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Abstract. In hydrological climate-change impact studies, re-
gional climate models (RCMs) are commonly used to trans-
fer large-scale global climate model (GCM) data to smaller
scales and to provide more detailed regional information.
Due to systematic and random model errors, however, RCM
simulations often show considerable deviations from obser-
vations. This has led to the development of a number of cor-
rection approaches that rely on the assumption that RCM er-
rors do not change over time. It is in principle not possible
to test whether this underlying assumption of error stationar-
ity is actually fulfilled for future climate conditions. In this
study, however, we demonstrate that it is possible to evaluate
how well correction methods perform for conditions differ-
ent from those used for calibration with the relatively simple
differential split-sample test.

For five Swedish catchments, precipitation and tempera-
ture simulations from 15 different RCMs driven by ERA40
(the 40 yr reanalysis product of the European Centre for
Medium-Range Weather Forecasts (ECMWF)) were cor-
rected with different commonly used bias correction meth-
ods. We then performed differential split-sample tests by di-
viding the data series into cold and warm respective dry and
wet years. This enabled us to cross-evaluate the performance
of different correction procedures under systematically vary-
ing climate conditions. The differential split-sample test
identified major differences in the ability of the applied cor-
rection methods to reduce model errors and to cope with non-
stationary biases. More advanced correction methods per-
formed better, whereas large deviations remained for climate
model simulations corrected with simpler approaches. There-
fore, we question the use of simple correction methods such

as the widely used delta-change approach and linear trans-
formation for RCM-based climate-change impact studies. In-
stead, we recommend using higher-skill correction methods
such as distribution mapping.

1 Introduction

In hydrological climate-change impact studies, large-scale
climate variables for current and future conditions are gener-
ally provided by global climate models (GCMs). To resolve
processes and features relevant to hydrology at the catch-
ment scale, regional climate models (RCMs) are commonly
used to transfer coarse-resolution GCM data to a higher res-
olution. Although this provides more detailed regional infor-
mation (Fowler et al., 2007; Grotch and MacCracken, 1991;
IPCC, 2007; Maraun et al., 2010; Salathé Jr., 2003) for hy-
drological simulations, there is still a mismatch of scales es-
pecially for meso- and small-scale watersheds that are of-
ten captured by only one RCM grid cell. In addition, im-
pact modelers are also facing a risk of improper RCM sim-
ulations (Christensen et al., 2008; Teutschbein and Seibert,
2010; Varis et al., 2004) due to systematic (i.e., biases) and
random model errors. Mismatching scales in combination
with such errors have led to many recently developed cor-
rection approaches (Chen et al., 2013; Johnson and Sharma,
2011; Maraun et al., 2010; Teutschbein and Seibert, 2012;
Themeßl et al., 2011) that help impact modelers to cope with
the various problems linked to biased RCM output.

These correction approaches can be classified according
to their degree of complexity and include simple-to-apply
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methods such as linear transformations but also more ad-
vanced methods such as distribution mapping. The correction
procedures usually identify possible differences between ob-
served and simulated climate variables, which provide the
basis for correcting both control and scenario RCM runs
with a transformation algorithm. Although the correction of
RCM climate variables can considerably improve hydrologi-
cal simulations under current climate conditions (Chen et al.,
2013; Teutschbein and Seibert, 2012), there is a major draw-
back: most methods follow the assumption of stationarity
of model errors, which means that the correction algorithm
and its parameterization for current climate conditions are
assumed to also be valid for a time series of changed future
climate conditions. Whether or not this condition is actually
fulfilled for our future climate cannot be evaluated directly.
This motivated us to address this issue and to test how well
different correction methods perform for conditions differ-
ent from those used for calibration. We applied the idea of a
differential split-sample test, originally proposed by Klemeš
(1986) for hydrological models, to analyze the performance
of different correction methods for use with simulations un-
der changed conditions. The testing presented here was done
for different commonly used and rather simple correction
procedures (Johnson and Sharma, 2011; Maraun et al., 2010;
Teutschbein and Seibert, 2012) based on 15 RCM-simulated
temperature and precipitation series for five mesoscale catch-
ments in Sweden.

We would like to emphasize that this paper was written by
local-impact modelers for impact modelers. Thus, our inten-
tion was not to compare all available methods to deal with bi-
ased RCM simulations and bias non-stationarities (this study
is by no means exhaustive). We simply present one possible
approach to analyze correction methods that are frequently
used by impact modelers – especially on smaller scales. In
addition, we outline the most common terminology related
to climate models and biases as some of these terms are not
used consistently by impact modelers.

2 Terminology

The termsclimate model biasand bias correctionare fre-
quently used in climate change and impact research. How-
ever, these terms are not always used consistently in the lit-
erature and in many studies it is not clear whether they are
actually dealing with model biases or rather model errors,
model shortcomings or other uncertainties. For clarification
we, therefore, briefly summarize the most commonly used
terminology.

2.1 Distinction between model shortcomings, model
errors and model biases

Allen et al. (2006) suggested differentiating between the
termsmodel shortcomings, model errorsandmodel biases.

Model shortcomingsare based on the fact that some mod-
els do not represent some parts of the climate system or are
not able to resolve certain processes. Model shortcomings
might also originate from numerical issues causing problems
such as the violation of mass conservation observed in sev-
eral climate models (Liepert and Previdi, 2012). These defi-
ciencies can generally be resolved by improving the model,
for instance, through the introduction of new physical de-
scriptions or through increased spatial and temporal reso-
lution (Allen et al., 2006). Model shortcomings can lead to
model errors.

Model errorscan be caused by initial and boundary con-
ditions, parameterizations, physical and numerical formula-
tions, lacking knowledge of external factors or general model
shortcomings (Deser et al., 2012; Eden et al., 2012; Jung,
2005; Ménard, 2010; Palmer et al., 2005). Model errors
can appear asunsystematic (random)andsystematic errors
(Ménard, 2010). Mathematically, the time-dependent model
error (et) is the difference between the model simulation
(st) and the best estimate of the truth (ot), i.e., observations
(Eq. 1, modified from Jung, 2005).

et = st − ot (1)

Unsystematic (random) model errorscause random vari-
ations in model simulations. They have their origin in
the internal variability of climate models, i.e., in hidden
non-linearities and complex (random) dynamical processes
(Allen et al., 2006; Deser et al., 2012; Majda and Gershgorin,
2010; Ménard, 2010). This internal variability is associated
with a model’s degree of freedom to develop its own dynamic
feedback mechanisms (Christensen et al., 2001). For shorter
(decadal) timescales, these random errors (internal variabil-
ity) are the dominant sources of uncertainty in model simu-
lations (Hawkins and Sutton, 2011).

Systematic model errors, also commonly termedmodel bi-
ases, produce predictably inaccurate (i.e., biased) model sim-
ulations. They are defined as systematic differences between
model simulations (st) and observations (ot), which is for a
certain diagnosticd given by Eq. (2) (Jung, 2005), whered̂SE
stands for the estimated systematic error of the diagnostic (d)

with the hat ind̂ indicating that this is an estimate of the true
value. The diagnosticd can be the mean value, but can also
address other aspects of the model error.

d̂SE = d̂(st) − d̂(ot) (2)

Systematic model errors can originate either from inade-
quately constrained parameters or from model structures that
are unable to describe the physical process of interest (Allen
et al., 2006). These systematic model errors, ormodel biases,
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are generally the most dominant source of uncertainty for
longer (centennial) timescales (Hawkins and Sutton, 2011).

2.2 Climate model bias: definition and detection

Model biasis defined as a systematic distortion of statistical
findings from the expected value. According to this defini-
tion, climate model biasesdescribesystematic climate model
errors (see definition above) only. It should, however, be
noted that the termbias in the context of climate change im-
pact studies is often misleadingly used to describe model er-
rors in general (i.e., a combination of both systematic and
random error).

Biases in climate model simulations are commonly de-
tected by validation (i.e., comparison) with observations
(Eq. 2), where the observations are considered to be “true”
and unbiased (Jung, 2005; Ménard, 2010). Jung (2005) high-
lights the mean (µ) as one of the simplest and most widely
used diagnostics to detect climate model biases, so that
Eq. (2) can be modified as follows:

µ̂SE = µ̂(st) − µ̂(ot), (3)

whereµ̂SE is the estimatedmeansystematic error over the
time period. One should be aware thatµ̂SE can be zero (i.e.,
detecting no systematic error) due to error cancelation al-
though simulations (st) and observations (ot) might be char-
acterized by different variability or distributions. This em-
phasizes the need for considering systematic errors for other
diagnostics, i.e., replacinĝµ in Eq. (3) by other statistics,
amongst others the standard deviation (σ), 10th/90th per-
centiles (X10/X90) or probabilities (P). The detection and
estimation of climate model biases by comparing model sim-
ulations to observations is, however, not solely limited to
Eqs. (2) and (3). For example, Hanna (1993) and Chang and
Hanna (2004) recommended to use thefractional bias (FB),
thegeometric mean bias (MG), thenormalized mean square
error (NMSE) and thegeometric variance(VG). These ad-
ditional performance measures are mentioned here to show
further possibilities of analyzing climate model biases. De-
pending on the focus of a climate change impact study, other
measures can be defined as well (Chang and Hanna, 2004).
As each of these measures has advantages and disadvantages
(for more information see Chang and Hanna, 2004), any bias
analysis should always be based on multiple diagnostics.

2.3 Bias correction methods

RCM simulations are typically affected by systematic and
random model errors. Misestimated climate variables in gen-
eral, incorrect seasonal variations of precipitation (Chris-
tensen et al., 2008; Terink et al., 2009; Teutschbein and Seib-
ert, 2010) and the simulation of too-many drizzle (i.e., low-
intensity rain) days (Ines and Hansen, 2006) are just a few ex-
amples of common systematic errors (biases). In other words,
climate variables simulated by individual RCMs often do not

Fig. 1.Monthly mean temperature (top) and total monthly precipita-
tion (bottom) for the period 1961–2000 as simulated by 15 individ-
ual ERA40-driven RCMs (gray dashed lines) for the Vattholmaån
catchment in southeastern Sweden. Observations (black circles) and
the RCM-ensemble medians (gray continuous line) are displayed as
well.

agree with observed time series (Fig. 1). This poses a prob-
lem for using these simulations as input data for hydrological
impact studies. One possible solution is to use an ensemble
of RCM simulations (Déqué et al., 2007; Giorgi, 2006) as
ensembles have two advantages: (1) the spread of individ-
ual ensemble members covers a more realistic range of un-
certainty and (2) the ensemble median may fit observations
better (Jacob et al., 2007), which is especially true for tem-
perature simulations (Fig. 1, top). However, for precipitation
simulations even the ensemble median often deviates consid-
erably from observations and is not able to capture the vari-
ability in the observations (Fig. 1, bottom). This shows that
it is not enough to only employ an RCM ensemble, but that
additional correction procedures are needed.

Several bias correction methods have already been applied
in weather forecasting under the namemodel output statis-
tics (MOS) about four decades ago (Glahn and Lowry, 1972;
Klein and Glahn, 1974). In the context of correcting RCM
output, however, it is today a controversial subject (Ehret et
al., 2012; Muerth et al., 2013): despite their advantageous
ability to reduce errors in climate model output, most correc-
tion methods are criticized to diminish the advantages of cli-
mate models (Ehret et al., 2012) and to not have much added
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value in a complex modeling chain when considering other
sources of uncertainty (Muerth et al., 2013).

Typical correction approaches aim at correcting the sys-
tematic error (bias) in RCM-simulated climate variables
by employing a transformation algorithm and are therefore
calledbias correction methods. The concept is based on the
identification of possible biases between observed and simu-
lated climate variables, which is the starting point for correct-
ing both control and scenario RCM runs. It should be noted
that there is a risk of not only correcting systematic errors
(biases) but also unintentionally modifying simulations due
to unsystematic (random) model errors (Maraun et al., 2010).

2.4 Stationarity assumption of model bias

A common assumption of most bias correction methods is
stationarity, or time invariance, of the model errors. This im-
plies that the empirical relationships in the correction al-
gorithm and its parameterization for current climate con-
ditions do not change over time and are also valid for fu-
ture conditions. This assumption is, however, likely not met
under changing climate conditions (Ehret et al., 2012; Ma-
raun, 2012; Maraun et al., 2010; Vannitsem, 2008). In fact,
Maraun (2012) was able to identify and distinguish between
different types of bias changes, which are briefly described in
Table 1. This highlights that there are potential issues when
correction methods are applied to adjust RCM simulations.

3 Methods

3.1 Study catchments

The analysis in this study was performed for five mesoscale
catchments (Fig. 2) with areas ranging from 147 to 293 km2,
as this scale is relevant for local climate change impacts
(e.g., local heavy rainfall events, flooding, permafrost melt
or droughts). These catchments fall all below the standard
RCM grid cell size of approximately 25 km× 25 km and are,
therefore, potentially affected by the scaling issue. The cho-
sen catchments represent different typical Swedish climatic
conditions and land-use types (Table 2). Continuous temper-
ature and precipitation measurements for all five catchments
were available for the period 1961–2000.

3.2 Data

Daily temperature and precipitation measurements for the
period 1961–2000 were taken from the spatially interpo-
lated 4 km× 4 km national grid PTHBV (Johansson, 2002)
provided by the Swedish Meteorological and Hydrological
Institute (SMHI). Climate simulations were obtained from
the ENSEMBLES project (Van der Linden and Mitchell,
2009): we used daily precipitation and temperature series
for the period 1961–2000 simulated by 15 RCMs (Table 3),
which were all driven by ERA40 data (the 40 yr reanalysis

Fig. 2. Map showing locations of the Swedish study sites and the
spatially interpolated 4 km× 4 km national grid of observed precip-
itation and temperature. Catchments: (1) Tännfors, (2) Storbäcken,
(3) Vattholmaån, (4) Brusaån and (5) Rönne Å.

product of the European Centre for Medium-Range Weather
Forecasts (ECMWF)). The chosen RCMs have a resolution
of 25 km and, thus, the area of a single grid cell clearly ex-
ceeds the size of the study catchments. We chose to average
precipitation and temperature values from the RCM grid cell
with center coordinates closest to the center of the catchment
and its eight neighboring grid cells.

3.3 Bias correction methods

In addition to the original (i.e., uncorrected) RCM output
data, we applied and analyzed the following six bias correc-
tion methods (Table 4) to adjust RCM simulations: (1) linear
transformation, (2) local intensity scaling (LOCI), (3) power
transformation, (4) variance scaling, (5) distribution mapping
and (6) the delta-change approach. Furthermore, a precip-
itation threshold was used in combination with other bias
correction procedures (namely LOCI, power transformation
and distribution mapping), but not considered an appropriate
“stand-alone” method. More detailed descriptions of these
methods can be found in Teutschbein and Seibert (2012),
Gudmundsson et al. (2012), Johnson and Sharma (2011) and
the original method publications provided in Table 4. All bias
correction methods were applied to daily values on a monthly
basis as described by Teutschbein and Seibert (2012).
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Table 1.Classification and definitions of different bias changes based on Maraun (2012).

Class Type Abbreviation Definition

1. Real
Bias
Changes

(a) Sensitivity
Related Bias
Changes

SBC Systematic model errors lead to biases in the simulated local re-
sponse to external forcings (so-called climate sensitivity). As the
climate system might respond different to external forcings in
the future, associated bias changes are defined as sensitivity
related bias changes (SBC).

2. Apparent
Bias
Changes

(a) Variability
Related
Apparent
Bias Changes

VABC As biases are often detected based on relatively short time peri-
ods, sampling uncertainty mainly caused by internal variability
can be a serious problem. Thus, associated bias changes are
defined as variability related apparent bias changes (VABC).

(b) Mixture
Related
Apparent
Bias Changes

MABC The overall bias might be a mixture of several underlying bi-
ases depending on different weather types. As the relative occur-
rence of these weather types might change in the future, associ-
ated bias changes are defined as mixture related apparent bias
changes (MABC).

Table 2. Main characteristics of the five Swedish study sites including area, total annual precipitation, mean annual temperature, climate
zones and land-use properties.

Catchments Area Precipitation Temperature Climate zone Land-use [%]

[km2] [mm yr−1] [◦C] (Köppen–Geiger) Forest Open land Lakes/wetlands Residential

1. Tännfors 227 775 −0.5 Continental subarctic
towards polar tundra

32 60 8 0

2. Storbäcken 150 617 2.1 Continental subarctic 79 9 2 0
3. Vattholmaån 293 633 5.2 Warm summer continental 81 7 10 2
4. Brusaån 240 632 5.7 Warm summer continental

towards maritime temperate
83 12 3 2

5. Rönne Å 147 786 7.3 Maritime temperate 23 46 27 4

The above mentioned methods were chosen based on their
frequent application in climate change impact studies. Al-
though some of these methods might seem outdated from
a climate modeler’s perspective, they are all still commonly
used by impact modelers especially at smaller scales, partly
because they are relatively simple to apply.

3.4 Testing the stationarity assumption

To test how well bias correction methods work for condi-
tions different from those that they were calibrated to, we
employed an approach that is based on one of the oper-
ational testing methods presented by Klemeš (1986). Kle-
meš (1986) presented two methods of interest for systematic
testing of hydrological model transposability: split-sample
testing (SST) for stationary conditions anddifferentialsplit-
sample testing (DSST) for non-stationary conditions. SST
implies the splitting of an available data record into two
(preferably equally sized) segments in order to use one as cal-
ibration and one as validation period. DSST however should,
according to Klemeš (1986), be used under changing con-

ditions. The first step of this test includes the identification
of two periods with the climate variable of interest having
different values, for instance a warm versus a cold or a wet
versus a dry period. The model is then calibrated on the pe-
riod with one condition and validated on the period with the
other condition, which allows analyzing the model’s ability
to perform under shifting conditions. SST can automatically
transform into DSST, if the two segments by nature show
substantial differences in their conditions (Klemeš, 1986).

To test the ability of different correction procedures to reli-
ably work for changed climate conditions, we applied DSST
proposed by Klemeš (1986) that was originally intended for
hydrological models. Both SST and DSST are seldom used
to evaluate bias correction methods. We are aware of only a
few other studies using such a test: Bennett et al. (2010) and
Terink et al. (2010) evaluated bias correction methods using
SST with two different time periods for which observations
were available. A major limitation of this approach is that the
periods should be long enough to represent natural climate
variability satisfactorily (Bennett et al., 2010). Furthermore,
unless the two periods are different in their conditions, the
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Table 3.ERA40-driven RCM experiments (1961–2000) with a res-
olution of 25 km from the ENSEMBLES EU project used in this
study.

No. Institute Model

1 C4I RCA3
2 CHMI Aladin
3 DMI HIRHAM
4 EC GEMLAM
5 ETHZ CLM
6 HC HadRM3Q0
7 HC HadRM3Q3
8 HC HadRM3Q16
9 ICTP RegCM

10 KNMI RACMO
11 METNO HIRHAM
12 MPI REMO
13 OUR CRCM
14 SMHI RCA
15 UCLM PROMES

methods are not evaluated for use under changed conditions.
This issue motivated us to rather use DSST that is better able
to evaluate performance under changing climate conditions
(Li et al., 2012; Seiller et al., 2012; Tramblay et al., 2013).

The available 40 yr period 1961–2000 was separated into
two 20 yr subsets with different climate conditions, one rep-
resenting current climate and the other one future climate.
Our available 40 yr period was not long enough to show
a considerable trend in precipitation or temperature data
(Fig. 3a), so we instead constructed the two subsets for each
catchment as follows.

1. All years were sorted ascending according to their an-
nual amount of observed precipitation (Fig. 3b).

2. The first 20 yr of the sorted data (i.e., the driest
years) were included in the first subset and the last
20 yr (i.e., wettest years) in the second subset for the
precipitation-bias correction assessment.

3. Each RCM-simulated precipitation time series was re-
arranged to match the annual order of sorted observed
precipitation data and thereafter split into two subsets
as above.

The same procedure was used for constructing two subsets
for the evaluation of temperature-bias correction methods.
Ranking all years according to their observed annual mean
temperature resulted in two series, where the first consisted
of the 20 coldest years and the second of the 20 warmest
years (Fig. 3c). Again, each RCM-simulated temperature
time series was rearranged in the same annual order as the
sorted observed temperature data and thereafter split into two
subsets. This procedure resulted in series where the years

were not consecutive and the two subsets consisted of dif-
ferent years for the evaluation of precipitation (Fig. 3b) and
temperature-bias correction methods (Fig. 3c). Note that the
procedure ensured that the two subsets included the same
years for each RCM simulation and the observations.

To fully apply DSST, we performed a twofold cross-
validation (Fig. 3b and c). First, all correction methods were
calibrated based on the first subset of years and then evalu-
ated for the second subset of years (case 1). In addition, the
two periods were switched and the correction methods were
calibrated based on the second subset and validated using
the first subset (case 2). This way, DSST allowed the evalua-
tion of bias correction methods under challenging conditions,
namely considerably varying climate conditions for calibra-
tion and validation (Coron et al., 2012).

3.5 Evaluation of bias correction methods

Different diagnostics (Table 5) were used to detect and esti-
mate model errors in uncorrected RCM simulations accord-
ing to Eq. (2) for both the calibration and validation period
of temperature as well as precipitation. Then, the same cal-
culations were done to analyze the performance of each bias
correction method. This implies that we (1) studied whether
model errors were still present for the calibration data, (2) es-
timated the amount of model errors present for the validation
data and (3) assessed the model error growth, i.e., the abso-
lute difference between model errors in validation and cali-
bration data. The model error growth measure allowed study-
ing the transferability of a bias correction method to different
climatic conditions.

As the above diagnostics were applied to the entire data
series of a subset, they give no information about seasonal
differences. Thus, we additionally included an analysis of
the four seasons: winter (DJF), spring (MAM), summer (JJA)
and autumn (SON).

4 Results

4.1 DSST-induced climate change signal

The two designed subsets used in the conducted DSST fea-
tured different climate conditions and were clearly non-
stationary. In this study, the differences between the two sub-
sets were within a range of 6–30 % for precipitation (Fig. 4,
left) and 0.9–1.7◦C for temperature (Fig. 4, right). These val-
ues are in the same order of magnitude as the climate change
signals for Sweden that are projected by the ENSEMBLES
project (Van der Linden and Mitchell, 2009) and the Cli-
mateCost project (Christensen et al., 2011) to occur until the
2050s (2041–2070) under emission scenario A1B or until the
2080s (2070–2099) under mitigation scenario E1 compared
to the baseline 1961–1990 (Christensen et al., 2011; Van der
Linden and Mitchell, 2009).
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Table 4. Overview of methods used to correct RCM-simulated precipitation and/or temperature data, for more information on the methods
see Teutschbein and Seibert (2012) and the specified references.

Method Variable Short Description Advantages (+) and Disadvantages (-) References

Raw RCM
Output Data

Precipitation
Temperature • RCM-simulated time series are used directly

without any bias correction
+ simplest way to use RCM data

– systematic model errors are ignored

– can cause substantial errors in impact studies

Precipitation
Threshold

Precipitation
• an RCM-specific threshold is calibrated such

that the number of RCM-simulated days ex-
ceeding this threshold matches the number of
observed days with precipitation

• rarely used as a “stand-alone” method but
often combined with other correction proce-
dures

+ wet-day frequencies are corrected

– mean, standard deviation (variance) and

wet-day intensities are not adjusted

Schmidli et al. (2006)

Delta-Change
Correction

Precipitation
Temperature • RCM-simulated future change signals

(anomalies) are superimposed upon observa-
tional time series

• usually done with a multiplicative correction
for precipitation and an additive correction for
temperature

+ observations are used as a basis, which makes
it a robust method

+ corrects the mean

– standard deviation (variance), wet-day

frequencies and intensities are not corrected

– potential future changes in climate dynamics
and variability are not accounted for

– all events change by the same amount

Gellens and Roulin (1998)
Graham et al. (2007a, b)
Johnson and Sharma (2011)
Lettenmaier et al. (1999)
Mpelasoka and Chiew (2009)
Middelkoop et al. (2001)
Moore et al. (2008)
Rasmussen et al. (2012)
Shabalova et al. (2003)

Linear
Transformation

Precipitation
Temperature • adjusts RCM time series with correction val-

ues based on the relationship between long-
term monthly mean observed and RCM

control run values

• precipitation is typically corrected with a

factor and temperature with an additive term

+ corrects the mean

+ variability of corrected data is more consistent
with original RCM data

– standard deviation (variance), wet-day

frequencies and intensities are not corrected

– all events are adjusted with the same

correction factor

Lenderink et al. (2007)

Local Intensity
Scaling (LOCI)

Precipitation
• combines a precipitation threshold with linear

scaling (both described above)
+ corrects mean, wet-day frequencies and

intensities

+ variability of corrected data is more consistent
with original RCM data

– standard deviation (variance) is not corrected

– all events are adjusted with the same

correction factor

Schmidli et al. (2006)

Power Transfor-
mation

Precipitation
• a precipitation threshold can be introduced a

priori to avoid too many drizzle days (i.e., very
low but non-zero precipitation)

• is a non-linear correction in an exponential
form (a ×P b) that combines the correction of
the coefficient of variation (CV) with a linear
scaling

+ corrects mean and standard deviation

(variance)

+ events are adjusted non-linearly

+ variability of corrected data is more consistent
with original RCM data

± adjusts wet-day frequencies and intensities
only to some extend

Leander and Buishand (2007)
Leander et al. (2008)

Variance Scal-
ing

Temperature
• combines standard linear scaling with a

scaling based on standard deviations

+ corrects mean and standard deviation

(variance)

+ variability of corrected data is more consistent
with original RCM data

– all events are adjusted with the same addends
and correction factor

Chen et al. (2011)

Distribution
Mapping

Precipitation
Temperature • matches the distribution functions of

observations and RCM-simulated climate val-
ues

• a precipitation threshold can be introduced to
avoid substantial distortion of the distribution
caused by too many drizzle days (i.e., very low
but non-zero precipitation)

• also known as “quantile-quantile mapping”,
“probability mapping”, “statistical

downscaling” or “histogram equalization”

+ corrects mean, standard deviation (variance),
wet-day frequencies and intensities

+ events are adjusted non-linearly

+ variability of corrected data is more consistent
with original RCM data

Block et al. (2009)
Boe et al. (2007)
Déqué et al. (2007)
Ines and Hansen (2006)
Johnson and Sharma (2011)
Piani et al. (2010)
Rojas et al. (2011)
Sennikovs and Bethers (2009)
Sun et al. (2011)
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Fig. 3. Exemplary procedure of the differential split-sample test (DSST). First, the annual values(a) were sorted ascending(b, c). For the
twofold cross-validation, first the lower-value years were used for calibration and the higher-value years for validation. In a second step,
calibration and validation periods were switched. This procedure was performed independently for precipitation and temperature.

Table 5.Overview of diagnostics used to detect and estimate model errors in raw and corrected RCM-simulated precipitation and/or temper-
ature data.

RCM-Simulated Climate Variable Diagnostic Abbreviation

Precipitation

1. Mean (µ)

2. 90th percentile (X90)

3. Standard deviation (σ)

4. Probability of wet days (Pwet)

5. Intensity of wet days (iwet)

6. Maximum of consecutive 5 day precipitation (Precip5max)

Temperature

1. Mean (µ)

2. 10th percentile (X10)

3. 90th percentile (X90)

4. Standard deviation (σ)
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Table 6.Mean absolute error (MAE) of seasonally averaged precipitation [mm d−1] of differently corrected ERA40-driven RCM simulations
compared to observed seasonally averaged precipitation for case-1 evaluation. Larger MAE values are shown in bold, medium MAE values
appear in regular font and smaller MAE values are underlined.

Season Catchment
Bias Correction Method

Raw Linear LOCI Power Distribution Delta

Winter (DJF)

1. Tännfors 0.428 0.190 0.185 0.212 0.213 0.232
2. Storbäcken 0.174 0.095 0.095 0.111 0.105 0.105
3. Vattholmaån 0.085 0.131 0.106 0.080 0.070 0.140
4. Brusaån 0.257 0.109 0.095 0.101 0.100 0.130
5. Rönne Å 0.236 0.358 0.323 0.268 0.237 0.337

Spring (MAM)

1. Tännfors 0.244 0.081 0.078 0.143 0.153 0.081
2. Storbäcken 0.290 0.348 0.367 0.436 0.455 0.353
3. Vattholmaån 0.304 0.093 0.083 0.101 0.111 0.093
4. Brusaån 0.462 0.191 0.203 0.234 0.250 0.203
5. Rönne Å 0.438 0.236 0.250 0.289 0.311 0.267

Summer (JJA)

1. Tännfors 0.346 0.181 0.174 0.150 0.147 0.211
2. Storbäcken 0.427 0.447 0.438 0.308 0.310 0.439
3. Vattholmaån 0.285 0.157 0.150 0.154 0.144 0.159
4. Brusaån 0.238 0.067 0.056 0.047 0.041 0.105
5. Rönne Å 0.245 0.168 0.168 0.167 0.173 0.244

Autumn (SON)

1. Tännfors 0.129 0.248 0.243 0.196 0.191 0.260
2. Storbäcken 0.140 0.102 0.093 0.079 0.074 0.143
3. Vattholmaån 0.174 0.215 0.211 0.217 0.214 0.234
4. Brusaån 0.111 0.191 0.181 0.182 0.177 0.162
5. Rönne Å 0.098 0.144 0.131 0.120 0.107 0.145

Fig. 4.Differences between mean values of the two constructed sub-
sets for precipitation (left) and temperature (right) shown for raw
RCM simulations (colored boxes) and observations (black circles).

In direct comparison to observations, the RCMs tended to
underestimate the mean climate change signals for both pre-
cipitation (Fig. 4, left) and temperature (Fig. 4, right), which
was most likely directly related to an underestimation of in-
terannual variability by the RCMs.

4.2 RCM precipitation: model errors

The calculated precipitation model errors were displayed in
gridded plots as a function of bias correction method (x axis)
and catchment location (y axis) separately for each statistical
diagnostic and separately for calibration and validation pe-
riod. Considering the case-1 evaluation procedure from dry
to wet years (Fig. 5), all precipitation-bias correction meth-
ods resulted in good estimates of the mean (µ) showing only
small model errors during the designed calibration period
(Fig. 5, upper left panel). Analyzing other statistical diagnos-
tics, however, showed considerable differences between the
methods already during the calibration period (Fig. 5, left
panel column). Raw RCM simulations generally had large
model errors. Linear transformation was not able to consid-
erably improve other statistical properties thanµ (Fig. 5, left
panel column). For standard deviation (σ), 90th percentiles
(X90) and maximum 5 day precipitation (Precip5max), power
transformation and distribution mapping seemed to work
best. The same could be observed for the probability of wet
days (Pwet) and the intensity of wet days (iwet), which were
in addition also most correct after applying LOCI. The delta-
change approach always performed perfectly during calibra-
tion by its definition.

The overall model error pattern was fairly similar for cal-
ibration and validation period. The major difference was
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Fig. 5. Normalized precipitation model errors (different shades of
blue) of 6 different statistical diagnostics (panel rows) for calibra-
tion period (left panel column) and validation period (central panel
column). The model error growth, i.e., the absolute difference be-
tween model errors in validation and calibration period, is shown as
well (right panel column). Each panel displays model error infor-
mation depending on the 6 applied bias correction methods (x axis)
and the 5 catchment locations (y axis). The figure is based on case-1
evaluation with calibration on dry years and validation on wet years.

that the model error during validation period increased con-
siderably (Fig. 5, central panel column, shown as darker
blue shading). This fact was also supported by the calcu-
lated model error growth (Fig. 5, right panel column). Linear
transformation tended to have a slightly larger model error
growth, whereas distribution mapping had the least. An inter-
esting fact is that the delta-change approach, despite the illu-
sory perfect fit during calibration, was outperformed by other
methods during validation: Delta-change corrected precipi-

Fig. 6. Normalized precipitation model errors (different shades of
blue) of 6 different statistical diagnostics (panel rows) for calibra-
tion period (left panel column) and validation period (central panel
column). The model error growth, i.e., the absolute difference be-
tween model errors in validation and calibration period, is shown
as well (right panel column). Each panel displays model error in-
formation depending on the 6 applied bias correction methods (x

axis) and the 5 catchment locations (y axis). The figure is based on
case-2 evaluation with calibration on wet years and validation on
dry years.

tation showed large deviations inµ as well asPwet andiwet.
Consequently, the delta-change method showed the strongest
model error growth. The case-2 evaluation procedure from
wet to dry years (Fig. 6) mostly confirmed the results of the
case-1 evaluation.
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Fig. 7. Normalized temperature model errors (different shades of
blue) of 4 different statistical diagnostics (panel rows) for calibra-
tion period (left panel column) and validation period (central panel
column). The model error growth, i.e., the absolute difference be-
tween model errors in validation and calibration period, is shown as
well (right panel column). Each panel displays model error infor-
mation depending on the 5 applied bias correction methods (x axis)
and the 5 catchment locations (y axis). The figure is based on case-
1 evaluation with calibration on cold years and validation on warm
years.

4.3 RCM precipitation: seasonal analysis

The analysis of seasonally averaged raw and corrected RCM-
simulated precipitation for the validation period revealed
only a weak pattern in terms of the influence of different
correction methods, seasons and catchments on model er-
rors (Table 6). The mean absolute error (MAE) was gener-
ally large for raw RCM-simulated precipitation, except for
autumn. During autumn, which is characterized by medium
to high monthly precipitation, raw RCM simulations were
relatively close to observations and the correction methods
were not able to provide further enhancement (except for
catchment 2, Storbäcken). During all other seasons the cor-

Fig. 8. Normalized temperature model errors (different shades of
blue) of 4 different statistical diagnostics (panel rows) for calibra-
tion period (left panel column) and validation period (central panel
column). The model error growth, i.e., the absolute difference be-
tween model errors in validation and calibration period, is shown as
well (right panel column). Each panel displays model error infor-
mation depending on the 5 applied bias correction methods (x axis)
and the 5 catchment locations (y axis). The figure is based on case-
2 evaluation with calibration on warm years and validation on cold
years.

rection methods were generally able to improve raw RCM
simulations (except for catchment 5, Rönne Å, in winter and
catchment 2, Storbäcken, in spring). Power transformation
and distribution mapping performed better than other meth-
ods in winter, summer and autumn, which are seasons that
are characterized by somewhat higher monthly precipitation.
On the other hand, linear scaling and LOCI performed gen-
erally better in spring, a season with lower monthly precip-
itation. Furthermore, bias correction methods worked better
for catchments in south central Sweden (i.e., catchments 3,
Vattholmaån, and 4, Brusaån), which are generally drier than
the other three catchments.
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4.4 RCM temperature: model errors

The same type of gridded plots were created to demonstrate
the calculated temperature model errors: in terms of the case-
1 evaluation procedure from cold to warm years (Fig. 7), all
temperature-bias correction methods resulted in very good
µ estimates during the designed calibration period (Fig. 7,
upper left panel). Substantial differences between the cor-
rection methods became apparent with help of other statis-
tical diagnostics (Fig. 7, left panel column): linear transfor-
mation was the only method not able to sufficiently correct
σ . Variance-scaled and distribution-mapped RCM tempera-
ture had both the most correctX10 andX90 during the con-
trol period. Again, the delta-change approach is perfect (i.e.,
model-error-free) by definition.

During validation with warmer years (Fig. 7, central panel
row), the bias correction methods performed somewhat dif-
ferently. Especially variance scaling showed larger model er-
rors inσ andX10 compared to the other methods. Distribu-
tion mapping, however, had relatively lowµ, σ , X10 andX90
model errors. The model error growth (Fig. 7, right panel
column) identified variance scaling and the delta-change
method as the two approaches with the largest model error
increase. The delta-change approach again had one of the
largest model errors during validation and, thus, the strongest
model error growth. Overall, a north–south gradient became
apparent. Raw and adjusted RCM temperatures were char-
acterized by a larger model error and a stronger model error
growth for the northern catchments with cold climate condi-
tions compared to the catchments with a warmer climate.

These findings were confirmed by the case-2 evaluation
procedure from warm to cold years (Fig. 8). The results were
essentially the same as for the case-1 evaluation; only that
linear transformation performed worse and showed larger
model errors during validation (Fig. 8, central panel col-
umn). Moreover, the north–south gradient was even more
pronounced in all panels for validation and model error
growth (Fig. 8, central and right panel column).

4.5 RCM temperature: seasonal analysis

The evaluation of seasonally averaged raw and corrected
RCM-simulated temperature showed clear differences be-
tween correction methods, seasons and catchments for the
validation period (Table 7). The mean absolute error (MAE)
was generally large for raw RCM-simulated temperature. A
north–south gradient was visible with northern catchments
showing larger model errors in raw and corrected temper-
ature. Furthermore, there was a clear seasonal difference:
winter temperatures (cold season) were much more flawed
than temperatures in all other (warmer) seasons. Distribution
mapping consistently showed lowest MAE values.

Fig. 9. Overall performance of precipitation (left) and temperature
(right) biases correction methods. Each panel displays model error
information depending on the applied bias correction methods (x

axis) and the 5 catchment locations (y axis). Each plot combines
normalized model errors of different statistical diagnostics and was
created by superimposing the different panels from Figs. 5 and 6 for
precipitation (left) as well as the panels from Figs. 7 and 8 for tem-
perature (right). Light color fields represent small model errors and
little model error growth; darker colors characterize larger model
errors and more model error growth.

4.6 Overall performance of bias correction methods

In order to obtain information on the overall performance of
each bias correction method and its transferability to differ-
ent climate conditions, we first normalized the model errors
of raw and corrected RCM simulations to bring them to a
common comparable scale (shown in Figs. 5–8). These nor-
malized errors were then averaged over different diagnostics,
over both the case-1 and case-2 evaluation and over both sub-
sets (calibration and validation). Thus, we obtained a combi-
nation of the results in Figs. 5 and 6 for precipitation and in
Figs. 7 and 8 for temperature.

The obtained signal was reasonably clear for both precipi-
tation (Fig. 9, left) and temperature (Fig. 9, right): raw RCM
simulations had the largest model error. In general, the more
advanced the algorithm of a bias correction method was, the
smaller was the model error present after correction (Fig. 9,
from left to right on thex axis). This means that linear trans-
formation had the largest and distribution mapping the small-
est model errors. Furthermore, the simple delta-change ap-
proach resulted in relatively large model errors.
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Table 7. MAE of seasonally averaged temperature [◦C] of differently corrected ERA40-driven RCM simulations compared to observed
seasonally averaged temperature for case-1 evaluation. Larger MAE values are shown in bold, medium MAE values appear in regular font
and smaller MAE values are underlined.

Season Catchment
Bias Correction Method

Raw Linear LOCI Power Distribution Delta

Winter (DJF)

1 Tännfors 3.659 1.544 3.659 3.659 0.610 1.704
2 Storbäcken 0.983 1.326 0.983 0.983 0.476 1.438
3 Vattholmaån 0.326 1.476 0.326 0.326 0.807 1.463
4 Brusaån 0.382 0.888 0.382 0.382 0.382 0.968
5 Rönne Å 0.280 0.486 0.280 0.280 0.456 0.554

Spring (MAM)

1 Tännfors 1.498 0.170 1.498 1.498 0.349 0.357
2 Storbäcken 1.236 0.251 1.236 1.236 0.459 0.265
3 Vattholmaån 0.754 0.242 0.754 0.754 0.227 0.261
4 Brusaån 0.544 0.150 0.544 0.544 0.281 0.171
5 Rönne Å 0.583 0.159 0.583 0.583 0.177 0.104

Summer (JJA)

1 Tännfors 0.858 0.445 0.858 0.858 0.452 0.465
2 Storbäcken 1.469 0.332 1.469 1.469 0.325 0.367
3 Vattholmaån 0.419 0.279 0.419 0.419 0.205 0.259
4 Brusaån 0.486 0.213 0.486 0.486 0.276 0.140
5 Rönne Å 0.665 0.165 0.665 0.665 0.207 0.238

Autumn (SON)

1 Tännfors 1.957 0.313 1.957 1.957 0.215 0.486
2 Storbäcken 0.298 0.207 0.298 0.298 0.293 0.366
3 Vattholmaån 0.187 0.127 0.187 0.187 0.106 0.569
4 Brusaån 0.201 0.135 0.201 0.201 0.153 0.437
5 Rönne Å 0.222 0.180 0.222 0.222 0.173 0.248

5 Discussion

Based on all findings in this study, distribution mapping
showed the best overall performance and transferability to
potentially changed climate conditions, as it was able to cor-
rect statistical moments other than the mean and standard de-
viation. LOCI and power transformation (both for precipita-
tion) as well as variance scaling (for temperature) performed
moderately. It should be noted that variance scaling is not
advisable as it is based on the invalid assumption that all lo-
cal variability is related to larger-scale variability and, fur-
thermore, tends to augment the mean square errors of uncor-
rected data (Von Storch, 1999). Linear transformation and the
delta-change method were the least able to correct for overall
model errors in the validation period.

In this study, we did not try to answer the “main question
[. . . ], whether and when the application of bias correction
methods [. . . ] is justified or not” (Ehret et al., 2012). Bias
correction methods are often criticized to diminish the ad-
vantages of climate models, but even with today’s much ad-
vanced climate models, bias correction is often unavoidable
for climate-change impact studies as uncorrected RCM sim-
ulations are a source of large uncertainties and would con-
sequently hamper subsequent impact simulations. However,
one needs to be aware that there are several problematic as-
pects related to bias correction methods (Ehret et al., 2012):

– physical causes of model errors are not taken into ac-
count and, thus, a proper physical foundation is miss-
ing (Teutschbein and Seibert, 2012);

– spatiotemporal field consistency and relations between
climate variables are modified (Ehret et al., 2012);

– conservation principles are not met (Ehret et al., 2012);

– feedback mechanisms are neglected (Ehret et al.,
2012);

– the stationarity (time invariance) assumption is likely
not met under changing climate conditions (Ehret et
al., 2012; Maraun, 2012; Maraun et al., 2010; Vannit-
sem, 2008);

– variability ranges might be reduced without physical
justification (Ehret et al., 2012);

– the climate-change signal might be altered (Dosio et
al., 2012; Hagemann et al., 2011);

– the choice for a correction technique is an additional
source of uncertainty (Chen et al., 2011; Teutschbein
and Seibert, 2012; Teutschbein et al., 2011);
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– the added value of bias correction methods is ques-
tionable in a complex modeling chain with other major
sources of uncertainty (Muerth et al., 2013);

– impacts of bias correction methods and related uncer-
tainties are not communicated to end-users (Ehret et
al., 2012);

– effects of unsystematic (random) model errors could
by mistake be blamed on systematic errors and, there-
fore, accidentally be modified by correction methods
(Maraun et al., 2010).

For current climate conditions, Teutschbein and Seib-
ert (2012) demonstrated that most correction approaches ap-
plied are able to improve raw RCM data to some extent, but
that there are considerable differences in the quality of ad-
justed RCM temperature and precipitation. In this paper, we
showed how DSST can be used to analyze the transferability
of correction approaches to different climate conditions. Us-
ing DSST allows identifying clear differences in reproducing
conditions similar to and conditions different from those that
the correction approaches were calibrated to. These differ-
ences are an indicator for improper algorithm and parameter
transfers.

By using the coldest/driest and warmest/wettest years for
separation of the periods, we certainly pushed the correc-
tion methods. This was done on purpose, because we believe
that reliable simulations of the more extreme years are es-
sential for certain impact assessments, such as drought and
flood modeling under future climate conditions. To test the
transferability of correction approaches on conditions of a
less extreme climate-change signal, it is also possible to use
more moderate extrapolations by applying, for instance, the
generalized split-sample test (GSST) as proposed by Coron
et al. (2012).

We would like to emphasize that DSST is a rather sim-
ple approach to demonstrate algorithm transferability to dif-
ferent conditions. Another feasible approach to identify bias
non-stationarities is to use a pseudo-reality, which is based
on using one RCM simulation as reference and perform-
ing an inter-model cross-validation with other RCM simu-
lations (Maraun, 2012; Räisänen and Räty, 2012). Such a
pseudo-reality can identify potential issues with bias correc-
tion methods, but it is a rather complex exercise, expensive
in terms of computing power and does not necessarily iden-
tify where correction approaches might be successful when
compared to real observations (Maraun, 2012).

6 Conclusions

The choice between bias correction algorithms plays a large
role in assessing hydrological climate change impacts. For
current conditions, we could easily limit this choice to the
one that performed best. For simulations of future climate

this is more difficult and the fundamental question is how
transferable the different methods are. The differential split-
sample test suggested here is a simple and yet powerful
tool to evaluate this. It is possible to create two subsets of
data with considerably different climate conditions and non-
stationary model errors based on time series of observations
and RCM simulations of current climate (no future simula-
tions necessary). Thus, the transferability of different bias
correction methods can be tested under non-stationary con-
ditions.

The delta-change approach and the linear transforma-
tion are the two most common transfer methods and have
been widely used (Gellens and Roulin, 1998; Graham et al.,
2007a, b; Lettenmaier et al., 1999; Middelkoop et al., 2001;
Moore et al., 2008; Shabalova et al., 2003), because they are
straightforward and easy to implement due to their simplic-
ity. Yet, our validation of these correction approaches with
the differential split-sample test showed that these two meth-
ods result in large deviations and are the least reliable un-
der changed conditions. These findings remain to be con-
firmed for other catchments and other geographic regions,
but based on the findings in this study we question the use of
the delta-change method or the linear transformation to cor-
rect RCM scenarios of future conditions for climate change
impact studies. Instead, we would like to recommend distri-
bution mapping as the best-performing correction method,
because it was best able to cope with non-stationary condi-
tions. However, regardless of the used method, our results
demonstrate that the – in most climate impact studies un-
avoidable – use of bias correction approaches for conditions
different from those being used for their parameterization,
might result in significant uncertainties. In this study RCMs
driven by ERA40 reanalysis data were evaluated and uncer-
tainties can be expected to be even larger when using GCM
driven RCMs.

Acknowledgements.This study was funded by FORMAS, the
Swedish Research Council for Environment, Agricultural Sciences
and Spatial Planning (Grant no. 2007-1433). The authors thank
the Swedish Meteorological and Hydrological Institute (SMHI) for
providing observed meteorological data. The ENSEMBLES data
used in this work was funded by the EU FP6 Integrated Project
ENSEMBLES (Contract no. 505539) whose support is gratefully
acknowledged. We also thank Tracy Ewen for comments on an
earlier version of this manuscript.

Edited by: H. H. G. Savenije

Hydrol. Earth Syst. Sci., 17, 5061–5077, 2013 www.hydrol-earth-syst-sci.net/17/5061/2013/



C. Teutschbein and J. Seibert: Bias correction of regional climate model (RCM) simulations 5075

References

Allen, M., Frame, D., Kettleborough, J., and Stainforth, D.: Model
error in weather and climate forecasting, in: Predictability of
Weather and Climate, edited by: Palmer, T. and Hagedorn, R.,
391–427, Cambridge University Press, 2006.

Bennett, J. C., Ling, F. L. N., Graham, B., Grose, M. R., Corney,
S. P., White, C. J., Holz, G. K., Post, D. A., Gaynor, S. M., and
Bindoff, N. L.: Climate Futures for Tasmania: Water and Catch-
ments., Technical Report, Antarctic Climate & Ecosystems Co-
operative Research Centre, Hobart, Tasmania, 2010.

Block, P. J., Souza Filho, F. A., Sun, L., and Kwon, H. H.: A
Streamflow Forecasting Framework using Multiple Climate and
Hydrological Models1, J. Am. Water Resour. As., 45, 828–843,
doi:10.1111/j.1752-1688.2009.00327.x, 2009.

Boe, J., Terray, L., Habets, F., and Martin, E.: Statistical
and dynamical downscaling of the Seine basin climate for
hydro-meteorological studies, Int. J. Climatol., 27, 1643–1655,
doi:10.1002/joc.1602, 2007.

Chang, J. C. and Hanna, S. R.: Air quality model perfor-
mance evaluation, Meteorol. Atmos. Phys., 87, 167–196,
doi:10.1007/s00703-003-0070-7, 2004.

Chen, J., Brissette, F. P., and Leconte, R.: Uncertainty of
downscaling method in quantifying the impact of cli-
mate change on hydrology, J. Hydrol., 401, 190–202,
doi:10.1016/j.jhydrol.2011.02.020, 2011.

Chen, J., Brissette, F. P., Chaumont, D., and Braun, M.: Per-
formance and uncertainty evaluation of empirical downscaling
methods in quantifying the climate change impacts on hydrology
over two North American river basins, J. Hydrol., 479, 200–214,
doi:10.1016/j.jhydrol.2012.11.062, 2013.

Christensen, J. H., Boberg, F., Christensen, O. B., and Lucas-
Picher, P.: On the need for bias correction of regional climate
change projections of temperature and precipitation, Geophys.
Res. Lett., 35, L20709, doi:10.1029/2008GL035694, 2008.

Christensen, O. B., Gaertner, M. A., Prego, J. A., and Polcher, J.:
Internal variability of regional climate models, Clim. Dyn., 17,
875–887, doi:10.1007/s003820100154, 2001.

Christensen, O. B., Goodess, C. M., Harris, I., and Watkiss,
P.: European and Global Climate Change Projections: Discus-
sion of Climate Change Model Outputs, Scenarios and Uncer-
tainty in the EC RTD ClimateCost Project, in The ClimateCost
Project. Final Report. Volume 1: Europe, edited by P. Watkiss,
Published by the Stockholm Environment Institute, Sweden,
available at:http://www.climatecost.cc/images/Policy_brief_1_
Projections_05_lowres.pdf(last access: 5 March 2013), 2011.

Coron, L., Andréassian, V., Perrin, C., Lerat, J., Vaze, J.,
Bourqui, M., and Hendrickx, F.: Crash testing hydrological
models in contrasted climate conditions: An experiment on
216 Australian catchments, Water Resour. Res., 48, W05552,
doi:10.1029/2011WR011721, 2012.

Déqué, M., Rowell, D. P., Lüthi, D., Giorgi, F., Christensen, J. H.,
Rockel, B., Jacob, D., Kjellström, E., De Castro, M., and van den
Hurk, B.: An intercomparison of regional climate simulations
for Europe: assessing uncertainties in model projections, Clim.
Change, 81, 53–70, doi:10.1007/s10584-006-9228-x, 2007.

Deser, C., Phillips, A., Bourdette, V., and Teng, H.: Uncertainty in
climate change projections: the role of internal variability, Clim.
Dyn., 38, 527–546, doi:10.1007/s00382-010-0977-x, 2012.

Dosio, A., Paruolo, P., and Rojas, R.: Bias correction of the EN-
SEMBLES high resolution climate change projections for use by
impact models: Analysis of the climate change signal, J. Geo-
phys. Res., 117, D17110, doi:10.1029/2012JD017968, 2012.

Eden, J. M., Widmann, M., Grawe, D., and Rast, S.: Skill, Correc-
tion, and Downscaling of GCM-Simulated Precipitation, J. Cli-
mate, 25, 3970–3984, doi:10.1175/JCLI-D-11-00254.1, 2012.

Ehret, U., Zehe, E., Wulfmeyer, V., Warrach-Sagi, K., and Liebert,
J.: HESS Opinions “Should we apply bias correction to global
and regional climate model data?,” Hydrol. Earth Syst. Sci., 16,
3391–3404, doi:10.5194/hess-16-3391-2012, 2012.

Fowler, H. J., Blenkinsop, S., and Tebaldi, C.: Linking climate
change modelling to impacts studies: recent advances in down-
scaling techniques for hydrological modelling, Int. J. Climatol.,
27, 1547–1578, doi:10.1002/joc.1556, 2007.

Gellens, D. and Roulin, E.: Streamflow response of Belgian catch-
ments to IPCC climate change scenarios, J. Hydrol., 210, 242–
258, doi:10.1016/S0022-1694(98)00192-9, 1998.

Giorgi, F.: Regional climate modeling: Status and perspectives, J.
Phys. IV, 139, 101–118, doi:10.1051/jp4:2006139008, 2006.

Glahn, H. R. and Lowry, D. A.: The Use of Model Out-
put Statistics (MOS) in Objective Weather Forecasting,
J. Appl. Meteorol., 11, 1203–1211, doi:10.1175/1520-
0450(1972)011<1203:TUOMOS>2.0.CO;2, 1972.

Graham, L., Andréasson, J., and Carlsson, B.: Assessing climate
change impacts on hydrology from an ensemble of regional
climate models, model scales and linking methods – a case
study on the Lule River basin, Clim. Change, 81, 293–307,
doi:10.1007/s10584-006-9215-2, 2007a.

Graham, L., Hagemann, S., Jaun, S., and Beniston, M.: On inter-
preting hydrological change from regional climate models, Clim.
Change, 81, 97–122, doi:10.1007/s10584-006-9217-0, 2007b.

Grotch, S. L. and MacCracken, M. C.: The use of gen-
eral circulation models to predict regional climatic
change, J. Climate, 4, 286–303, doi:10.1175/1520-
0442(1991)004<0286:TUOGCM>2.0.CO;2, 1991.

Gudmundsson, L., Bremnes, J. B., Haugen, J. E., and Engen-
Skaugen, T.: Technical Note: Downscaling RCM precipitation
to the station scale using statistical transformations - a com-
parison of methods, Hydrol. Earth Syst. Sci., 16, 3383–3390,
doi:10.5194/hess-16-3383-2012, 2012.

Hagemann, S., Chen, C., Haerter, J. O., Heinke, J., Gerten, D.,
and Piani, C.: Impact of a Statistical Bias Correction on the
Projected Hydrological Changes Obtained from Three GCMs
and Two Hydrology Models, J. Hydrometeorol., 12, 556–578,
doi:10.1175/2011JHM1336.1, 2011.

Hanna, S. R.: Uncertainties in air quality model predictions,
Bound.-Lay. Meteorol., 62„ 3–20, doi:10.1007/BF00705545,
1993.

Hawkins, E. and Sutton, R.: The potential to narrow uncertainty
in projections of regional precipitation change., Clim. Dyn., 37,
407–418, doi:10.1007/s00382-010-0810-6, 2011.

Ines, A. V. M. and Hansen, J. W.: Bias correction of daily GCM
rainfall for crop simulation studies, Agr. Forest Meteorol., 138,
44–53, doi:10.1016/j.agrformet.2006.03.009, 2006.

IPCC: Climate Change 2007: The Physical Science Basis, edited
by: Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M.,
Averyt, K. B., Tignor, M., and Miller, H. L., Cambridge Univer-
sity Press, Cambridge, UK, and New York, USA, 2007.

www.hydrol-earth-syst-sci.net/17/5061/2013/ Hydrol. Earth Syst. Sci., 17, 5061–5077, 2013

http://dx.doi.org/10.1111/j.1752-1688.2009.00327.x
http://dx.doi.org/10.1002/joc.1602
http://dx.doi.org/10.1007/s00703-003-0070-7
http://dx.doi.org/10.1016/j.jhydrol.2011.02.020
http://dx.doi.org/10.1016/j.jhydrol.2012.11.062
http://dx.doi.org/10.1029/2008GL035694
http://dx.doi.org/10.1007/s003820100154
http://www.climatecost.cc/images/Policy_ brief_1_Projections_ 05_lowres.pdf
http://www.climatecost.cc/images/Policy_ brief_1_Projections_ 05_lowres.pdf
http://dx.doi.org/10.1029/2011WR011721
http://dx.doi.org/10.1007/s10584-006-9228-x
http://dx.doi.org/10.1007/s00382-010-0977-x
http://dx.doi.org/10.1029/2012JD017968
http://dx.doi.org/10.1175/JCLI-D-11-00254.1
http://dx.doi.org/10.5194/hess-16-3391-2012
http://dx.doi.org/10.1002/joc.1556
http://dx.doi.org/10.1016/S0022-1694(98)00192-9
http://dx.doi.org/10.1051/jp4:2006139008
http://dx.doi.org/10.1175/1520-0450(1972)011%3C1203:TUOMOS%3E2.0.CO;2
http://dx.doi.org/10.1175/1520-0450(1972)011%3C1203:TUOMOS%3E2.0.CO;2
http://dx.doi.org/10.1007/s10584-006-9215-2
http://dx.doi.org/10.1007/s10584-006-9217-0
http://dx.doi.org/10.1175/1520-0442(1991)004%3C0286:TUOGCM%3E2.0.CO;2
http://dx.doi.org/10.1175/1520-0442(1991)004%3C0286:TUOGCM%3E2.0.CO;2
http://dx.doi.org/10.5194/hess-16-3383-2012
http://dx.doi.org/10.1175/2011JHM1336.1
http://dx.doi.org/10.1007/BF00705545
http://dx.doi.org/10.1007/s00382-010-0810-6
http://dx.doi.org/10.1016/j.agrformet.2006.03.009


5076 C. Teutschbein and J. Seibert: Bias correction of regional climate model (RCM) simulations

Jacob, D., Bärring, L., Christensen, O., Christensen, J., de Castro,
M., Déqué, M., Giorgi, F., Hagemann, S., Hirschi, M., Jones, R.,
Kjellström, E., Lenderink, G., Rockel, B., Sánchez, E., Schär,
C., Seneviratne, S., Somot, S., van Ulden, A., and van den Hurk,
B.: An inter-comparison of regional climate models for Europe:
model performance in present-day climate, Clim. Change, 81,
31–52, doi:10.1007/s10584-006-9213-4, 2007.

Johansson, B.: Estimation of areal precipitation for hydrological
modelling in Sweden, Dissertation, Earth Science Centre, Göte-
borg University, Report A76. Göteborg, Sweden., 2002.

Johnson, F. and Sharma, A.: Accounting for interannual vari-
ability: A comparison of options for water resources climate
change impact assessments, Water Resour. Res., 47, W04508,
doi:10.1029/2010WR009272, 2011.

Jung, T.: Systematic errors of the atmospheric circulation in the
ECMWF forecasting system, Q. J. Roy. Meteorol. Soc., 131,
1045–1073, doi:10.1256/qj.04.93, 2005.

Klein, W. H. and Glahn, H. R.: Forecasting Local
Weather by Means of Model Output Statistics, B.
Am. Meteorol. Soc., 55, 1217–1227, doi:10.1175/1520-
0477(1974)055<1217:FLWBMO>2.0.CO;2, 1974.

Klemeš, V.: Operational testing of hydrological simulation
models/Vérification, en conditions réelles, des modèles
de simulation hydrologique, Hydrolog. Sci. J., 31, 13–24,
doi:10.1080/02626668609491024, 1986.

Leander, R. and Buishand, T. A.: Resampling of regional climate
model output for the simulation of extreme river flows, J. Hy-
drol., 332, 487–496, doi:10.1016/j.jhydrol.2006.08.006, 2007.

Leander, R., Buishand, T. A., van den Hurk, B. J. J. M., and de Wit,
M. J. M.: Estimated changes in flood quantiles of the river Meuse
from resampling of regional climate model output, J. Hydrol.,
351, 331–343, doi:10.1016/j.jhydrol.2007.12.020, 2008.

Lenderink, G., Buishand, A., and van Deursen, W.: Estimates of
future discharges of the river Rhine using two scenario method-
ologies: direct versus delta approach, Hydrol. Earth Syst. Sci.,
11, 1145–1159, doi:10.5194/hess-11-1145-2007, 2007.

Lettenmaier, D. P., Wood, A. W., Palmer, R. N., Wood, E. F., and
Stakhiv, E. Z.: Water Resources Implications of Global Warm-
ing: A U.S. Regional Perspective, Clim. Change, 43, 537–579,
doi:10.1023/A:1005448007910, 1999.

Li, C. Z., Zhang, L., Wang, H., Zhang, Y. Q., Yu, F. L., and Yan, D.
H.: The transferability of hydrological models under nonstation-
ary climatic conditions, Hydrol. Earth Syst. Sci., 16, 1239–1254,
doi:10.5194/hess-16-1239-2012, 2012.

Liepert, B. G. and Previdi, M.: Inter-model variability and biases of
the global water cycle in CMIP3 coupled climate models, Env-
iron. Res. Lett., 7, 014006, doi:10.1088/1748-9326/7/1/014006,
2012.

Majda, A. J. and Gershgorin, B.: Quantifying uncertainty
in climate change science through empirical information
theory, Proc. Natl. Acad. Sci. USA, 107, 14958–14963,
doi:10.1073/pnas.1007009107, 2010.

Maraun, D.: Nonstationarities of regional climate model biases in
European seasonal mean temperature and precipitation sums,
Geophys. Res. Lett., 39, L06706, doi:10.1029/2012GL051210,
2012.

Maraun, D., Wetterhall, F., Ireson, A. M., Chandler, R. E., Kendon,
E. J., Widmann, M., Brienen, S., Rust, H. W., Sauter, T., The-
meßl, M., Venema, V. K. C., Chun, K. P., Goodess, C. M.,

Jones, R. G., Onof, C., Vrac, M., and Thiele-Eich, I.: Precipita-
tion downscaling under climate change: Recent developments to
bridge the gap between dynamical models and the end user, Rev.
Geophys., 48, RG3003, doi:10.1029/2009RG000314, 2010.

Ménard, R.: Bias Estimation, in: Data Assimilation, edited
by: Lahoz, W., Khattatov, B., and Menard, R., 113–135,
Springer Berlin Heidelberg, available at:http://dx.doi.org/10.
1007/978-3-540-74703-1_6, 2010.

Middelkoop, H., Daamen, K., Gellens, D., Grabs, W., Kwadijk, J.
C. J., Lang, H., Parmet, B. W. A. H., Schädler, B., Schulla, J., and
Wilke, K.: Impact of Climate Change on Hydrological Regimes
and Water Resources Management in the Rhine Basin, Clim.
Change, 4, 105–128, doi:10.1023/A:1010784727448, 2001.

Moore, K., Pierson, D., Pettersson, K., Schneiderman, E., and
Samuelsson, P.: Effects of warmer world scenarios on hydro-
logic inputs to Lake Mälaren, Sweden and implications for nu-
trient loads, Hydrobiologia, 599, 191–199, doi:10.1007/s10750-
007-9197-8, 2008.

Mpelasoka, F. S. and Chiew, F. H. .: Influence of rainfall scenario
construction methods on runoff projections, J. Hydrometeorol.,
10, 1168–1183, doi:10.1175/2009JHM1045.1, 2009.

Muerth, M. J., Gauvin St-Denis, B., Ricard, S., VelÃ¡zquez, J. A.,
Schmid, J., Minville, M., Caya, D., Chaumont, D., Ludwig, R.,
and Turcotte, R.: On the need for bias correction in regional cli-
mate scenarios to assess climate change impacts on river runoff,
Hydrol. Earth Syst. Sci., 17, 1189–1204, doi:10.5194/hess-17-
1189-2013, 2013.

Palmer, T. N., Shutts, G. J., Hagedorn, R., Doblas-Reyes, F. J.,
Jung, T., and Leutbecher, M.: Representing Model Uncertainty
In Weather And Climate Prediction, Annu. Rev. Earth Pl. Sc., 33,
163–C–5, doi:10.1146/annurev.earth.33.092203.122552, 2005.

Piani, C., Haerter, J. O., and Coppola, E.: Statistical bias correction
for daily precipitation in regional climate models over Europe,
Theor. Appl. Climatol., 99, 187–192, doi:10.1007/s00704-009-
0134-9, 2010.

Räisänen, J. and Räty, O.: Projections of daily mean tempera-
ture variability in the future: cross-validation tests with EN-
SEMBLES regional climate simulations, Clim. Dyn., 1–16,
doi:10.1007/s00382-012-1515-9, 2012.

Rasmussen, J., Sonnenborg, T. O., Stisen, S., Seaby, L. P., Chris-
tensen, B. S. B., and Hinsby, K.: Climate change effects on
irrigation demands and minimum stream discharge: impact of
bias-correction method, Hydrol. Earth Syst. Sci., 16, 4675–4691,
doi:10.5194/hess-16-4675-2012, 2012.

Rojas, R., Feyen, L., Dosio, A., and Bavera, D.: Improving pan-
european hydrological simulation of extreme events through sta-
tistical bias correction of RCM-driven climate simulations, Hy-
drol. Earth Syst. Sci., 15, 2599–2620, doi:10.5194/hess-15-2599-
2011, 2011.

Salathé Jr., E. P.: Comparison of various precipitation downscaling
methods for the simulation of streamflow in a rainshadow river
basin, Int. J. Climatol., 23, 887–901, doi:10.1002/joc.922, 2003.

Schmidli, J., Frei, C., and Vidale, P. L.: Downscaling from
GCM precipitation: a benchmark for dynamical and statis-
tical downscaling methods, Int. J. Climatol., 26, 679–689,
doi:10.1002/joc.1287, 2006.

Seiller, G., Anctil, F., and Perrin, C.: Multimodel evalua-
tion of twenty lumped hydrological models under contrasted

Hydrol. Earth Syst. Sci., 17, 5061–5077, 2013 www.hydrol-earth-syst-sci.net/17/5061/2013/

http://dx.doi.org/10.1007/s10584-006-9213-4
http://dx.doi.org/10.1029/2010WR009272
http://dx.doi.org/10.1256/qj.04.93
http://dx.doi.org/10.1175/1520-0477(1974)055%3C1217:FLWBMO%3E2.0.CO;2
http://dx.doi.org/10.1175/1520-0477(1974)055%3C1217:FLWBMO%3E2.0.CO;2
http://dx.doi.org/10.1080/02626668609491024
http://dx.doi.org/10.1016/j.jhydrol.2006.08.006
http://dx.doi.org/10.1016/j.jhydrol.2007.12.020
http://dx.doi.org/10.5194/hess-11-1145-2007
http://dx.doi.org/10.1023/A:1005448007910
http://dx.doi.org/10.5194/hess-16-1239-2012
http://dx.doi.org/10.1088/1748-9326/7/1/014006
http://dx.doi.org/10.1073/pnas.1007009107
http://dx.doi.org/10.1029/2012GL051210
http://dx.doi.org/10.1029/2009RG000314
http://dx.doi.org/10.1007/978-3-540-74703-1_6
http://dx.doi.org/10.1007/978-3-540-74703-1_6
http://dx.doi.org/10.1023/A:1010784727448
http://dx.doi.org/10.1007/s10750-007-9197-8
http://dx.doi.org/10.1007/s10750-007-9197-8
http://dx.doi.org/10.1175/2009JHM1045.1
http://dx.doi.org/10.5194/hess-17-1189-2013
http://dx.doi.org/10.5194/hess-17-1189-2013
http://dx.doi.org/10.1146/annurev.earth.33.092203.122552
http://dx.doi.org/10.1007/s00704-009-0134-9
http://dx.doi.org/10.1007/s00704-009-0134-9
http://dx.doi.org/10.1007/s00382-012-1515-9
http://dx.doi.org/10.5194/hess-16-4675-2012
http://dx.doi.org/10.5194/hess-15-2599-2011
http://dx.doi.org/10.5194/hess-15-2599-2011
http://dx.doi.org/10.1002/joc.922
http://dx.doi.org/10.1002/joc.1287


C. Teutschbein and J. Seibert: Bias correction of regional climate model (RCM) simulations 5077

climate conditions, Hydrol. Earth Syst. Sci., 16, 1171–1189,
doi:10.5194/hess-16-1171-2012, 2012.

Sennikovs, J. and Bethers, U.: Statistical downscaling method of
regional climate model results for hydrological modelling, in:
18th World IMACS Congress and MODSIM09 International
Congress on Modelling and Simulation, edited by: Anderssen,
R. S., Braddock, R. D., and Newham, L. T. H., 3962–3968,
Modelling and Simulation Society of Australia and New Zealand
and International Association for Mathematics and Computers in
Simulation, Cairns, Australia, available at:http://www.mssanz.
org.au/modsim09/I13/sennikovs.pdf(last access: 21 December
2012), 2009.

Shabalova, M. V., van Deursen, W. P., and Buishand, T. A.: As-
sessing future discharge of the river Rhine using regional cli-
mate model integrations and a hydrological model, Clim. Res.,
23, 233–246, doi:10.3354/cr023233, 2003.

Sun, F., Roderick, M. L., Lim, W. H., and Farquhar, G. D.: Hy-
droclimatic projections for the Murray-Darling Basin based on
an ensemble derived from Intergovernmental Panel on Climate
Change AR4 climate models, Water Resour. Res., 47, W00G02,
doi:10.1029/2010WR009829, 2011.

Terink, W., Hurkmans, R. T. W. L., Torfs, P. J. J. F., and Uijlen-
hoet, R.: Bias correction of temperature and precipitation data
for regional climate model application to the Rhine basin, Hy-
drol. Earth Syst. Sci. Discuss., 6, 5377–5413, doi:10.5194/hessd-
6-5377-2009, 2009.

Terink, W., Hurkmans, R. T. W. L., Torfs, P. J. J. F., and Uijlenhoet,
R.: Evaluation of a bias correction method applied to downscaled
precipitation and temperature reanalysis data for the Rhine basin,
Hydrol. Earth Syst. Sci., 14, 687–703, doi:10.5194/hess-14-687-
2010, 2010.

Teutschbein, C. and Seibert, J.: Regional Climate Models for Hy-
drological Impact Studies at the Catchment Scale: A Review
of Recent Modeling Strategies, Geogr. Comp., 4, 834–860,
doi:10.1111/j.1749-8198.2010.00357.x, 2010.

Teutschbein, C. and Seibert, J.: Bias correction of regional climate
model simulations for hydrological climate-change impact stud-
ies: Review and evaluation of different methods, J. Hydrol., 456–
457, 12–29, doi:10.1016/j.jhydrol.2012.05.052, 2012.

Teutschbein, C., Wetterhall, F., and Seibert, J.: Evaluation of dif-
ferent downscaling techniques for hydrological climate-change
impact studies at the catchment scale, Clim. Dynam., 37, 2087–
2105, doi:10.1007/s00382-010-0979-8, 2011.

Themeßl, M. J., Gobiet, A., and Leuprecht, A.: Empirical sta-
tistical downscaling and error correction of daily precipitation
from regional climate models, Int. J. Climatol., 31, 1530–1544,
doi:10.1002/joc.2168, 2011.

Tramblay, Y., Ruelland, D., Somot, S., Bouaicha, R., and Servat,
E.: High-resolution Med-CORDEX regional climate model sim-
ulations for hydrological impact studies: a first evaluation of the
ALADIN-Climate model in Morocco, Hydrol. Earth Syst. Sci.,
17, 3721–3739, doi:10.5194/hess-17-3721-2013, 2013.

Van der Linden, P. and Mitchell, J. F. B.: ENSEMBLES: Climate
Change and its Impacts: Summary of research and results from
the ENSEMBLES project, Met Office Hadley Centre, FitzRoy
Road, Exeter EX1 3PB, UK, available at:http://ensembles-eu.
metoffice.com/docs/Ensembles_final_report_Nov09.pdf(last ac-
cess: 21 December 2012), 2009.

Vannitsem, S.: Dynamical Properties of MOS Forecasts: Analysis
of the ECMWF Operational Forecasting System, Weather Fore-
cast., 23, 1032–1043, doi:10.1175/2008WAF2222126.1, 2008.

Varis, O., Kajander, T., and Lemmelä, R.: Climate and
water: from climate models to water resources man-
agement and vice versa, Clim. Change, 66, 321–344,
doi:10.1023/B:CLIM.0000044622.42657.d4, 2004.

Von Storch, H.: On the Use of “Inflation” in Statistical Downscal-
ing, J. Climate, 12, 3505–3506, 1999.

www.hydrol-earth-syst-sci.net/17/5061/2013/ Hydrol. Earth Syst. Sci., 17, 5061–5077, 2013

http://dx.doi.org/10.5194/hess-16-1171-2012
http://www.mssanz.org.au/modsim09/I13/sennikovs.pdf
http://www.mssanz.org.au/modsim09/I13/sennikovs.pdf
http://dx.doi.org/10.3354/cr023233
http://dx.doi.org/10.1029/2010WR009829
http://dx.doi.org/10.5194/hessd-6-5377-2009
http://dx.doi.org/10.5194/hessd-6-5377-2009
http://dx.doi.org/10.5194/hess-14-687-2010
http://dx.doi.org/10.5194/hess-14-687-2010
http://dx.doi.org/10.1111/j.1749-8198.2010.00357.x
http://dx.doi.org/10.1016/j.jhydrol.2012.05.052
http://dx.doi.org/10.1007/s00382-010-0979-8
http://dx.doi.org/10.1002/joc.2168
http://dx.doi.org/10.5194/hess-17-3721-2013
http://ensembles-eu.metoffice.com/docs/Ensembles_ final_report_Nov09.pdf
http://ensembles-eu.metoffice.com/docs/Ensembles_ final_report_Nov09.pdf
http://dx.doi.org/10.1175/2008WAF2222126.1
http://dx.doi.org/10.1023/B:CLIM.0000044622.42657.d4

