrary change from line to point support intro-

duces a source of error that is implicitly included in the errors

related to mapping.

Apart from its simplicity and the 30-year rainfall data set

on which it is based, we also chose the isotropic spherical

semi-variogram of van de Beek et al. (2011), because a con-

sistent semi-variogram model estimated from link data was

not feasible for 15 min rainfall intensities. Isotropic semi-

variograms assume equal spatial dependence in all possi-

ble directions. Rainfall is generally a phenomenon that ex-

hibits anisotropy in time and space (Lepioufle et al., 2012;

Velasco-Forero et al., 2009; Guillot and Lebel, 1999; Amani

and Lebel, 1997). Nevertheless, it is reasonable to assume

isotropy for the Netherlands given its relative small area

and flat topography. OK assumes the mean to be constant

and unknown within the region of interpolation. When this

unknown mean presents substantial changes over short dis-

tances, the assumption of statistical stationarity is no longer

valid. Universal kriging, kriging with external drift, and re-

gression kriging are more sophisticated interpolation tech-

niques that incorporate trends to account for non-stationarity

(e.g. Schuurmans et al., 2007). The performance of these

geostatistical techniques to retrieve link rainfall maps was

beyond the scope of this research.

If a similar study were to be carried out in a country with

different conditions than those present in the Netherlands,

three issues should be considered: (1) the spatial and opera-

tional configuration of the link network, (2) the climatology

of the region where the link network operates, and (3) the

spatial scale at which the analysis is carried out.

The first issue, the spatial and operational configuration of

the link network, refers to the distribution of link frequencies,

lengths, and densities of link networks around the world. For

instance, the commercial microwave link network used in

this study has an average link-path length of 3.1 km, a mean

frequency of 36.0 GHz, and a global average availability of

83.5 % across the Netherlands (Figs. 2 and 3). Other regions

may have more extensive urban and/or rural areas. In par-

ticular, for rural areas one expects to find longer link paths,

and therefore lower microwave frequencies. Another issue

related to the lower frequencies, e.g. 7 GHz, is the low sensi-

tivity to rainfall and the non-linearity of the R–k relation-

ship, mostly in tropical regions (Doumounia et al., 2014).

This non-linearity will lead to biases in rainfall intensities

in cases of large rainfall variability along the link path (pos-

itive biases at lower frequencies where the exponent of the

R–k power law is smaller than 1; see Leijnse et al., 2010).

Thus, the performance of the rainfall retrieval algorithm for

such link networks will differ from the performance found in

this study. For instance, in places where link paths are longer

(tens of kilometres) the error due to spatial variability of rain-

fall along the link path becomes more important (Berne and

Uijlenhoet, 2007; Leijnse et al., 2008, 2010). Moreover, less

dense networks with long link paths will provide less detailed

information about rainfall.

The second issue, the climatology of the region refers

to the local pattern of rainfall that characterizes different

regions around the world. The rainfall characteristics of

the Netherlands are different from the ones encountered in,

e.g., (sub-)tropical regions. For instance, the spherical semi-

variogram model applied here was derived from climatologi-

cal rain gauge data for the Netherlands. Furthermore, rainfall

characteristics such as raindrop size distributions or the dis-

tribution of rainfall intensities will affect the optimal values

of the parameters of the retrieval algorithm. Therefore, for

regions with different rainfall climatologies than the Nether-

lands, variations should be considered not only in the inter-

polation methodology but also in the algorithms and their pa-

rameters to retrieve rainfall intensities.

The third issue refers to the spatial scale at which rain-

fall maps are reconstructed. The analyses presented here fo-

cussed on 15 min (and 24 h) maps at 1 and 81 km2, and the

differences in error characteristics are significant. For larger

regions, for instance, the uncertainty attributed to mapping

could play a major role in the overall error distribution. Still,

the scale at which rainfall can effectively be retrieved de-

pends greatly on the density of the underlying link network.

This means that in regions with a much lower link density

than in the Netherlands, the effective spatial resolution for

which rainfall maps can be derived will be lower.
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Appendix A: Comparison of 24 h and 15 min

rainfall maps

In Fig. A1, the LINK column (top and bottom rows –

20110907_08:00 and 20110819_08:00) shows how daily

rainfall depths are greatly overestimated by link data, espe-

cially in places where there is intense rainfall, and the den-

sity of the network is higher. Simulated rainfall depths (actual

availability) show improvement of rainfall fields with regard

to link-based rainfall fields. Conversely, to actual link rainfall

maps, simulated rainfall fields based on the actual availabil-

ity of the network present a slight underestimation of rainfall

depths. Simulated link rainfall fields (actual and 100 % net-

work availability) are similar because the effect of actual or

100 % availability among 15 min intervals is smoothed out

by the sum of 15 min rainfall fields.

Figure A2 shows how accurate rainfall events are captured

across the Netherlands at 15 min intervals. Note how the ac-

curacy is improved for the best-case scenario of 100 % net-

work availability (fullSIM column).
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Figure A1. Comparison of daily interpolated rainfall maps with regard to radar rainfall fields (ground truth; left column). The rows show

five of the 12 days of the validation period. Daily rainfall maps were aggregated from 15 min rainfall maps. The row labels indicate the end

UTC for which the maps were obtained.
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Figure A2. Comparison of 15 min interpolated rainfall maps with regard to radar rainfall fields (ground truth, left column). The rows show

five of the 1152 time steps (cases) present in the 12-day validation period. The row labels indicate the start UTC for which the maps were

obtained.
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