Articles | Volume 17, issue 12
https://doi.org/10.5194/hess-17-5061-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/hess-17-5061-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Is bias correction of regional climate model (RCM) simulations possible for non-stationary conditions?
C. Teutschbein
Department of Physical Geography and Quaternary Geology, Stockholm University, 10691 Stockholm, Sweden
Department of Earth Sciences, Uppsala University, 75236 Uppsala, Sweden
J. Seibert
Department of Physical Geography and Quaternary Geology, Stockholm University, 10691 Stockholm, Sweden
Department of Geography, University of Zurich, 8057 Zurich, Switzerland
Department of Earth Sciences, Uppsala University, 75236 Uppsala, Sweden
Related authors
Claudia Teutschbein, Thomas Grabs, Markus Giese, Andrijana Todorović, and Roland Barthel
EGUsphere, https://doi.org/10.5194/egusphere-2024-2742, https://doi.org/10.5194/egusphere-2024-2742, 2024
Short summary
Short summary
This study explores how droughts develop and spread in high-latitude regions, focusing on the unique conditions found in areas like Scandinavia. It reveals that droughts affect soil, rivers, and groundwater differently, depending on factors like land cover, water availability, and soil properties. The findings highlight the importance of tailored water management strategies to protect resources and ecosystems in these regions, especially as climate change continues to impact weather patterns.
Anne F. Van Loon, Sarra Kchouk, Alessia Matanó, Faranak Tootoonchi, Camila Alvarez-Garreton, Khalid E. A. Hassaballah, Minchao Wu, Marthe L. K. Wens, Anastasiya Shyrokaya, Elena Ridolfi, Riccardo Biella, Viorica Nagavciuc, Marlies H. Barendrecht, Ana Bastos, Louise Cavalcante, Franciska T. de Vries, Margaret Garcia, Johanna Mård, Ileen N. Streefkerk, Claudia Teutschbein, Roshanak Tootoonchi, Ruben Weesie, Valentin Aich, Juan P. Boisier, Giuliano Di Baldassarre, Yiheng Du, Mauricio Galleguillos, René Garreaud, Monica Ionita, Sina Khatami, Johanna K. L. Koehler, Charles H. Luce, Shreedhar Maskey, Heidi D. Mendoza, Moses N. Mwangi, Ilias G. Pechlivanidis, Germano G. Ribeiro Neto, Tirthankar Roy, Robert Stefanski, Patricia Trambauer, Elizabeth A. Koebele, Giulia Vico, and Micha Werner
Nat. Hazards Earth Syst. Sci., 24, 3173–3205, https://doi.org/10.5194/nhess-24-3173-2024, https://doi.org/10.5194/nhess-24-3173-2024, 2024
Short summary
Short summary
Drought is a creeping phenomenon but is often still analysed and managed like an isolated event, without taking into account what happened before and after. Here, we review the literature and analyse five cases to discuss how droughts and their impacts develop over time. We find that the responses of hydrological, ecological, and social systems can be classified into four types and that the systems interact. We provide suggestions for further research and monitoring, modelling, and management.
Elin Stenfors, Malgorzata Blicharska, Thomas Grabs, and Claudia Teutschbein
EGUsphere, https://doi.org/10.5194/egusphere-2024-2726, https://doi.org/10.5194/egusphere-2024-2726, 2024
Short summary
Short summary
Utilizing a survey including respondents from seven societal sectors, the role of water dependency for drought vulnerability was explored. Differences were found in the perceived impact of vulnerability factors on drought risk in relation to water dependency (i.e., dependency on either soil moisture, or groundwater and surface water). The results highlight the importance of accounting for water dependency, and to clearly define the drought hazard, in drought vulnerability or risk assessments.
Riccardo Biella, Anastasiya Shyrokaya, Ilias Pechlivanidis, Daniela Cid, Maria Carmen Llasat, Marthe Wens, Marleen Lam, Elin Stenfors, Samuel Sutanto, Elena Ridolfi, Serena Ceola, Pedro Alencar, Giuliano Di Baldassarre, Monica Ionita, Mariana Madruga de Brito, Scott J. McGrane, Benedetta Moccia, Viorica Nagavciuc, Fabio Russo, Svitlana Krakovska, Andrijana Todorovic, Faranak Tootoonchi, Patricia Trambauer, Raffaele Vignola, and Claudia Teutschbein
EGUsphere, https://doi.org/10.5194/egusphere-2024-2073, https://doi.org/10.5194/egusphere-2024-2073, 2024
Short summary
Short summary
This research by the Drought in the Anthropocene (DitA) network highlights the crucial role of forecasting systems and Drought Management Plans in European drought risk management. Based on a survey of water managers during the 2022 European drought, it underscores the impact of preparedness on response and the evolution of drought management strategies across the continent. The study concludes with a plea for a European Drought Directive.
Elin Stenfors, Malgorzata Blicharska, Thomas Grabs, and Claudia Teutschbein
EGUsphere, https://doi.org/10.5194/egusphere-2024-1988, https://doi.org/10.5194/egusphere-2024-1988, 2024
Short summary
Short summary
Through a survey, involving six-water dependent sectors, the relevance and impact of drought vulnerability factors for sectors and societies in forested cold climates was studied. The results show that the relevance and impact of vulnerability factors differ across sectors and how governance processes and policies are important for drought risk. The results offer unique insights into the dynamics of drought vulnerability, valuable for risk assessments, drought plans and increasing resilience.
Riccardo Biella, Ansastasiya Shyrokaya, Monica Ionita, Raffaele Vignola, Samuel Sutanto, Andrijana Todorovic, Claudia Teutschbein, Daniela Cid, Maria Carmen Llasat, Pedro Alencar, Alessia Matanó, Elena Ridolfi, Benedetta Moccia, Ilias Pechlivanidis, Anne van Loon, Doris Wendt, Elin Stenfors, Fabio Russo, Jean-Philippe Vidal, Lucy Barker, Mariana Madruga de Brito, Marleen Lam, Monika Bláhová, Patricia Trambauer, Raed Hamed, Scott J. McGrane, Serena Ceola, Sigrid Jørgensen Bakke, Svitlana Krakovska, Viorica Nagavciuc, Faranak Tootoonchi, Giuliano Di Baldassarre, Sandra Hauswirth, Shreedhar Maskey, Svitlana Zubkovych, Marthe Wens, and Lena Merete Tallaksen
EGUsphere, https://doi.org/10.5194/egusphere-2024-2069, https://doi.org/10.5194/egusphere-2024-2069, 2024
Short summary
Short summary
This research by the Drought in the Anthropocene (DitA) network highlights gaps in European drought management exposed by the 2022 drought and proposes a new direction. Using a Europe-wide survey of water managers, we examine four areas: increasing drought risk, impacts, drought management strategies, and their evolution. Despite growing risks, management remains fragmented and short-term. However, signs of improvement suggest readiness for change. We advocate for a European Drought Directive.
Chandni Thakur, Kasiapillai Sudalaimuthu Kasiviswanathan, Claudia Teutschbein, Bankaru-Swamy Soundharajan, M M Diwan Mohaideen, and Venkatesh Budamala
Proc. IAHS, 385, 203–209, https://doi.org/10.5194/piahs-385-203-2024, https://doi.org/10.5194/piahs-385-203-2024, 2024
Short summary
Short summary
This study focuses on advancing the current understanding of the impacts of the El Niño events on the hydrology of the Godavari River Basin (GRB). Variable Infiltration Capacity (VIC) hydrological model was employed to assess the hydrological changes and found a negative correlation of average precipitation, abstractions, and soil moisture with increasing magnitude of El Niño events for the period 1980–2008.
Veit Blauhut, Michael Stoelzle, Lauri Ahopelto, Manuela I. Brunner, Claudia Teutschbein, Doris E. Wendt, Vytautas Akstinas, Sigrid J. Bakke, Lucy J. Barker, Lenka Bartošová, Agrita Briede, Carmelo Cammalleri, Ksenija Cindrić Kalin, Lucia De Stefano, Miriam Fendeková, David C. Finger, Marijke Huysmans, Mirjana Ivanov, Jaak Jaagus, Jiří Jakubínský, Svitlana Krakovska, Gregor Laaha, Monika Lakatos, Kiril Manevski, Mathias Neumann Andersen, Nina Nikolova, Marzena Osuch, Pieter van Oel, Kalina Radeva, Renata J. Romanowicz, Elena Toth, Mirek Trnka, Marko Urošev, Julia Urquijo Reguera, Eric Sauquet, Aleksandra Stevkov, Lena M. Tallaksen, Iryna Trofimova, Anne F. Van Loon, Michelle T. H. van Vliet, Jean-Philippe Vidal, Niko Wanders, Micha Werner, Patrick Willems, and Nenad Živković
Nat. Hazards Earth Syst. Sci., 22, 2201–2217, https://doi.org/10.5194/nhess-22-2201-2022, https://doi.org/10.5194/nhess-22-2201-2022, 2022
Short summary
Short summary
Recent drought events caused enormous damage in Europe. We therefore questioned the existence and effect of current drought management strategies on the actual impacts and how drought is perceived by relevant stakeholders. Over 700 participants from 28 European countries provided insights into drought hazard and impact perception and current management strategies. The study concludes with an urgent need to collectively combat drought risk via a European macro-level drought governance approach.
Faranak Tootoonchi, Jan Olaf Haerter, Olle Räty, Thomas Grabs, Mojtaba Sadegh, and Claudia Teutschbein
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2020-306, https://doi.org/10.5194/hess-2020-306, 2020
Preprint withdrawn
Short summary
Short summary
The motive behind writing this paper is the growing interest in adopting copulas in hydroclimatic applications. We performed an
in-depth copula analysis on a case study in Sweden to show strength, significance, variability and non-stationarity of correlation between precipitation and temperature variables. As our final product, we illustrate a comprehensive decision support framework to support end users in adopting copulas for hydroclimatic applications.
Fernando Jaramillo, Neil Cory, Berit Arheimer, Hjalmar Laudon, Ype van der Velde, Thomas B. Hasper, Claudia Teutschbein, and Johan Uddling
Hydrol. Earth Syst. Sci., 22, 567–580, https://doi.org/10.5194/hess-22-567-2018, https://doi.org/10.5194/hess-22-567-2018, 2018
Short summary
Short summary
Which is the dominant effect on evapotranspiration in northern forests, an increase by recent forests expansion or a decrease by the water use response due to increasing CO2 concentrations? We determined the dominant effect during the period 1961–2012 in 65 Swedish basins. We used the Budyko framework to study the hydroclimatic movements in Budyko space. Our findings suggest that forest expansion is the dominant driver of long-term and large-scale evapotranspiration changes.
Stephen Oni, Martyn Futter, Jose Ledesma, Claudia Teutschbein, Jim Buttle, and Hjalmar Laudon
Hydrol. Earth Syst. Sci., 20, 2811–2825, https://doi.org/10.5194/hess-20-2811-2016, https://doi.org/10.5194/hess-20-2811-2016, 2016
Short summary
Short summary
This paper presents an important framework to improve hydrologic projections in cold regions. Hydrologic modelling/projections are often based on model calibration to long-term data. Here we used dry and wet years as a proxy to quantify uncertainty in projecting hydrologic extremes. We showed that projections based on long-term data could underestimate runoff by up to 35% in boreal regions. We believe the hydrologic modelling community will benefit from new insights derived from this study.
Claudia Teutschbein, Thomas Grabs, Markus Giese, Andrijana Todorović, and Roland Barthel
EGUsphere, https://doi.org/10.5194/egusphere-2024-2742, https://doi.org/10.5194/egusphere-2024-2742, 2024
Short summary
Short summary
This study explores how droughts develop and spread in high-latitude regions, focusing on the unique conditions found in areas like Scandinavia. It reveals that droughts affect soil, rivers, and groundwater differently, depending on factors like land cover, water availability, and soil properties. The findings highlight the importance of tailored water management strategies to protect resources and ecosystems in these regions, especially as climate change continues to impact weather patterns.
Ondrej Hotovy, Ondrej Nedelcev, Jan Seibert, and Michal Jenicek
EGUsphere, https://doi.org/10.5194/egusphere-2024-2274, https://doi.org/10.5194/egusphere-2024-2274, 2024
Short summary
Short summary
Rain falling on snow accelerates snowmelt and can affect runoff and cause severe floods. We assessed potential regional and seasonal variations in RoS occurrence in mountainous catchments in Central Europe, using a sensitivity analysis through hydrological model. The results showed that climate change-driven RoS changes vary highly among regions, across elevations, and within the cold season. However, most projections suggested a decrease in the number of RoS and reduced RoS-driven runoff.
Anne F. Van Loon, Sarra Kchouk, Alessia Matanó, Faranak Tootoonchi, Camila Alvarez-Garreton, Khalid E. A. Hassaballah, Minchao Wu, Marthe L. K. Wens, Anastasiya Shyrokaya, Elena Ridolfi, Riccardo Biella, Viorica Nagavciuc, Marlies H. Barendrecht, Ana Bastos, Louise Cavalcante, Franciska T. de Vries, Margaret Garcia, Johanna Mård, Ileen N. Streefkerk, Claudia Teutschbein, Roshanak Tootoonchi, Ruben Weesie, Valentin Aich, Juan P. Boisier, Giuliano Di Baldassarre, Yiheng Du, Mauricio Galleguillos, René Garreaud, Monica Ionita, Sina Khatami, Johanna K. L. Koehler, Charles H. Luce, Shreedhar Maskey, Heidi D. Mendoza, Moses N. Mwangi, Ilias G. Pechlivanidis, Germano G. Ribeiro Neto, Tirthankar Roy, Robert Stefanski, Patricia Trambauer, Elizabeth A. Koebele, Giulia Vico, and Micha Werner
Nat. Hazards Earth Syst. Sci., 24, 3173–3205, https://doi.org/10.5194/nhess-24-3173-2024, https://doi.org/10.5194/nhess-24-3173-2024, 2024
Short summary
Short summary
Drought is a creeping phenomenon but is often still analysed and managed like an isolated event, without taking into account what happened before and after. Here, we review the literature and analyse five cases to discuss how droughts and their impacts develop over time. We find that the responses of hydrological, ecological, and social systems can be classified into four types and that the systems interact. We provide suggestions for further research and monitoring, modelling, and management.
Elin Stenfors, Malgorzata Blicharska, Thomas Grabs, and Claudia Teutschbein
EGUsphere, https://doi.org/10.5194/egusphere-2024-2726, https://doi.org/10.5194/egusphere-2024-2726, 2024
Short summary
Short summary
Utilizing a survey including respondents from seven societal sectors, the role of water dependency for drought vulnerability was explored. Differences were found in the perceived impact of vulnerability factors on drought risk in relation to water dependency (i.e., dependency on either soil moisture, or groundwater and surface water). The results highlight the importance of accounting for water dependency, and to clearly define the drought hazard, in drought vulnerability or risk assessments.
Franziska Clerc-Schwarzenbach, Giovanni Selleri, Mattia Neri, Elena Toth, Ilja van Meerveld, and Jan Seibert
Hydrol. Earth Syst. Sci., 28, 4219–4237, https://doi.org/10.5194/hess-28-4219-2024, https://doi.org/10.5194/hess-28-4219-2024, 2024
Short summary
Short summary
We show that the differences between the forcing data included in three CAMELS datasets (US, BR, GB) and the forcing data included for the same catchments in the Caravan dataset affect model calibration considerably. The model performance dropped when the data from the Caravan dataset were used instead of the original data. Most of the model performance drop could be attributed to the differences in precipitation data. However, differences were largest for the potential evapotranspiration data.
Riccardo Biella, Anastasiya Shyrokaya, Ilias Pechlivanidis, Daniela Cid, Maria Carmen Llasat, Marthe Wens, Marleen Lam, Elin Stenfors, Samuel Sutanto, Elena Ridolfi, Serena Ceola, Pedro Alencar, Giuliano Di Baldassarre, Monica Ionita, Mariana Madruga de Brito, Scott J. McGrane, Benedetta Moccia, Viorica Nagavciuc, Fabio Russo, Svitlana Krakovska, Andrijana Todorovic, Faranak Tootoonchi, Patricia Trambauer, Raffaele Vignola, and Claudia Teutschbein
EGUsphere, https://doi.org/10.5194/egusphere-2024-2073, https://doi.org/10.5194/egusphere-2024-2073, 2024
Short summary
Short summary
This research by the Drought in the Anthropocene (DitA) network highlights the crucial role of forecasting systems and Drought Management Plans in European drought risk management. Based on a survey of water managers during the 2022 European drought, it underscores the impact of preparedness on response and the evolution of drought management strategies across the continent. The study concludes with a plea for a European Drought Directive.
Elin Stenfors, Malgorzata Blicharska, Thomas Grabs, and Claudia Teutschbein
EGUsphere, https://doi.org/10.5194/egusphere-2024-1988, https://doi.org/10.5194/egusphere-2024-1988, 2024
Short summary
Short summary
Through a survey, involving six-water dependent sectors, the relevance and impact of drought vulnerability factors for sectors and societies in forested cold climates was studied. The results show that the relevance and impact of vulnerability factors differ across sectors and how governance processes and policies are important for drought risk. The results offer unique insights into the dynamics of drought vulnerability, valuable for risk assessments, drought plans and increasing resilience.
Riccardo Biella, Ansastasiya Shyrokaya, Monica Ionita, Raffaele Vignola, Samuel Sutanto, Andrijana Todorovic, Claudia Teutschbein, Daniela Cid, Maria Carmen Llasat, Pedro Alencar, Alessia Matanó, Elena Ridolfi, Benedetta Moccia, Ilias Pechlivanidis, Anne van Loon, Doris Wendt, Elin Stenfors, Fabio Russo, Jean-Philippe Vidal, Lucy Barker, Mariana Madruga de Brito, Marleen Lam, Monika Bláhová, Patricia Trambauer, Raed Hamed, Scott J. McGrane, Serena Ceola, Sigrid Jørgensen Bakke, Svitlana Krakovska, Viorica Nagavciuc, Faranak Tootoonchi, Giuliano Di Baldassarre, Sandra Hauswirth, Shreedhar Maskey, Svitlana Zubkovych, Marthe Wens, and Lena Merete Tallaksen
EGUsphere, https://doi.org/10.5194/egusphere-2024-2069, https://doi.org/10.5194/egusphere-2024-2069, 2024
Short summary
Short summary
This research by the Drought in the Anthropocene (DitA) network highlights gaps in European drought management exposed by the 2022 drought and proposes a new direction. Using a Europe-wide survey of water managers, we examine four areas: increasing drought risk, impacts, drought management strategies, and their evolution. Despite growing risks, management remains fragmented and short-term. However, signs of improvement suggest readiness for change. We advocate for a European Drought Directive.
Inhye Kong, Jan Seibert, and Ross S. Purves
EGUsphere, https://doi.org/10.5194/egusphere-2024-1844, https://doi.org/10.5194/egusphere-2024-1844, 2024
Short summary
Short summary
This study explores the timing and content of media coverage (i.e., newspaper articles) of droughts in England. We found that media coverage generally coincides with meteorological drought, but the inverse case did not always generate media coverage. Dominant topics include the water deficiency and weather forecasts, but also the mismanagement of water companies and hosepipe bans, highlighting current challenges in water management practices in England.
Chandni Thakur, Kasiapillai Sudalaimuthu Kasiviswanathan, Claudia Teutschbein, Bankaru-Swamy Soundharajan, M M Diwan Mohaideen, and Venkatesh Budamala
Proc. IAHS, 385, 203–209, https://doi.org/10.5194/piahs-385-203-2024, https://doi.org/10.5194/piahs-385-203-2024, 2024
Short summary
Short summary
This study focuses on advancing the current understanding of the impacts of the El Niño events on the hydrology of the Godavari River Basin (GRB). Variable Infiltration Capacity (VIC) hydrological model was employed to assess the hydrological changes and found a negative correlation of average precipitation, abstractions, and soil moisture with increasing magnitude of El Niño events for the period 1980–2008.
Jana Erdbrügger, Ilja van Meerveld, Jan Seibert, and Kevin Bishop
Earth Syst. Sci. Data, 15, 1779–1800, https://doi.org/10.5194/essd-15-1779-2023, https://doi.org/10.5194/essd-15-1779-2023, 2023
Short summary
Short summary
Groundwater can respond quickly to precipitation and is the main source of streamflow in most catchments in humid, temperate climates. To better understand shallow groundwater dynamics, we installed a network of groundwater wells in two boreal headwater catchments in Sweden. We recorded groundwater levels in 75 wells for 2 years and sampled the water and analyzed its chemical composition in one summer. This paper describes these datasets.
Rosanna A. Lane, Gemma Coxon, Jim Freer, Jan Seibert, and Thorsten Wagener
Hydrol. Earth Syst. Sci., 26, 5535–5554, https://doi.org/10.5194/hess-26-5535-2022, https://doi.org/10.5194/hess-26-5535-2022, 2022
Short summary
Short summary
This study modelled the impact of climate change on river high flows across Great Britain (GB). Generally, results indicated an increase in the magnitude and frequency of high flows along the west coast of GB by 2050–2075. In contrast, average flows decreased across GB. All flow projections contained large uncertainties; the climate projections were the largest source of uncertainty overall but hydrological modelling uncertainties were considerable in some regions.
Daniel Viviroli, Anna E. Sikorska-Senoner, Guillaume Evin, Maria Staudinger, Martina Kauzlaric, Jérémy Chardon, Anne-Catherine Favre, Benoit Hingray, Gilles Nicolet, Damien Raynaud, Jan Seibert, Rolf Weingartner, and Calvin Whealton
Nat. Hazards Earth Syst. Sci., 22, 2891–2920, https://doi.org/10.5194/nhess-22-2891-2022, https://doi.org/10.5194/nhess-22-2891-2022, 2022
Short summary
Short summary
Estimating the magnitude of rare to very rare floods is a challenging task due to a lack of sufficiently long observations. The challenge is even greater in large river basins, where precipitation patterns and amounts differ considerably between individual events and floods from different parts of the basin coincide. We show that a hydrometeorological model chain can provide plausible estimates in this setting and can thus inform flood risk and safety assessments for critical infrastructure.
Veit Blauhut, Michael Stoelzle, Lauri Ahopelto, Manuela I. Brunner, Claudia Teutschbein, Doris E. Wendt, Vytautas Akstinas, Sigrid J. Bakke, Lucy J. Barker, Lenka Bartošová, Agrita Briede, Carmelo Cammalleri, Ksenija Cindrić Kalin, Lucia De Stefano, Miriam Fendeková, David C. Finger, Marijke Huysmans, Mirjana Ivanov, Jaak Jaagus, Jiří Jakubínský, Svitlana Krakovska, Gregor Laaha, Monika Lakatos, Kiril Manevski, Mathias Neumann Andersen, Nina Nikolova, Marzena Osuch, Pieter van Oel, Kalina Radeva, Renata J. Romanowicz, Elena Toth, Mirek Trnka, Marko Urošev, Julia Urquijo Reguera, Eric Sauquet, Aleksandra Stevkov, Lena M. Tallaksen, Iryna Trofimova, Anne F. Van Loon, Michelle T. H. van Vliet, Jean-Philippe Vidal, Niko Wanders, Micha Werner, Patrick Willems, and Nenad Živković
Nat. Hazards Earth Syst. Sci., 22, 2201–2217, https://doi.org/10.5194/nhess-22-2201-2022, https://doi.org/10.5194/nhess-22-2201-2022, 2022
Short summary
Short summary
Recent drought events caused enormous damage in Europe. We therefore questioned the existence and effect of current drought management strategies on the actual impacts and how drought is perceived by relevant stakeholders. Over 700 participants from 28 European countries provided insights into drought hazard and impact perception and current management strategies. The study concludes with an urgent need to collectively combat drought risk via a European macro-level drought governance approach.
Jan Seibert and Sten Bergström
Hydrol. Earth Syst. Sci., 26, 1371–1388, https://doi.org/10.5194/hess-26-1371-2022, https://doi.org/10.5194/hess-26-1371-2022, 2022
Short summary
Short summary
Hydrological catchment models are commonly used as the basis for water resource management planning. The HBV model, which is a typical example of such a model, was first applied about 50 years ago in Sweden. We describe and reflect on the model development and applications. The aim is to provide an understanding of the background of model development and a basis for addressing the balance between model complexity and data availability that will continue to face hydrologists in the future.
Marit Van Tiel, Anne F. Van Loon, Jan Seibert, and Kerstin Stahl
Hydrol. Earth Syst. Sci., 25, 3245–3265, https://doi.org/10.5194/hess-25-3245-2021, https://doi.org/10.5194/hess-25-3245-2021, 2021
Short summary
Short summary
Glaciers can buffer streamflow during dry and warm periods, but under which circumstances can melt compensate precipitation deficits? Streamflow responses to warm and dry events were analyzed using
long-term observations of 50 glacierized catchments in Norway, Canada, and the European Alps. Region, timing of the event, relative glacier cover, and antecedent event conditions all affect the level of compensation during these events. This implies that glaciers do not compensate straightforwardly.
Camila Alvarez-Garreton, Juan Pablo Boisier, René Garreaud, Jan Seibert, and Marc Vis
Hydrol. Earth Syst. Sci., 25, 429–446, https://doi.org/10.5194/hess-25-429-2021, https://doi.org/10.5194/hess-25-429-2021, 2021
Short summary
Short summary
The megadrought experienced in Chile (2010–2020) has led to larger than expected water deficits. By analysing 106 basins with snow-/rainfall regimes, we relate such intensification with the hydrological memory of the basins, explained by snow and groundwater. Snow-dominated basins have larger memory and thus accumulate the effect of persistent precipitation deficits more strongly than pluvial basins. This notably affects central Chile, a water-limited region where most of the population lives.
Anna E. Sikorska-Senoner, Bettina Schaefli, and Jan Seibert
Nat. Hazards Earth Syst. Sci., 20, 3521–3549, https://doi.org/10.5194/nhess-20-3521-2020, https://doi.org/10.5194/nhess-20-3521-2020, 2020
Short summary
Short summary
This work proposes methods for reducing the computational requirements of hydrological simulations for the estimation of very rare floods that occur on average less than once in 1000 years. These methods enable the analysis of long streamflow time series (here for example 10 000 years) at low computational costs and with modelling uncertainty. They are to be used within continuous simulation frameworks with long input time series and are readily transferable to similar simulation tasks.
Maria Staudinger, Stefan Seeger, Barbara Herbstritt, Michael Stoelzle, Jan Seibert, Kerstin Stahl, and Markus Weiler
Earth Syst. Sci. Data, 12, 3057–3066, https://doi.org/10.5194/essd-12-3057-2020, https://doi.org/10.5194/essd-12-3057-2020, 2020
Short summary
Short summary
The data set CH-IRP provides isotope composition in precipitation and streamflow from 23 Swiss catchments, being unique regarding its long-term multi-catchment coverage along an alpine–pre-alpine gradient. CH-IRP contains fortnightly time series of stable water isotopes from streamflow grab samples complemented by time series in precipitation. Sampling conditions, catchment and climate information, lab standards and errors are provided together with areal precipitation and catchment boundaries.
Marc Girons Lopez, Marc J. P. Vis, Michal Jenicek, Nena Griessinger, and Jan Seibert
Hydrol. Earth Syst. Sci., 24, 4441–4461, https://doi.org/10.5194/hess-24-4441-2020, https://doi.org/10.5194/hess-24-4441-2020, 2020
Short summary
Short summary
Snow processes are crucial for runoff in mountainous areas, but their complexity makes water management difficult. Temperature models are widely used as they are simple and do not require much data, but not much thought is usually given to which model to use, which may lead to bad predictions. We studied the impact of many model alternatives and found that a more complex model does not necessarily perform better. Finding which processes are most important in each area is a much better strategy.
Kirsti Hakala, Nans Addor, Thibault Gobbe, Johann Ruffieux, and Jan Seibert
Hydrol. Earth Syst. Sci., 24, 3815–3833, https://doi.org/10.5194/hess-24-3815-2020, https://doi.org/10.5194/hess-24-3815-2020, 2020
Short summary
Short summary
Under a changing climate, reliable information on future hydrological conditions is necessary to inform water resource management. Here, we collaborated with a hydropower company that selected streamflow and energy demand indices. Using these indices, we identified stakeholder needs and used this to tailor the production of our climate change impact projections. We show that opportunities and risks for a hydropower company depend on a range of factors beyond those covered by traditional studies.
Faranak Tootoonchi, Jan Olaf Haerter, Olle Räty, Thomas Grabs, Mojtaba Sadegh, and Claudia Teutschbein
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2020-306, https://doi.org/10.5194/hess-2020-306, 2020
Preprint withdrawn
Short summary
Short summary
The motive behind writing this paper is the growing interest in adopting copulas in hydroclimatic applications. We performed an
in-depth copula analysis on a case study in Sweden to show strength, significance, variability and non-stationarity of correlation between precipitation and temperature variables. As our final product, we illustrate a comprehensive decision support framework to support end users in adopting copulas for hydroclimatic applications.
Leonie Kiewiet, Ilja van Meerveld, Manfred Stähli, and Jan Seibert
Hydrol. Earth Syst. Sci., 24, 3381–3398, https://doi.org/10.5194/hess-24-3381-2020, https://doi.org/10.5194/hess-24-3381-2020, 2020
Short summary
Short summary
The sources of stream water are important, for instance, for predicting floods. The connectivity between streams and different (ground-)water sources can change during rain events, which affects the stream water composition. We investigated this for stream water sampled during four events and found that stream water came from different sources. The stream water composition changed gradually, and we showed that changes in solute concentrations could be partly linked to changes in connectivity.
Barbara Strobl, Simon Etter, H. J. Ilja van Meerveld, and Jan Seibert
Geosci. Commun., 3, 109–126, https://doi.org/10.5194/gc-3-109-2020, https://doi.org/10.5194/gc-3-109-2020, 2020
Short summary
Short summary
Training can deter people from joining a citizen science project but may be needed to ensure good data quality. In this study, we found that an online game that was originally developed for data quality control in a citizen science project can be used for training as well. These findings are useful for the development of training strategies for other citizen science projects because they indicate that gamified approaches might be valuable scalable training methods.
H. J. Ilja van Meerveld, James W. Kirchner, Marc J. P. Vis, Rick S. Assendelft, and Jan Seibert
Hydrol. Earth Syst. Sci., 23, 4825–4834, https://doi.org/10.5194/hess-23-4825-2019, https://doi.org/10.5194/hess-23-4825-2019, 2019
Short summary
Short summary
Flowing stream networks extend and retract seasonally and in response to precipitation. This affects the distances and thus the time that it takes a water molecule to reach the flowing stream and the stream outlet. When the network is fully extended, the travel times are short, but when the network retracts, the travel times become longer and more uniform. These dynamics should be included when modeling solute or pollutant transport.
Judith Meyer, Irene Kohn, Kerstin Stahl, Kirsti Hakala, Jan Seibert, and Alex J. Cannon
Hydrol. Earth Syst. Sci., 23, 1339–1354, https://doi.org/10.5194/hess-23-1339-2019, https://doi.org/10.5194/hess-23-1339-2019, 2019
Short summary
Short summary
Several multivariate bias correction methods have been developed recently, but only a few studies have tested the effect of multivariate bias correction on hydrological impact projections. This study shows that incorporating or ignoring inter-variable relations between air temperature and precipitation can have a notable effect on the projected snowfall fraction. The effect translated to considerable consequences for the glacio-hydrological responses and streamflow components of the catchments.
Simon Etter, Barbara Strobl, Jan Seibert, and H. J. Ilja van Meerveld
Hydrol. Earth Syst. Sci., 22, 5243–5257, https://doi.org/10.5194/hess-22-5243-2018, https://doi.org/10.5194/hess-22-5243-2018, 2018
Short summary
Short summary
To evaluate the potential value of streamflow estimates for hydrological model calibration, we created synthetic streamflow datasets in various temporal resolutions based on the errors in streamflow estimates of 136 citizens. Our results show that streamflow estimates of untrained citizens are too inaccurate to be useful for model calibration. If, however, the errors can be reduced by training or filtering, the estimates become useful if also a sufficient number of estimates are available.
Daphné Freudiger, David Mennekes, Jan Seibert, and Markus Weiler
Earth Syst. Sci. Data, 10, 805–814, https://doi.org/10.5194/essd-10-805-2018, https://doi.org/10.5194/essd-10-805-2018, 2018
Short summary
Short summary
To understand glacier changes in the Swiss Alps at the large scale, long-term datasets are needed. To fill the gap between the existing glacier inventories of the Swiss Alps between 1850 and 1973, we digitized glacier outlines from topographic historical maps of Switzerland for the time periods ca. 1900 and ca. 1935. We found that > 88 % of the digitized glacier area was plausible compared to four inventories. The presented dataset is therefore valuable information for long-term glacier studies.
Jan Seibert, Marc J. P. Vis, Irene Kohn, Markus Weiler, and Kerstin Stahl
Hydrol. Earth Syst. Sci., 22, 2211–2224, https://doi.org/10.5194/hess-22-2211-2018, https://doi.org/10.5194/hess-22-2211-2018, 2018
Short summary
Short summary
In many glacio-hydrological models glacier areas are assumed to be constant over time, which is a crucial limitation. Here we describe a novel approach to translate mass balances as simulated by the (glacio)hydrological model into glacier area changes. We combined the Δh approach of Huss et al. (2010) with the bucket-type model HBV and introduced a lookup table approach, which also allows periods with advancing glaciers to be represented, which is not possible with the original Huss method.
Fernando Jaramillo, Neil Cory, Berit Arheimer, Hjalmar Laudon, Ype van der Velde, Thomas B. Hasper, Claudia Teutschbein, and Johan Uddling
Hydrol. Earth Syst. Sci., 22, 567–580, https://doi.org/10.5194/hess-22-567-2018, https://doi.org/10.5194/hess-22-567-2018, 2018
Short summary
Short summary
Which is the dominant effect on evapotranspiration in northern forests, an increase by recent forests expansion or a decrease by the water use response due to increasing CO2 concentrations? We determined the dominant effect during the period 1961–2012 in 65 Swedish basins. We used the Budyko framework to study the hydroclimatic movements in Budyko space. Our findings suggest that forest expansion is the dominant driver of long-term and large-scale evapotranspiration changes.
Sandra Pool, Marc J. P. Vis, Rodney R. Knight, and Jan Seibert
Hydrol. Earth Syst. Sci., 21, 5443–5457, https://doi.org/10.5194/hess-21-5443-2017, https://doi.org/10.5194/hess-21-5443-2017, 2017
Short summary
Short summary
This modeling study explores the effect of different model calibration criteria on the accuracy of simulated streamflow characteristics (SFCs). The results imply that one has to consider significant uncertainties when simulated time series are used to derive SFCs that were not included in the calibration. Thus, we strongly recommend calibrating the runoff model explicitly for the SFCs of interest. Our study helps improve the estimation of SFCs for ungauged catchments based on runoff models.
H. J. Ilja van Meerveld, Marc J. P. Vis, and Jan Seibert
Hydrol. Earth Syst. Sci., 21, 4895–4905, https://doi.org/10.5194/hess-21-4895-2017, https://doi.org/10.5194/hess-21-4895-2017, 2017
Short summary
Short summary
We tested the usefulness of stream level class data for hydrological model calibration. Only two stream level classes, e.g. above or below a rock in the stream, were already informative, particularly when the boundary was chosen at a high stream level. There was hardly any improvement in model performance when using more than five stream level classes. These results suggest that model based streamflow time series can be obtained from citizen science based water level class data.
Tracy Ewen and Jan Seibert
Hydrol. Earth Syst. Sci., 20, 4079–4091, https://doi.org/10.5194/hess-20-4079-2016, https://doi.org/10.5194/hess-20-4079-2016, 2016
Short summary
Short summary
Games are an optimal way to teach about water resource sharing, as they allow real-world scenarios to be explored. We look at how games can be used to teach about water resource sharing, by both playing and developing water games. An evaluation of the web-based game Irrigania found Irrigania to be an effective and easy tool to incorporate into curriculum, and a course on developing water games encouraged students to think about water resource sharing in a more critical and insightful way.
Nena Griessinger, Jan Seibert, Jan Magnusson, and Tobias Jonas
Hydrol. Earth Syst. Sci., 20, 3895–3905, https://doi.org/10.5194/hess-20-3895-2016, https://doi.org/10.5194/hess-20-3895-2016, 2016
Short summary
Short summary
In Alpine catchments, snowmelt is a major contribution to runoff. In this study, we address the question of whether the performance of a hydrological model can be enhanced by integrating data from an external snow monitoring system. To this end, a hydrological model was driven with snowmelt input from snow models of different complexities. Best performance was obtained with a snow model, which utilized data assimilation, in particular for catchments at higher elevations and for snow-rich years.
Stephen Oni, Martyn Futter, Jose Ledesma, Claudia Teutschbein, Jim Buttle, and Hjalmar Laudon
Hydrol. Earth Syst. Sci., 20, 2811–2825, https://doi.org/10.5194/hess-20-2811-2016, https://doi.org/10.5194/hess-20-2811-2016, 2016
Short summary
Short summary
This paper presents an important framework to improve hydrologic projections in cold regions. Hydrologic modelling/projections are often based on model calibration to long-term data. Here we used dry and wet years as a proxy to quantify uncertainty in projecting hydrologic extremes. We showed that projections based on long-term data could underestimate runoff by up to 35% in boreal regions. We believe the hydrologic modelling community will benefit from new insights derived from this study.
Michal Jenicek, Jan Seibert, Massimiliano Zappa, Maria Staudinger, and Tobias Jonas
Hydrol. Earth Syst. Sci., 20, 859–874, https://doi.org/10.5194/hess-20-859-2016, https://doi.org/10.5194/hess-20-859-2016, 2016
Short summary
Short summary
We quantified how long snowmelt affects runoff, and we estimated the sensitivity of catchments to changes in snowpack. This is relevant as the increase of air temperature might cause decreased snow storage. We used time series from 14 catchments in Switzerland. On average, a decrease of maximum snow storage by 10 % caused a decrease of minimum discharge in July by 2 to 9 %. The results showed a higher sensitivity of summer low flow to snow in alpine catchments compared to pre-alpine catchments.
M. Rinderer, H. C. Komakech, D. Müller, G. L. B. Wiesenberg, and J. Seibert
Hydrol. Earth Syst. Sci., 19, 3505–3516, https://doi.org/10.5194/hess-19-3505-2015, https://doi.org/10.5194/hess-19-3505-2015, 2015
Short summary
Short summary
A field method for assessing soil moisture in semi-arid conditions is proposed and tested in terms of inter-rater reliability with 40 Tanzanian farmers, students and experts. The seven wetness classes are based on qualitative indicators that one can see, feel or hear. It could be shown that the qualitative wetness classes reflect differences in volumetric water content and neither experience nor a certain level of education was a prerequisite to gain high agreement among raters.
J. E. Reynolds, S. Halldin, C. Y. Xu, J. Seibert, and A. Kauffeldt
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hessd-12-7437-2015, https://doi.org/10.5194/hessd-12-7437-2015, 2015
Revised manuscript not accepted
Short summary
Short summary
In this study it was found that time-scale dependencies of hydrological model parameters are a result of the numerical method used in the model rather than a real time-scale-data dependence. This study further indicates that as soon as sub-daily driving data can be secured, flood forecasting in watersheds with sub-daily concentration times is possible with model parameter values inferred from long time series of daily data, as long as an appropriate numerical method is used.
M. Staudinger, M. Weiler, and J. Seibert
Hydrol. Earth Syst. Sci., 19, 1371–1384, https://doi.org/10.5194/hess-19-1371-2015, https://doi.org/10.5194/hess-19-1371-2015, 2015
I. K. Westerberg, L. Gong, K. J. Beven, J. Seibert, A. Semedo, C.-Y. Xu, and S. Halldin
Hydrol. Earth Syst. Sci., 18, 2993–3013, https://doi.org/10.5194/hess-18-2993-2014, https://doi.org/10.5194/hess-18-2993-2014, 2014
P. Schneider, S. Pool, L. Strouhal, and J. Seibert
Hydrol. Earth Syst. Sci., 18, 875–892, https://doi.org/10.5194/hess-18-875-2014, https://doi.org/10.5194/hess-18-875-2014, 2014
Related subject area
Subject: Catchment hydrology | Techniques and Approaches: Stochastic approaches
Monthly new water fractions and their relationships with climate and catchment properties across Alpine rivers
Technical note: Two-component electrical-conductivity-based hydrograph separation employing an exponential mixing model (EXPECT) provides reliable high-temporal-resolution young water fraction estimates in three small Swiss catchments
Flood frequency analysis using mean daily flows vs. instantaneous peak flows
On the regional-scale variability in flow duration curves in Peninsular India
Towards a conceptualization of the hydrological processes behind changes of young water fraction with elevation: a focus on mountainous alpine catchments
A mixed distribution approach for low-flow frequency analysis – Part 2: Comparative assessment of a mixed probability vs. copula-based dependence framework
A mixed distribution approach for low-flow frequency analysis – Part 1: Concept, performance, and effect of seasonality
Significant regime shifts in historical water yield in the Upper Brahmaputra River basin
A geostatistical spatially varying coefficient model for mean annual runoff that incorporates process-based simulations and short records
Low-flow estimation beyond the mean – expectile loss and extreme gradient boosting for spatiotemporal low-flow prediction in Austria
Impact of bias nonstationarity on the performance of uni- and multivariate bias-adjusting methods: a case study on data from Uccle, Belgium
A space–time Bayesian hierarchical modeling framework for projection of seasonal maximum streamflow
Parsimonious statistical learning models for low-flow estimation
Development of a Wilks feature importance method with improved variable rankings for supporting hydrological inference and modelling
Technical Note: Improved partial wavelet coherency for understanding scale-specific and localized bivariate relationships in geosciences
Effects of climate anomalies on warm-season low flows in Switzerland
Histogram via entropy reduction (HER): an information-theoretic alternative for geostatistics
Estimation of annual runoff by exploiting long-term spatial patterns and short records within a geostatistical framework
A methodology to estimate flow duration curves at partially ungauged basins
The role of flood wave superposition in the severity of large floods
Contribution of low-frequency climatic–oceanic oscillations to streamflow variability in small, coastal rivers of the Sierra Nevada de Santa Marta (Colombia)
Stochastic reconstruction of spatio-temporal rainfall patterns by inverse hydrologic modelling
An assessment of trends and potential future changes in groundwater-baseflow drought based on catchment response times
More frequent flooding? Changes in flood frequency in the Pearl River basin, China, since 1951 and over the past 1000 years
Topography significantly influencing low flows in snow-dominated watersheds
A discrete wavelet spectrum approach for identifying non-monotonic trends in hydroclimate data
Evaluating climate change impacts on streamflow variability based on a multisite multivariate GCM downscaling method in the Jing River of China
Estimating unconsolidated sediment cover thickness by using the horizontal distance to a bedrock outcrop as secondary information
On the probability distribution of daily streamflow in the United States
The European 2015 drought from a hydrological perspective
Heterogeneity measures in hydrological frequency analysis: review and new developments
ENSO-conditioned weather resampling method for seasonal ensemble streamflow prediction
Ordinary kriging as a tool to estimate historical daily streamflow records
Trends in floods in West Africa: analysis based on 11 catchments in the region
Implementation and validation of a Wilks-type multi-site daily precipitation generator over a typical Alpine river catchment
Spatial controls on groundwater response dynamics in a snowmelt-dominated montane catchment
Data compression to define information content of hydrological time series
Topological and canonical kriging for design flood prediction in ungauged catchments: an improvement over a traditional regional regression approach?
Regionalised spatiotemporal rainfall and temperature models for flood studies in the Basque Country, Spain
Exploring the physical controls of regional patterns of flow duration curves – Part 1: Insights from statistical analyses
Land cover and water yield: inference problems when comparing catchments with mixed land cover
An elusive search for regional flood frequency estimates in the River Nile basin
Interannual hydroclimatic variability and its influence on winter nutrient loadings over the Southeast United States
Variational assimilation of streamflow into operational distributed hydrologic models: effect of spatiotemporal scale of adjustment
Contrasting trends in floods for two sub-arctic catchments in northern Sweden – does glacier presence matter?
Long-range forecasting of intermittent streamflow
Applying sequential Monte Carlo methods into a distributed hydrologic model: lagged particle filtering approach with regularization
Low-frequency variability of European runoff
Comparison of catchment grouping methods for flow duration curve estimation at ungauged sites in France
Regional flow duration curves for ungauged sites in Sicily
Marius G. Floriancic, Michael P. Stockinger, James W. Kirchner, and Christine Stumpp
Hydrol. Earth Syst. Sci., 28, 3675–3694, https://doi.org/10.5194/hess-28-3675-2024, https://doi.org/10.5194/hess-28-3675-2024, 2024
Short summary
Short summary
The Alps are a key water resource for central Europe, providing water for drinking, agriculture, and hydropower production. To assess water availability in streams, we need to understand how much streamflow is derived from old water stored in the subsurface versus more recent precipitation. We use tracer data from 32 Alpine streams and statistical tools to assess how much recent precipitation can be found in Alpine rivers and how this amount is related to catchment properties and climate.
Alessio Gentile, Jana von Freyberg, Davide Gisolo, Davide Canone, and Stefano Ferraris
Hydrol. Earth Syst. Sci., 28, 1915–1934, https://doi.org/10.5194/hess-28-1915-2024, https://doi.org/10.5194/hess-28-1915-2024, 2024
Short summary
Short summary
Can we leverage high-resolution and low-cost EC measurements and biweekly δ18O data to estimate the young water fraction at higher temporal resolution? Here, we present the EXPECT method that combines two widespread techniques: EC-based hydrograph separation and sine-wave models of the seasonal isotope cycles. The method is not without its limitations, but its application in three small Swiss catchments is promising for future applications in catchments with different characteristics.
Anne Bartens, Bora Shehu, and Uwe Haberlandt
Hydrol. Earth Syst. Sci., 28, 1687–1709, https://doi.org/10.5194/hess-28-1687-2024, https://doi.org/10.5194/hess-28-1687-2024, 2024
Short summary
Short summary
River flow data are often provided as mean daily flows (MDF), in which a lot of information is lost about the actual maximum flow or instantaneous peak flows (IPF) within a day. We investigate the error of using MDF instead of IPF and identify means to predict IPF when only MDF data are available. We find that the average ratio of daily flood peaks and volumes is a good predictor, which is easily and universally applicable and requires a minimum amount of data.
Pankaj Dey, Jeenu Mathai, Murugesu Sivapalan, and Pradeep P. Mujumdar
Hydrol. Earth Syst. Sci., 28, 1493–1514, https://doi.org/10.5194/hess-28-1493-2024, https://doi.org/10.5194/hess-28-1493-2024, 2024
Short summary
Short summary
This study explores the regional streamflow variability in Peninsular India. This variability is governed by monsoons, mountainous systems, and geologic gradients. A linkage between these influencing factors and streamflow variability is established using a Wegenerian approach and flow duration curves.
Alessio Gentile, Davide Canone, Natalie Ceperley, Davide Gisolo, Maurizio Previati, Giulia Zuecco, Bettina Schaefli, and Stefano Ferraris
Hydrol. Earth Syst. Sci., 27, 2301–2323, https://doi.org/10.5194/hess-27-2301-2023, https://doi.org/10.5194/hess-27-2301-2023, 2023
Short summary
Short summary
What drives young water fraction, F*yw (i.e., the fraction of water in streamflow younger than 2–3 months), variations with elevation? Why is F*yw counterintuitively low in high-elevation catchments, in spite of steeper topography? In this paper, we present a perceptual model explaining how the longer low-flow duration at high elevations, driven by the persistence of winter snowpacks, increases the proportion of stored (old) water contributing to the stream, thus reducing F*yw.
Gregor Laaha
Hydrol. Earth Syst. Sci., 27, 2019–2034, https://doi.org/10.5194/hess-27-2019-2023, https://doi.org/10.5194/hess-27-2019-2023, 2023
Short summary
Short summary
In seasonal climates with a warm and a cold season, low flows are generated by different processes so that return periods used as a measure of event severity will be inaccurate. We propose a novel mixed copula estimator that is shown to outperform previous calculation methods. The new method is highly relevant for a wide range of European river flow regimes and should be used by default.
Gregor Laaha
Hydrol. Earth Syst. Sci., 27, 689–701, https://doi.org/10.5194/hess-27-689-2023, https://doi.org/10.5194/hess-27-689-2023, 2023
Short summary
Short summary
Knowing the severity of an extreme event is of particular importance to hydrology and water policies. In this paper we propose a mixed distribution approach for low flows. It provides one consistent approach to quantify the severity of summer, winter, and annual low flows based on their respective annualities (or return periods). We show that the new method is much more accurate than existing methods and should therefore be used by engineers and water agencies.
Hao Li, Baoying Shan, Liu Liu, Lei Wang, Akash Koppa, Feng Zhong, Dongfeng Li, Xuanxuan Wang, Wenfeng Liu, Xiuping Li, and Zongxue Xu
Hydrol. Earth Syst. Sci., 26, 6399–6412, https://doi.org/10.5194/hess-26-6399-2022, https://doi.org/10.5194/hess-26-6399-2022, 2022
Short summary
Short summary
This study examines changes in water yield by determining turning points in the direction of yield changes and highlights that regime shifts in historical water yield occurred in the Upper Brahmaputra River basin, both the climate and cryosphere affect the magnitude of water yield increases, climate determined the declining trends in water yield, and meltwater has the potential to alleviate the water shortage. A repository for all source files is made available.
Thea Roksvåg, Ingelin Steinsland, and Kolbjørn Engeland
Hydrol. Earth Syst. Sci., 26, 5391–5410, https://doi.org/10.5194/hess-26-5391-2022, https://doi.org/10.5194/hess-26-5391-2022, 2022
Short summary
Short summary
The goal of this work was to make a map of the mean annual runoff for Norway for a 30-year period. We first simulated runoff by using a process-based model that models the relationship between runoff, precipitation, temperature, and land use. Next, we corrected the map based on runoff observations from streams by using a statistical method. We were also able to use data from rivers that only had a few annual observations. We find that the statistical correction improves the runoff estimates.
Johannes Laimighofer, Michael Melcher, and Gregor Laaha
Hydrol. Earth Syst. Sci., 26, 4553–4574, https://doi.org/10.5194/hess-26-4553-2022, https://doi.org/10.5194/hess-26-4553-2022, 2022
Short summary
Short summary
Our study uses a statistical boosting model for estimating low flows on a monthly basis, which can be applied to estimate low flows at sites without measurements. We use an extensive dataset of 260 stream gauges in Austria for model development. As we are specifically interested in low-flow events, our method gives specific weight to such events. We found that our method can considerably improve the predictions of low-flow events and yields accurate estimates of the seasonal low-flow variation.
Jorn Van de Velde, Matthias Demuzere, Bernard De Baets, and Niko E. C. Verhoest
Hydrol. Earth Syst. Sci., 26, 2319–2344, https://doi.org/10.5194/hess-26-2319-2022, https://doi.org/10.5194/hess-26-2319-2022, 2022
Short summary
Short summary
An important step in projecting future climate is the bias adjustment of the climatological and hydrological variables. In this paper, we illustrate how bias adjustment can be impaired by bias nonstationarity. Two univariate and four multivariate methods are compared, and for both types bias nonstationarity can be linked with less robust adjustment.
Álvaro Ossandón, Manuela I. Brunner, Balaji Rajagopalan, and William Kleiber
Hydrol. Earth Syst. Sci., 26, 149–166, https://doi.org/10.5194/hess-26-149-2022, https://doi.org/10.5194/hess-26-149-2022, 2022
Short summary
Short summary
Timely projections of seasonal streamflow extremes on a river network can be useful for flood risk mitigation, but this is challenging, particularly under space–time nonstationarity. We develop a space–time Bayesian hierarchical model (BHM) using temporal climate covariates and copulas to project seasonal streamflow extremes and the attendant uncertainties. We demonstrate this on the Upper Colorado River basin to project spring flow extremes using the preceding winter’s climate teleconnections.
Johannes Laimighofer, Michael Melcher, and Gregor Laaha
Hydrol. Earth Syst. Sci., 26, 129–148, https://doi.org/10.5194/hess-26-129-2022, https://doi.org/10.5194/hess-26-129-2022, 2022
Short summary
Short summary
This study aims to predict long-term averages of low flow on a hydrologically diverse dataset in Austria. We compared seven statistical learning methods and included a backward variable selection approach. We found that separating the low-flow processes into winter and summer low flows leads to good performance for all the models. Variable selection results in more parsimonious and more interpretable models. Linear approaches for prediction and variable selection are sufficient for our dataset.
Kailong Li, Guohe Huang, and Brian Baetz
Hydrol. Earth Syst. Sci., 25, 4947–4966, https://doi.org/10.5194/hess-25-4947-2021, https://doi.org/10.5194/hess-25-4947-2021, 2021
Short summary
Short summary
We proposed a test statistic feature importance method to quantify the importance of predictor variables for random-forest-like models. The proposed method does not rely on any performance measures to evaluate variable rankings, which can thus result in unbiased variable rankings. The resulting variable rankings based on the proposed method could help random forest achieve its optimum predictive accuracy.
Wei Hu and Bing Si
Hydrol. Earth Syst. Sci., 25, 321–331, https://doi.org/10.5194/hess-25-321-2021, https://doi.org/10.5194/hess-25-321-2021, 2021
Short summary
Short summary
Partial wavelet coherency method is improved to explore the bivariate relationships at different scales and locations after excluding the effects of other variables. The method was tested with artificial datasets and applied to a measured dataset. Compared with others, this method has the advantages of capturing phase information, dealing with multiple excluding variables, and producing more accurate results. This method can be used in different areas with spatial or temporal datasets.
Marius G. Floriancic, Wouter R. Berghuijs, Tobias Jonas, James W. Kirchner, and Peter Molnar
Hydrol. Earth Syst. Sci., 24, 5423–5438, https://doi.org/10.5194/hess-24-5423-2020, https://doi.org/10.5194/hess-24-5423-2020, 2020
Short summary
Short summary
Low river flows affect societies and ecosystems. Here we study how precipitation and potential evapotranspiration shape low flows across a network of 380 Swiss catchments. Low flows in these rivers typically result from below-average precipitation and above-average potential evapotranspiration. Extreme low flows result from long periods of the combined effects of both drivers.
Stephanie Thiesen, Diego M. Vieira, Mirko Mälicke, Ralf Loritz, J. Florian Wellmann, and Uwe Ehret
Hydrol. Earth Syst. Sci., 24, 4523–4540, https://doi.org/10.5194/hess-24-4523-2020, https://doi.org/10.5194/hess-24-4523-2020, 2020
Short summary
Short summary
A spatial interpolator has been proposed for exploring the information content of the data in the light of geostatistics and information theory. It showed comparable results to traditional interpolators, with the advantage of presenting generalization properties. We discussed three different ways of combining distributions and their implications for the probabilistic results. By its construction, the method provides a suitable and flexible framework for uncertainty analysis and decision-making.
Thea Roksvåg, Ingelin Steinsland, and Kolbjørn Engeland
Hydrol. Earth Syst. Sci., 24, 4109–4133, https://doi.org/10.5194/hess-24-4109-2020, https://doi.org/10.5194/hess-24-4109-2020, 2020
Short summary
Short summary
Annual runoff is a measure of how much water flows through a river during a year and is an important quantity, e.g. when planning infrastructure. In this paper, we suggest a new statistical model for annual runoff estimation. The model exploits correlation between rivers and is able to detect whether the annual runoff in the target river follows repeated patterns over time relative to neighbouring rivers. In our work we show for what cases the latter represents a benefit over comparable methods.
Elena Ridolfi, Hemendra Kumar, and András Bárdossy
Hydrol. Earth Syst. Sci., 24, 2043–2060, https://doi.org/10.5194/hess-24-2043-2020, https://doi.org/10.5194/hess-24-2043-2020, 2020
Short summary
Short summary
The paper presents a new, simple and model-free methodology to estimate the streamflow at partially gauged basins, given the precipitation gauged at another basin. We show that the FDC is not a characteristic of the basin only, but of both the basin and the weather. Because of the dependence on the climate, discharge data at the target site are here retrieved using the Antecedent Precipitation Index (API) of the donor site as it represents in a streamflow-like way the precipitation of the basin.
Björn Guse, Bruno Merz, Luzie Wietzke, Sophie Ullrich, Alberto Viglione, and Sergiy Vorogushyn
Hydrol. Earth Syst. Sci., 24, 1633–1648, https://doi.org/10.5194/hess-24-1633-2020, https://doi.org/10.5194/hess-24-1633-2020, 2020
Short summary
Short summary
Floods are influenced by river network processes, among others. Flood characteristics of tributaries may affect flood severity downstream of confluences. The impact of flood wave superposition is investigated with regard to magnitude and temporal matching of flood peaks. Our study in Germany and Austria shows that flood wave superposition is not the major driver of flood severity. However, there is the potential for large floods at some confluences in cases of temporal matching of flood peaks.
Juan Camilo Restrepo, Aldemar Higgins, Jaime Escobar, Silvio Ospino, and Natalia Hoyos
Hydrol. Earth Syst. Sci., 23, 2379–2400, https://doi.org/10.5194/hess-23-2379-2019, https://doi.org/10.5194/hess-23-2379-2019, 2019
Short summary
Short summary
This study evaluated the influence of low-frequency oscillations that are linked to large-scale oceanographic–atmospheric processes, on streamflow variability in small mountain rivers of the Sierra Nevada de Santa Marta, Colombia, aiming to explore streamflow variability, estimate the net contribution to the energy of low-frequency oscillations to streamflow anomalies, and analyze the linkages between streamflow anomalies and large-scale, low-frequency oceanographic–atmospheric processes.
Jens Grundmann, Sebastian Hörning, and András Bárdossy
Hydrol. Earth Syst. Sci., 23, 225–237, https://doi.org/10.5194/hess-23-225-2019, https://doi.org/10.5194/hess-23-225-2019, 2019
Jost Hellwig and Kerstin Stahl
Hydrol. Earth Syst. Sci., 22, 6209–6224, https://doi.org/10.5194/hess-22-6209-2018, https://doi.org/10.5194/hess-22-6209-2018, 2018
Short summary
Short summary
Due to the lack of long-term observations, insights into changes of groundwater resources are obscured. In this paper we assess past and potential future changes in groundwater drought in headwater catchments using a baseflow approach. There are a few past trends which are highly dependent on the period of analysis. Catchments with short response times are found to have a higher sensitivity to projected seasonal precipitation shifts, urging for a local management based on response times.
Qiang Zhang, Xihui Gu, Vijay P. Singh, Peijun Shi, and Peng Sun
Hydrol. Earth Syst. Sci., 22, 2637–2653, https://doi.org/10.5194/hess-22-2637-2018, https://doi.org/10.5194/hess-22-2637-2018, 2018
Qiang Li, Xiaohua Wei, Xin Yang, Krysta Giles-Hansen, Mingfang Zhang, and Wenfei Liu
Hydrol. Earth Syst. Sci., 22, 1947–1956, https://doi.org/10.5194/hess-22-1947-2018, https://doi.org/10.5194/hess-22-1947-2018, 2018
Short summary
Short summary
Topography plays an important role in determining the spatial heterogeneity of ecological, geomorphological, and hydrological processes. Topography plays a more dominant role in low flows than high flows. Our analysis also identified five significant TIs: perimeter, slope length factor, surface area, openness, and terrain characterization index. These can be used to compare watersheds when low flow assessments are conducted, specifically in snow-dominated regions.
Yan-Fang Sang, Fubao Sun, Vijay P. Singh, Ping Xie, and Jian Sun
Hydrol. Earth Syst. Sci., 22, 757–766, https://doi.org/10.5194/hess-22-757-2018, https://doi.org/10.5194/hess-22-757-2018, 2018
Zhi Li and Jiming Jin
Hydrol. Earth Syst. Sci., 21, 5531–5546, https://doi.org/10.5194/hess-21-5531-2017, https://doi.org/10.5194/hess-21-5531-2017, 2017
Short summary
Short summary
We developed an efficient multisite and multivariate GCM downscaling method and generated climate change scenarios for SWAT to evaluate the streamflow variability within a watershed in China. The application of the ensemble techniques enables us to better quantify the model uncertainties. The peak values of precipitation and streamflow have a tendency to shift from the summer to spring season over the next 30 years. The number of extreme flooding and drought events will increase.
Nils-Otto Kitterød
Hydrol. Earth Syst. Sci., 21, 4195–4211, https://doi.org/10.5194/hess-21-4195-2017, https://doi.org/10.5194/hess-21-4195-2017, 2017
Short summary
Short summary
The GRANADA open-access database (NGU, 2016a) was used to derive point recordings of thickness of sediment above the bedrock D(u). For each D(u) the horizontal distance to nearest outcrop L(u) was derived from geological maps. The purpose was to utilize L(u) as a secondary function for estimation of D(u). Two estimation methods were employed: ordinary kriging (OK) and co-kriging (CK). A cross-validation analysis was performed to evaluate the additional information in the secondary function L(u).
Annalise G. Blum, Stacey A. Archfield, and Richard M. Vogel
Hydrol. Earth Syst. Sci., 21, 3093–3103, https://doi.org/10.5194/hess-21-3093-2017, https://doi.org/10.5194/hess-21-3093-2017, 2017
Short summary
Short summary
Flow duration curves are ubiquitous in surface water hydrology for applications including water allocation and protection of ecosystem health. We identify three probability distributions that can provide a reasonable fit to daily streamflows across much of United States. These results help us understand of the behavior of daily streamflows and enhance our ability to predict streamflows at ungaged river locations.
Gregor Laaha, Tobias Gauster, Lena M. Tallaksen, Jean-Philippe Vidal, Kerstin Stahl, Christel Prudhomme, Benedikt Heudorfer, Radek Vlnas, Monica Ionita, Henny A. J. Van Lanen, Mary-Jeanne Adler, Laurie Caillouet, Claire Delus, Miriam Fendekova, Sebastien Gailliez, Jamie Hannaford, Daniel Kingston, Anne F. Van Loon, Luis Mediero, Marzena Osuch, Renata Romanowicz, Eric Sauquet, James H. Stagge, and Wai K. Wong
Hydrol. Earth Syst. Sci., 21, 3001–3024, https://doi.org/10.5194/hess-21-3001-2017, https://doi.org/10.5194/hess-21-3001-2017, 2017
Short summary
Short summary
In 2015 large parts of Europe were affected by a drought. In terms of low flow magnitude, a region around the Czech Republic was most affected, with return periods > 100 yr. In terms of deficit volumes, the drought was particularly severe around S. Germany where the event lasted notably long. Meteorological and hydrological events developed differently in space and time. For an assessment of drought impacts on water resources, hydrological data are required in addition to meteorological indices.
Ana I. Requena, Fateh Chebana, and Taha B. M. J. Ouarda
Hydrol. Earth Syst. Sci., 21, 1651–1668, https://doi.org/10.5194/hess-21-1651-2017, https://doi.org/10.5194/hess-21-1651-2017, 2017
Short summary
Short summary
The notion of a measure to quantify the degree of heterogeneity of a region from which information is required to estimate the magnitude of events at ungauged sites is introduced. These heterogeneity measures are needed to compare regions, evaluate the impact of particular sites, and rank the performance of delineating methods. A framework to define and assess their desirable properties is proposed. Several heterogeneity measures are presented and/or developed to be assessed, giving guidelines.
Joost V. L. Beckers, Albrecht H. Weerts, Erik Tijdeman, and Edwin Welles
Hydrol. Earth Syst. Sci., 20, 3277–3287, https://doi.org/10.5194/hess-20-3277-2016, https://doi.org/10.5194/hess-20-3277-2016, 2016
Short summary
Short summary
Oceanic–atmospheric climate modes, such as El Niño–Southern Oscillation (ENSO), are known to affect the streamflow regime in many rivers around the world. A new method is presented for ENSO conditioning of the ensemble streamflow prediction (ESP) method, which is often used for seasonal streamflow forecasting. The method was tested on three tributaries of the Columbia River, OR. Results show an improvement in forecast skill compared to the standard ESP.
William H. Farmer
Hydrol. Earth Syst. Sci., 20, 2721–2735, https://doi.org/10.5194/hess-20-2721-2016, https://doi.org/10.5194/hess-20-2721-2016, 2016
Short summary
Short summary
The potential of geostatistical tools, leveraging the spatial structure and dependency of correlated time series, for the prediction of daily streamflow time series at unmonitored locations is explored. Simple geostatistical tools improve on traditional estimates of daily streamflow. The temporal evolution of spatial structure, including seasonal fluctuations, is also explored. The proposed method is contrasted with more advanced geostatistical methods and shown to be comparable.
B. N. Nka, L. Oudin, H. Karambiri, J. E. Paturel, and P. Ribstein
Hydrol. Earth Syst. Sci., 19, 4707–4719, https://doi.org/10.5194/hess-19-4707-2015, https://doi.org/10.5194/hess-19-4707-2015, 2015
Short summary
Short summary
The region of West Africa is undergoing important climate and environmental changes affecting the magnitude and occurrence of floods. This study aims to analyze the evolution of flood hazard in the region and to find links between flood hazards pattern and rainfall or vegetation index patterns.
D. E. Keller, A. M. Fischer, C. Frei, M. A. Liniger, C. Appenzeller, and R. Knutti
Hydrol. Earth Syst. Sci., 19, 2163–2177, https://doi.org/10.5194/hess-19-2163-2015, https://doi.org/10.5194/hess-19-2163-2015, 2015
R. S. Smith, R. D. Moore, M. Weiler, and G. Jost
Hydrol. Earth Syst. Sci., 18, 1835–1856, https://doi.org/10.5194/hess-18-1835-2014, https://doi.org/10.5194/hess-18-1835-2014, 2014
S. V. Weijs, N. van de Giesen, and M. B. Parlange
Hydrol. Earth Syst. Sci., 17, 3171–3187, https://doi.org/10.5194/hess-17-3171-2013, https://doi.org/10.5194/hess-17-3171-2013, 2013
S. A. Archfield, A. Pugliese, A. Castellarin, J. O. Skøien, and J. E. Kiang
Hydrol. Earth Syst. Sci., 17, 1575–1588, https://doi.org/10.5194/hess-17-1575-2013, https://doi.org/10.5194/hess-17-1575-2013, 2013
P. Cowpertwait, D. Ocio, G. Collazos, O. de Cos, and C. Stocker
Hydrol. Earth Syst. Sci., 17, 479–494, https://doi.org/10.5194/hess-17-479-2013, https://doi.org/10.5194/hess-17-479-2013, 2013
L. Cheng, M. Yaeger, A. Viglione, E. Coopersmith, S. Ye, and M. Sivapalan
Hydrol. Earth Syst. Sci., 16, 4435–4446, https://doi.org/10.5194/hess-16-4435-2012, https://doi.org/10.5194/hess-16-4435-2012, 2012
A. I. J. M. van Dijk, J. L. Peña-Arancibia, and L. A. (Sampurno) Bruijnzeel
Hydrol. Earth Syst. Sci., 16, 3461–3473, https://doi.org/10.5194/hess-16-3461-2012, https://doi.org/10.5194/hess-16-3461-2012, 2012
P. Nyeko-Ogiramoi, P. Willems, F. M. Mutua, and S. A. Moges
Hydrol. Earth Syst. Sci., 16, 3149–3163, https://doi.org/10.5194/hess-16-3149-2012, https://doi.org/10.5194/hess-16-3149-2012, 2012
J. Oh and A. Sankarasubramanian
Hydrol. Earth Syst. Sci., 16, 2285–2298, https://doi.org/10.5194/hess-16-2285-2012, https://doi.org/10.5194/hess-16-2285-2012, 2012
H. Lee, D.-J. Seo, Y. Liu, V. Koren, P. McKee, and R. Corby
Hydrol. Earth Syst. Sci., 16, 2233–2251, https://doi.org/10.5194/hess-16-2233-2012, https://doi.org/10.5194/hess-16-2233-2012, 2012
H. E. Dahlke, S. W. Lyon, J. R. Stedinger, G. Rosqvist, and P. Jansson
Hydrol. Earth Syst. Sci., 16, 2123–2141, https://doi.org/10.5194/hess-16-2123-2012, https://doi.org/10.5194/hess-16-2123-2012, 2012
F. F. van Ogtrop, R. W. Vervoort, G. Z. Heller, D. M. Stasinopoulos, and R. A. Rigby
Hydrol. Earth Syst. Sci., 15, 3343–3354, https://doi.org/10.5194/hess-15-3343-2011, https://doi.org/10.5194/hess-15-3343-2011, 2011
S. J. Noh, Y. Tachikawa, M. Shiiba, and S. Kim
Hydrol. Earth Syst. Sci., 15, 3237–3251, https://doi.org/10.5194/hess-15-3237-2011, https://doi.org/10.5194/hess-15-3237-2011, 2011
L. Gudmundsson, L. M. Tallaksen, K. Stahl, and A. K. Fleig
Hydrol. Earth Syst. Sci., 15, 2853–2869, https://doi.org/10.5194/hess-15-2853-2011, https://doi.org/10.5194/hess-15-2853-2011, 2011
E. Sauquet and C. Catalogne
Hydrol. Earth Syst. Sci., 15, 2421–2435, https://doi.org/10.5194/hess-15-2421-2011, https://doi.org/10.5194/hess-15-2421-2011, 2011
F. Viola, L. V. Noto, M. Cannarozzo, and G. La Loggia
Hydrol. Earth Syst. Sci., 15, 323–331, https://doi.org/10.5194/hess-15-323-2011, https://doi.org/10.5194/hess-15-323-2011, 2011
Cited articles
Allen, M., Frame, D., Kettleborough, J., and Stainforth, D.: Model error in weather and climate forecasting, in: Predictability of Weather and Climate, edited by: Palmer, T. and Hagedorn, R., 391–427, Cambridge University Press, 2006.
Bennett, J. C., Ling, F. L. N., Graham, B., Grose, M. R., Corney, S. P., White, C. J., Holz, G. K., Post, D. A., Gaynor, S. M., and Bindoff, N. L.: Climate Futures for Tasmania: Water and Catchments., Technical Report, Antarctic Climate & Ecosystems Cooperative Research Centre, Hobart, Tasmania, 2010.
Block, P. J., Souza Filho, F. A., Sun, L., and Kwon, H. H.: A Streamflow Forecasting Framework using Multiple Climate and Hydrological Models1, J. Am. Water Resour. As., 45, 828–843, https://doi.org/10.1111/j.1752-1688.2009.00327.x, 2009.
Boe, J., Terray, L., Habets, F., and Martin, E.: Statistical and dynamical downscaling of the Seine basin climate for hydro-meteorological studies, Int. J. Climatol., 27, 1643–1655, https://doi.org/10.1002/joc.1602, 2007.
Chang, J. C. and Hanna, S. R.: Air quality model performance evaluation, Meteorol. Atmos. Phys., 87, 167–196, https://doi.org/10.1007/s00703-003-0070-7, 2004.
Chen, J., Brissette, F. P., and Leconte, R.: Uncertainty of downscaling method in quantifying the impact of climate change on hydrology, J. Hydrol., 401, 190–202, https://doi.org/10.1016/j.jhydrol.2011.02.020, 2011.
Chen, J., Brissette, F. P., Chaumont, D., and Braun, M.: Performance and uncertainty evaluation of empirical downscaling methods in quantifying the climate change impacts on hydrology over two North American river basins, J. Hydrol., 479, 200–214, https://doi.org/10.1016/j.jhydrol.2012.11.062, 2013.
Christensen, J. H., Boberg, F., Christensen, O. B., and Lucas-Picher, P.: On the need for bias correction of regional climate change projections of temperature and precipitation, Geophys. Res. Lett., 35, L20709, https://doi.org/10.1029/2008GL035694, 2008.
Christensen, O. B., Gaertner, M. A., Prego, J. A., and Polcher, J.: Internal variability of regional climate models, Clim. Dyn., 17, 875–887, https://doi.org/10.1007/s003820100154, 2001.
Christensen, O. B., Goodess, C. M., Harris, I., and Watkiss, P.: European and Global Climate Change Projections: Discussion of Climate Change Model Outputs, Scenarios and Uncertainty in the EC RTD ClimateCost Project, in The ClimateCost Project. Final Report. Volume 1: Europe, edited by P. Watkiss, Published by the Stockholm Environment Institute, Sweden, available at: http://www.climatecost.cc/images/Policy\textunderscore brief\textunderscore 1\textunderscore Projections\textunderscore 05\textunderscore lowres.pdf (last access: 5 March 2013), 2011.
Coron, L., Andréassian, V., Perrin, C., Lerat, J., Vaze, J., Bourqui, M., and Hendrickx, F.: Crash testing hydrological models in contrasted climate conditions: An experiment on 216 Australian catchments, Water Resour. Res., 48, W05552, https://doi.org/10.1029/2011WR011721, 2012.
Déqué, M., Rowell, D. P., Lüthi, D., Giorgi, F., Christensen, J. H., Rockel, B., Jacob, D., Kjellström, E., De Castro, M., and van den Hurk, B.: An intercomparison of regional climate simulations for Europe: assessing uncertainties in model projections, Clim. Change, 81, 53–70, https://doi.org/10.1007/s10584-006-9228-x, 2007.
Deser, C., Phillips, A., Bourdette, V., and Teng, H.: Uncertainty in climate change projections: the role of internal variability, Clim. Dyn., 38, 527–546, https://doi.org/10.1007/s00382-010-0977-x, 2012.
Dosio, A., Paruolo, P., and Rojas, R.: Bias correction of the ENSEMBLES high resolution climate change projections for use by impact models: Analysis of the climate change signal, J. Geophys. Res., 117, D17110, https://doi.org/10.1029/2012JD017968, 2012.
Eden, J. M., Widmann, M., Grawe, D., and Rast, S.: Skill, Correction, and Downscaling of GCM-Simulated Precipitation, J. Climate, 25, 3970–3984, https://doi.org/10.1175/JCLI-D-11-00254.1, 2012.
Ehret, U., Zehe, E., Wulfmeyer, V., Warrach-Sagi, K., and Liebert, J.: HESS Opinions "Should we apply bias correction to global and regional climate model data?," Hydrol. Earth Syst. Sci., 16, 3391–3404, https://doi.org/10.5194/hess-16-3391-2012, 2012.
Fowler, H. J., Blenkinsop, S., and Tebaldi, C.: Linking climate change modelling to impacts studies: recent advances in downscaling techniques for hydrological modelling, Int. J. Climatol., 27, 1547–1578, https://doi.org/10.1002/joc.1556, 2007.
Gellens, D. and Roulin, E.: Streamflow response of Belgian catchments to IPCC climate change scenarios, J. Hydrol., 210, 242–258, https://doi.org/10.1016/S0022-1694(98)00192-9, 1998.
Giorgi, F.: Regional climate modeling: Status and perspectives, J. Phys. IV, 139, 101–118, https://doi.org/10.1051/jp4:2006139008, 2006.
Glahn, H. R. and Lowry, D. A.: The Use of Model Output Statistics (MOS) in Objective Weather Forecasting, J. Appl. Meteorol., 11, 1203–1211, https://doi.org/10.1175/1520-0450(1972)011<1203:TUOMOS>2.0.CO;2, 1972.
Graham, L., Andréasson, J., and Carlsson, B.: Assessing climate change impacts on hydrology from an ensemble of regional climate models, model scales and linking methods – a case study on the Lule River basin, Clim. Change, 81, 293–307, https://doi.org/10.1007/s10584-006-9215-2, 2007a.
Graham, L., Hagemann, S., Jaun, S., and Beniston, M.: On interpreting hydrological change from regional climate models, Clim. Change, 81, 97–122, https://doi.org/10.1007/s10584-006-9217-0, 2007b.
Grotch, S. L. and MacCracken, M. C.: The use of general circulation models to predict regional climatic change, J. Climate, 4, 286–303, https://doi.org/10.1175/1520-0442(1991)004<0286:TUOGCM>2.0.CO;2, 1991.
Gudmundsson, L., Bremnes, J. B., Haugen, J. E., and Engen-Skaugen, T.: Technical Note: Downscaling RCM precipitation to the station scale using statistical transformations - a comparison of methods, Hydrol. Earth Syst. Sci., 16, 3383–3390, https://doi.org/10.5194/hess-16-3383-2012, 2012.
Hagemann, S., Chen, C., Haerter, J. O., Heinke, J., Gerten, D., and Piani, C.: Impact of a Statistical Bias Correction on the Projected Hydrological Changes Obtained from Three GCMs and Two Hydrology Models, J. Hydrometeorol., 12, 556–578, https://doi.org/10.1175/2011JHM1336.1, 2011.
Hanna, S. R.: Uncertainties in air quality model predictions, Bound.-Lay. Meteorol., 62,, 3–20, https://doi.org/10.1007/BF00705545, 1993.
Hawkins, E. and Sutton, R.: The potential to narrow uncertainty in projections of regional precipitation change., Clim. Dyn., 37, 407–418, https://doi.org/10.1007/s00382-010-0810-6, 2011.
Ines, A. V. M. and Hansen, J. W.: Bias correction of daily GCM rainfall for crop simulation studies, Agr. Forest Meteorol., 138, 44–53, https://doi.org/10.1016/j.agrformet.2006.03.009, 2006.
IPCC: Climate Change 2007: The Physical Science Basis, edited by: Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B., Tignor, M., and Miller, H. L., Cambridge University Press, Cambridge, UK, and New York, USA, 2007.
Jacob, D., Bärring, L., Christensen, O., Christensen, J., de Castro, M., Déqué, M., Giorgi, F., Hagemann, S., Hirschi, M., Jones, R., Kjellström, E., Lenderink, G., Rockel, B., Sánchez, E., Schär, C., Seneviratne, S., Somot, S., van Ulden, A., and van den Hurk, B.: An inter-comparison of regional climate models for Europe: model performance in present-day climate, Clim. Change, 81, 31–52, https://doi.org/10.1007/s10584-006-9213-4, 2007.
Johansson, B.: Estimation of areal precipitation for hydrological modelling in Sweden, Dissertation, Earth Science Centre, Göteborg University, Report A76. Göteborg, Sweden., 2002.
Johnson, F. and Sharma, A.: Accounting for interannual variability: A comparison of options for water resources climate change impact assessments, Water Resour. Res., 47, W04508, https://doi.org/10.1029/2010WR009272, 2011.
Jung, T.: Systematic errors of the atmospheric circulation in the ECMWF forecasting system, Q. J. Roy. Meteorol. Soc., 131, 1045–1073, https://doi.org/10.1256/qj.04.93, 2005.
Klein, W. H. and Glahn, H. R.: Forecasting Local Weather by Means of Model Output Statistics, B. Am. Meteorol. Soc., 55, 1217–1227, https://doi.org/10.1175/1520-0477(1974)055<1217:FLWBMO>2.0.CO;2, 1974.
Klemeš, V.: Operational testing of hydrological simulation models/Vérification, en conditions réelles, des modèles de simulation hydrologique, Hydrolog. Sci. J., 31, 13–24, https://doi.org/10.1080/02626668609491024, 1986.
Leander, R. and Buishand, T. A.: Resampling of regional climate model output for the simulation of extreme river flows, J. Hydrol., 332, 487–496, https://doi.org/10.1016/j.jhydrol.2006.08.006, 2007.
Leander, R., Buishand, T. A., van den Hurk, B. J. J. M., and de Wit, M. J. M.: Estimated changes in flood quantiles of the river Meuse from resampling of regional climate model output, J. Hydrol., 351, 331–343, https://doi.org/10.1016/j.jhydrol.2007.12.020, 2008.
Lenderink, G., Buishand, A., and van Deursen, W.: Estimates of future discharges of the river Rhine using two scenario methodologies: direct versus delta approach, Hydrol. Earth Syst. Sci., 11, 1145–1159, https://doi.org/10.5194/hess-11-1145-2007, 2007.
Lettenmaier, D. P., Wood, A. W., Palmer, R. N., Wood, E. F., and Stakhiv, E. Z.: Water Resources Implications of Global Warming: A U.S. Regional Perspective, Clim. Change, 43, 537–579, https://doi.org/10.1023/A:1005448007910, 1999.
Li, C. Z., Zhang, L., Wang, H., Zhang, Y. Q., Yu, F. L., and Yan, D. H.: The transferability of hydrological models under nonstationary climatic conditions, Hydrol. Earth Syst. Sci., 16, 1239–1254, https://doi.org/10.5194/hess-16-1239-2012, 2012.
Liepert, B. G. and Previdi, M.: Inter-model variability and biases of the global water cycle in CMIP3 coupled climate models, Environ. Res. Lett., 7, 014006, https://doi.org/10.1088/1748-9326/7/1/014006, 2012.
Majda, A. J. and Gershgorin, B.: Quantifying uncertainty in climate change science through empirical information theory, Proc. Natl. Acad. Sci. USA, 107, 14958–14963, https://doi.org/10.1073/pnas.1007009107, 2010.
Maraun, D.: Nonstationarities of regional climate model biases in European seasonal mean temperature and precipitation sums, Geophys. Res. Lett., 39, L06706, https://doi.org/10.1029/2012GL051210, 2012.
Maraun, D., Wetterhall, F., Ireson, A. M., Chandler, R. E., Kendon, E. J., Widmann, M., Brienen, S., Rust, H. W., Sauter, T., Themeßl, M., Venema, V. K. C., Chun, K. P., Goodess, C. M., Jones, R. G., Onof, C., Vrac, M., and Thiele-Eich, I.: Precipitation downscaling under climate change: Recent developments to bridge the gap between dynamical models and the end user, Rev. Geophys., 48, RG3003, https://doi.org/10.1029/2009RG000314, 2010.
Ménard, R.: Bias Estimation, in: Data Assimilation, edited by: Lahoz, W., Khattatov, B., and Menard, R., 113–135, Springer Berlin Heidelberg, available at: http://dx.doi.org/10.1007/978-3-540-74703-1\textunderscore 6, 2010.
Middelkoop, H., Daamen, K., Gellens, D., Grabs, W., Kwadijk, J. C. J., Lang, H., Parmet, B. W. A. H., Schädler, B., Schulla, J., and Wilke, K.: Impact of Climate Change on Hydrological Regimes and Water Resources Management in the Rhine Basin, Clim. Change, 4, 105–128, https://doi.org/10.1023/A:1010784727448, 2001.
Moore, K., Pierson, D., Pettersson, K., Schneiderman, E., and Samuelsson, P.: Effects of warmer world scenarios on hydrologic inputs to Lake Mälaren, Sweden and implications for nutrient loads, Hydrobiologia, 599, 191–199, https://doi.org/10.1007/s10750-007-9197-8, 2008.
Mpelasoka, F. S. and Chiew, F. H. .: Influence of rainfall scenario construction methods on runoff projections, J. Hydrometeorol., 10, 1168–1183, https://doi.org/10.1175/2009JHM1045.1, 2009.
Muerth, M. J., Gauvin St-Denis, B., Ricard, S., VelÃ!`zquez, J. A., Schmid, J., Minville, M., Caya, D., Chaumont, D., Ludwig, R., and Turcotte, R.: On the need for bias correction in regional climate scenarios to assess climate change impacts on river runoff, Hydrol. Earth Syst. Sci., 17, 1189–1204, https://doi.org/10.5194/hess-17-1189-2013, 2013.
Palmer, T. N., Shutts, G. J., Hagedorn, R., Doblas-Reyes, F. J., Jung, T., and Leutbecher, M.: Representing Model Uncertainty In Weather And Climate Prediction, Annu. Rev. Earth Pl. Sc., 33, 163–C–5, https://doi.org/10.1146/annurev.earth.33.092203.122552, 2005.
Piani, C., Haerter, J. O., and Coppola, E.: Statistical bias correction for daily precipitation in regional climate models over Europe, Theor. Appl. Climatol., 99, 187–192, https://doi.org/10.1007/s00704-009-0134-9, 2010.
Räisänen, J. and Räty, O.: Projections of daily mean temperature variability in the future: cross-validation tests with ENSEMBLES regional climate simulations, Clim. Dyn., 1–16, https://doi.org/10.1007/s00382-012-1515-9, 2012.
Rasmussen, J., Sonnenborg, T. O., Stisen, S., Seaby, L. P., Christensen, B. S. B., and Hinsby, K.: Climate change effects on irrigation demands and minimum stream discharge: impact of bias-correction method, Hydrol. Earth Syst. Sci., 16, 4675–4691, https://doi.org/10.5194/hess-16-4675-2012, 2012.
Rojas, R., Feyen, L., Dosio, A., and Bavera, D.: Improving pan-european hydrological simulation of extreme events through statistical bias correction of RCM-driven climate simulations, Hydrol. Earth Syst. Sci., 15, 2599–2620, https://doi.org/10.5194/hess-15-2599-2011, 2011.
Salathé Jr., E. P.: Comparison of various precipitation downscaling methods for the simulation of streamflow in a rainshadow river basin, Int. J. Climatol., 23, 887–901, https://doi.org/10.1002/joc.922, 2003.
Schmidli, J., Frei, C., and Vidale, P. L.: Downscaling from GCM precipitation: a benchmark for dynamical and statistical downscaling methods, Int. J. Climatol., 26, 679–689, https://doi.org/10.1002/joc.1287, 2006.
Seiller, G., Anctil, F., and Perrin, C.: Multimodel evaluation of twenty lumped hydrological models under contrasted climate conditions, Hydrol. Earth Syst. Sci., 16, 1171–1189, https://doi.org/10.5194/hess-16-1171-2012, 2012.
Sennikovs, J. and Bethers, U.: Statistical downscaling method of regional climate model results for hydrological modelling, in: 18th World IMACS Congress and MODSIM09 International Congress on Modelling and Simulation, edited by: Anderssen, R. S., Braddock, R. D., and Newham, L. T. H., 3962–3968, Modelling and Simulation Society of Australia and New Zealand and International Association for Mathematics and Computers in Simulation, Cairns, Australia, available at: http://www.mssanz.org.au/modsim09/I13/sennikovs.pdf (last access: 21 December 2012), 2009.
Shabalova, M. V., van Deursen, W. P., and Buishand, T. A.: Assessing future discharge of the river Rhine using regional climate model integrations and a hydrological model, Clim. Res., 23, 233–246, https://doi.org/10.3354/cr023233, 2003.
Sun, F., Roderick, M. L., Lim, W. H., and Farquhar, G. D.: Hydroclimatic projections for the Murray-Darling Basin based on an ensemble derived from Intergovernmental Panel on Climate Change AR4 climate models, Water Resour. Res., 47, W00G02, https://doi.org/10.1029/2010WR009829, 2011.
Terink, W., Hurkmans, R. T. W. L., Torfs, P. J. J. F., and Uijlenhoet, R.: Bias correction of temperature and precipitation data for regional climate model application to the Rhine basin, Hydrol. Earth Syst. Sci. Discuss., 6, 5377–5413, https://doi.org/10.5194/hessd-6-5377-2009, 2009.
Terink, W., Hurkmans, R. T. W. L., Torfs, P. J. J. F., and Uijlenhoet, R.: Evaluation of a bias correction method applied to downscaled precipitation and temperature reanalysis data for the Rhine basin, Hydrol. Earth Syst. Sci., 14, 687–703, https://doi.org/10.5194/hess-14-687-2010, 2010.
Teutschbein, C. and Seibert, J.: Regional Climate Models for Hydrological Impact Studies at the Catchment Scale: A Review of Recent Modeling Strategies, Geogr. Comp., 4, 834–860, https://doi.org/10.1111/j.1749-8198.2010.00357.x, 2010.
Teutschbein, C. and Seibert, J.: Bias correction of regional climate model simulations for hydrological climate-change impact studies: Review and evaluation of different methods, J. Hydrol., 456–457, 12–29, https://doi.org/10.1016/j.jhydrol.2012.05.052, 2012.
Teutschbein, C., Wetterhall, F., and Seibert, J.: Evaluation of different downscaling techniques for hydrological climate-change impact studies at the catchment scale, Clim. Dynam., 37, 2087–2105, https://doi.org/10.1007/s00382-010-0979-8, 2011.
Themeßl, M. J., Gobiet, A., and Leuprecht, A.: Empirical statistical downscaling and error correction of daily precipitation from regional climate models, Int. J. Climatol., 31, 1530–1544, https://doi.org/10.1002/joc.2168, 2011.
Tramblay, Y., Ruelland, D., Somot, S., Bouaicha, R., and Servat, E.: High-resolution Med-CORDEX regional climate model simulations for hydrological impact studies: a first evaluation of the ALADIN-Climate model in Morocco, Hydrol. Earth Syst. Sci., 17, 3721–3739, https://doi.org/10.5194/hess-17-3721-2013, 2013.
Van der Linden, P. and Mitchell, J. F. B.: ENSEMBLES: Climate Change and its Impacts: Summary of research and results from the ENSEMBLES project, Met Office Hadley Centre, FitzRoy Road, Exeter EX1 3PB, UK, available at: http://ensembles-eu.metoffice.com/docs/Ensembles\textunderscore final\textunderscore report\textunderscore Nov09.pdf (last access: 21 December 2012), 2009.
Vannitsem, S.: Dynamical Properties of MOS Forecasts: Analysis of the ECMWF Operational Forecasting System, Weather Forecast., 23, 1032–1043, https://doi.org/10.1175/2008WAF2222126.1, 2008.
Varis, O., Kajander, T., and Lemmelä, R.: Climate and water: from climate models to water resources management and vice versa, Clim. Change, 66, 321–344, https://doi.org/10.1023/B:CLIM.0000044622.42657.d4, 2004.
Von Storch, H.: On the Use of "Inflation" in Statistical Downscaling, J. Climate, 12, 3505–3506, 1999.