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Abstract. In hydrological climate-change impact studies, re- as the widely used delta-change approach and linear trans-
gional climate models (RCMs) are commonly used to trans-formation for RCM-based climate-change impact studies. In-
fer large-scale global climate model (GCM) data to smallerstead, we recommend using higher-skill correction methods
scales and to provide more detailed regional information.such as distribution mapping.
Due to systematic and random model errors, however, RCM
simulations often show considerable deviations from obser-
vations. This has led to the development of a number of cor-
rection approaches that rely on the assumption that RCM erl  Introduction
rors do not change over time. It is in principle not possible
to test whether this underlying assumption of error stationardn hydrological climate-change impact studies, large-scale
ity is actually fulfilled for future climate conditions. In this Climate variables for current and future conditions are gener-
study, however, we demonstrate that it is possible to evaluat@lly provided by global climate models (GCMs). To resolve
how well correction methods perform for conditions differ- Processes and features relevant to hydrology at the catch-
ent from those used for calibration with the relatively simple Mment scale, regional climate models (RCMs) are commonly
differential split-sample test. used to transfer coarse-resolution GCM data to a higher res-
For five Swedish CatchmentS, precipitation and tempera.OlUtion. Although this prOVideS more detailed regional infor-
ture simulations from 15 different RCMs driven by ERA40 mation (Fowler et al., 2007; Grotch and MacCracken, 1991;
(the 40yr reanalysis product of the European Centre forlPCC, 2007; Maraun et al., 2010; Salathé Jr., 2003) for hy-
Medium-Range Weather Forecasts (ECMWF)) were cor-drological simulations, there is still a mismatch of scales es-
rected with different commonly used bias correction meth-Pecially for meso- and small-scale watersheds that are of-
ods. We then performed differential split-sample tests by di-ten captured by only one RCM grid cell. In addition, im-
viding the data series into cold and warm respective dry and®@ct modelers are also facing a risk of improper RCM sim-
wet years. This enabled us to cross-evaluate the performanddations (Christensen et al., 2008; Teutschbein and Seibert,
of different correction procedures under systematically vary-2010; Varis et al., 2004) due to systematic (i.e., biases) and
ing climate conditions. The differential split-sample test random model errors. Mismatching scales in combination
identified major differences in the ability of the applied cor- With such errors have led to many recently developed cor-
rection methods to reduce model errors and to cope with nontection approaches (Chen et al., 2013; Johnson and Sharma,
stationary biases. More advanced correction methods per011; Maraun et al., 2010; Teutschbein and Seibert, 2012;
formed better, whereas large deviations remained for climatd hemell et al., 2011) that help impact modelers to cope with
model simulations corrected with simpler approaches. Therethe various problems linked to biased RCM output.

fore, we question the use of simple correction methods such These correction approaches can be classified according
to their degree of complexity and include simple-to-apply
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methods such as linear transformations but also more ad2.1 Distinction between model shortcomings, model
vanced methods such as distribution mapping. The correction errors and model biases

procedures usually identify possible differences between ob-

served and simulated climate variables, which provide theAllen et al. (2006) suggested differentiating between the
basis for correcting both control and scenario RCM runstermsmodel shortcomingsnodel errorsandmodel biases

with a transformation algorithm. Although the correction of ~Model shortcomingare based on the fact that some mod-
RCM climate variables can considerably improve hydrologi- €ls do not represent some parts of the climate system or are
cal simulations under current climate conditions (Chen et al.not able to resolve certain processes. Model shortcomings
2013; Teutschbein and Seibert, 2012), there is a major drawmight also originate from numerical issues causing problems
back: most methods follow the assumption of stationaritySuch as the violation of mass conservation observed in sev-
of model errors, which means that the correction algorithmeral climate models (Liepert and Previdi, 2012). These defi-
and its parameterization for current climate conditions areciencies can generally be resolved by improving the model,
assumed to also be valid for a time series of changed futurdor instance, through the introduction of new physical de-
climate conditions. Whether or not this condition is actually Scriptions or through increased spatial and temporal reso-
fulfilled for our future climate cannot be evaluated directly. lution (Allen et al., 2006). Model shortcomings can lead to
This motivated us to address this issue and to test how welmodel errors

different correction methods perform for conditions differ- Model errorscan be caused by initial and boundary con-
ent from those used for calibration. We applied the idea of aditions, parameterizations, physical and numerical formula-
differential split-sample test, originally proposed by Kleme$ tions, lacking knowledge of external factors or general model
(1986) for hydrological models, to analyze the performanceshortcomings (Deser et al., 2012; Eden et al., 2012; Jung,
of different correction methods for use with simulations un- 2005; Ménard, 2010; Palmer et al., 2005). Model errors
der changed conditions. The testing presented here was dof@&n appear asnsystematic (randongnd systematic errors

for different commonly used and rather simple correction (Ménard, 2010). Mathematically, the time-dependent model
procedures (Johnson and Sharma, 2011; Maraun et al., 2016{T0r ) is the difference between the model simulation
Teutschbein and Seibert, 2012) based on 15 RCM-simulatefst) and the best estimate of the truth)( i.e., observations
temperature and precipitation series for five mesoscale catcHEQ. 1, modified from Jung, 2005).

ments in Sweden.

We would like to emphasize that this paper was written by €t = 5t ~ ¢t @)
local-impact modelers for impact modelers. Thus, our inten-
tion was not FO compare al a\{ailable methods to deal \.Nith bi'ations in model simulations. They have their origin in
f’:\sed RCM simulations ?”d bias n(_)n-statlonarltles (this Stqufhe internal variability of climate models, i.e., in hidden
Is by no means exhaustive). We simply present one pOSSIbIﬁon—linearities and complex (random) dynamical processes
approach to analyze correction mgthods that are frequentl Allen etal., 2006; Deser et al., 2012; Majda and Gershgorin,
useq.by Impact modelers — especially on S’?‘a“er scales. | 010; Ménard, 2010). This internal variability is associated
addl'tlon, we outline the most common terminology relatedwith amodel’'s degree of freedom to develop its own dynamic
to climate models angl biases as some of these terms are Nfedback mechanisms (Christensen et al., 2001). For shorter
used consistently by impact modelers. (decadal) timescales, these random errors (internal variabil-

ity) are the dominant sources of uncertainty in model simu-
2 Terminology lations (Hawkins and Sutton, 2011).

Systematic model errgralso commonly termechodel bi-

The termsclimate model biasind bias correctionare fre-  asesproduce predictably inaccurate (i.e., biased) model sim-
guently used in climate change and impact research. Howulations. They are defined as systematic differences between
ever, these terms are not always used consistently in the litmodel simulationss¢) and observations{), which is for a
erature and in many studies it is not clear whether they areertain diagnostid given by Eq. (2) (Jung, 2005), whedee
actually dealing with model biases or rather model errors,stands for the estimated systematic error of the diagnastic (
model shortcomings or other uncertainties. For clarificationwith the hat ind indicating that this is an estimate of the true
we, therefore, briefly summarize the most commonly usedvalue. The diagnostié can be the mean value, but can also
terminology. address other aspects of the model error.

Unsystematic (random) model errorsause random vari-

dse=d(st) — d(op) )

Systematic model errors can originate either from inade-
quately constrained parameters or from model structures that
are unable to describe the physical process of interest (Allen
etal., 2006). These systematic model errorsnodel biases
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are generally the most dominant source of uncertainty for 20
longer (centennial) timescales (Hawkins and Sutton, 2011). 15
2.2 Climate model bias: definition and detection § e, 104
o l
=5 54
Model biasis defined as a systematic distortion of statistical Eg ;
findings from the expected value. According to this defini- € § 0] S
tion, climate model biasesescribesystematic climate model 2 § 54°
errors (see definition above) only. It should, however, be = 104
noted that the terrbiasin the context of climate change im- .
-15 T T T T T

pact studies is often misleadingly used to describe model er-
rors in general (i.e., a combination of both systematic and
random error).

Biases in climate model simulations are commonly de- 150

tected by validation (i.e., comparison) with observations ] Observations
(Eq. 2), where the observations are considered to be “true” = 120 'F;‘gmdé‘:s'e?b“l"em;i':r‘:°“5
and unbiased (Jung, 2005; Ménard, 2010). Jung (2005) high-= £ ]
lights the meany{) as one of the simplest and most widely ‘g s 90
used diagnostics to detect climate model biases, so tha= % ]
Eq. (2) can be modified as follows: g § 60-:
o 1
fise= fi(s0) — 1o, (3) T 304
where/isg is the estimatedneansystematic error over the ol
time period. One should be aware tliaz can be zero (i.e., J FMAMJI J A S OND

detectmg_ no SyStemat'C error) dug to error_ cancelation al'Fig. 1.Monthly mean temperature (top) and total monthly precipita-
though simulationssf) and observations{) might be char- o (hottom) for the period 1961-2000 as simulated by 15 individ-
acterized by different variability or distributions. This em- ya| ERA40-driven RCMs (gray dashed lines) for the Vattholmadn
phasizes the need for considering systematic errors for othatatchment in southeastern Sweden. Observations (black circles) and
diagnostics, i.e., replacing in Eq. (3) by other statistics, the RCM-ensemble medians (gray continuous line) are displayed as
amongst others the standard deviatior), (10th/90th per-  well.

centiles K10/Xg0) or probabilities ¢). The detection and

estimation of climate model biases by comparing model sim- . ) . . .
ulations to observations is, however, not solely limited to 29ré€ with observed time series (Fig. 1). This poses a prob-

Egs. (2) and (3). For example, Hanna (1993) and Chang an&?m for using these simulations as input data for hydrological
Hanna (2004) recommended to use fisetional bias (FB) impact studies. One possible solution is to use an ensemble
the geometric mean bias (MGihenormalized mean square ©f RCM simulations (Déqué et al., 2007; Giorgi, 2006) as
error (NMSB and thegeometric variancdVG). These ad- ensembles have two advantages: (1) the s_pr_ead of individ-
ditional performance measures are mentioned here to shol@ €nsemble members covers a more realistic range of un-
further possibilities of analyzing climate model biases. De-certainty and (2) the ensemble median may fit observations
pending on the focus of a climate change impact study, otheP€tter (Jacob et al., 2007), which is especially true for tem-
measures can be defined as well (Chang and Hanna, 2004j€rature simulations (Fig. 1, top). However, for precipitation
As each of these measures has advantages and disadvantaﬁ@“'at'ons even the ensemble median often deviates consid-

(for more information see Chang and Hanna, 2004), any bia§rgt_)ly _from observatiqns anq is not able to capture the vari-
analysis should always be based on multiple diagnostics. ability in the observations (Fig. 1, bottom). This shows that
it is not enough to only employ an RCM ensemble, but that

2.3 Bias correction methods additional correction procedures are needed.

Several bias correction methods have already been applied
RCM simulations are typically affected by systematic andin weather forecasting under the namedel output statis-
random model errors. Misestimated climate variables in gentics (MOS) about four decades ago (Glahn and Lowry, 1972;
eral, incorrect seasonal variations of precipitation (Chris-Klein and Glahn, 1974). In the context of correcting RCM
tensen et al., 2008; Terink et al., 2009; Teutschbein and Seibsutput, however, it is today a controversial subject (Ehret et
ert, 2010) and the simulation of too-many drizzle (i.e., low- al., 2012; Muerth et al., 2013): despite their advantageous
intensity rain) days (Ines and Hansen, 2006) are just a few exability to reduce errors in climate model output, most correc-
amples of common systematic errors (biases). In other wordgjon methods are criticized to diminish the advantages of cli-
climate variables simulated by individual RCMs often do not mate models (Ehret et al., 2012) and to not have much added
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| streams and lakes - Forested areas Open land
Wetlands Populated places

sources of uncertainty (Muerth et al., 2013).

value in a complex modeling chain when considering other ‘
Typical correction approaches aim at correcting the sys-

1 Storbacken

tematic error (bias) in RCM-simulated climate variables SWEDiMz“L Sfbomanr |
by employing a transformation algorithm and are therefore { L

calledbias correction methods he concept is based on the ?5‘

identification of possible biases between observed and simu- gf 1

lated climate variables, which is the starting point for correct-
ing both control and scenario RCM runs. It should be noted
that there is a risk of not only correcting systematic errors
(biases) but also unintentionally modifying simulations due
to unsystematic (random) model errors (Maraun et al., 2010).

2.4 Stationarity assumption of model bias

A common assumption of most bias correction methods is
stationarity, or time invariance, of the model errors. This im-
plies that the empirical relationships in the correction al-
gorithm and its parameterization for current climate con- '
ditions do not change over time and are also valid for fu- — Z= =it X e
ture conditions. This assumption is, however, likely not met R’» X |
under changing climate conditions (Ehret et al., 2012; Ma- S e

raun, 2012; Maraun et al., 2010; Vannitsem, 2008). In fact, — \ T H
Maraun (2012) was able to identify and distinguish bEtWeenFig. 2. Map showing locations of the Swedish study sites and the

different types of bias changes, which are briefly described ingpatiqly interpolated 4 knx 4 km national grid of observed precip-

Table 1. This highlights that there are potential issues whefation and temperature. Catchments: (1) Tannfors, (2) Storbécken,
correction methods are applied to adjust RCM simulations. (3) vattholmadn, (4) Brusadn and (5) Rénne A.

~N

3 Methods product of the European Centre for Medium-Range Weather
Forecasts (ECMWF)). The chosen RCMs have a resolution
3.1 Study catchments of 25 km and, thus, the area of a single grid cell clearly ex-

Th vsis in thi q ; d for fi | ceeds the size of the study catchments. We chose to average
e analysis in this study was performed for five mesosca eprecipitation and temperature values from the RCM grid cell

catchments (F!g. 2) with areas ranging from 147 to 29§,km with center coordinates closest to the center of the catchment
as this scale is relevant for local climate change impacts

(e.g., local heavy rainfall events, flooding, permafrost meltand 'ts eight neighboring grid cells.

or droughts). These catchments fall all below the standardy 3 Bias correction methods

RCM grid cell size of approximately 25 ki 25 km and are,

therefore, potentially affected by the scaling issue. The choin addition to the original (i.e., uncorrected) RCM output
sen catchments represent different typical Swedish climaticata, we applied and analyzed the following six bias correc-
conditions and land-use types (Table 2). Continuous tempertion methods (Table 4) to adjust RCM simulations: (1) linear
ature and precipitation measurements for all five catchmentgransformation, (2) local intensity scaling (LOCI), (3) power

were available for the period 1961-2000. transformation, (4) variance scaling, (5) distribution mapping
and (6) the delta-change approach. Furthermore, a precip-
3.2 Data itation threshold was used in combination with other bias

correction procedures (namely LOCI, power transformation

Daily temperature and precipitation measurements for theyn gistribution mapping), but not considered an appropriate
period 19612000 were taken from the spatially interpo-«gianq_ajone” method. More detailed descriptions of these

lated 4 kmx 4 km national grid PTHBV (Johansson, 2002) nethods can be found in Teutschbein and Seibert (2012),
provided by the Swedish Meteorological and Hydrological G ,gmundsson et al. (2012), Johnson and Sharma (2011) and
Institute (SMHI). Climate simulations were obtained from yhe 4riginal method publications provided in Table 4. All bias
the ENSEMBLES project (Van der Linden and Mitchell, .4rection methods were applied to daily values on a monthly

2009): we used daily precipitation and temperature serie$),sis as described by Teutschbein and Seibert (2012).
for the period 1961-2000 simulated by 15 RCMs (Table 3),

which were all driven by ERA40 data (the 40yr reanalysis

Hydrol. Earth Syst. Sci., 17, 50615077, 2013 www.hydrol-earth-syst-sci.net/17/5061/2013/
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Table 1. Classification and definitions of different bias changes based on Maraun (2012).

Class Type Abbreviation  Definition
1. Real (a) Sensitivity SBC Systematic model errors lead to biases in the simulated local re-
Bias Related Bias sponse to external forcings (so-called climate sensitivity). As the
Changes Changes climate system might respond different to external forcings in
the future, associated bias changes are defined as sensitivity
related bias changes (SBC).
2. Apparent (a) Variability =~ VABC As biases are often detected based on relatively short time peri-
Bias Related ods, sampling uncertainty mainly caused by internal variability
Changes Apparent can be a serious problem. Thus, associated bias changes are
Bias Changes defined as variability related apparent bias changes (VABC).
(b) Mixture MABC The overall bias might be a mixture of several underlying bi-
Related ases depending on different weather types. As the relative occur-
Apparent rence of these weather types might change in the future, associ-

Bias Changes

ated bias changes are defined as mixture related apparent bias
changes (MABC).

Table 2. Main characteristics of the five Swedish study sites including area, total annual precipitation, mean annual temperature, climate

zones and land-use properties.

Catchments Area Precipitation Temperature Climate zone Land-use [%]
[km?] [mmyr—1] [°C] (Kbppen-Geiger) Forest Openland Lakes/wetlands Residential
1. Tannfors 227 775 —0.5 Continental subarctic 32 60 8 0
towards polar tundra
2. Storbécken 150 617 2.1 Continental subarctic 79 9 2 0
3. Vattholmaan 293 633 5.2 Warm summer continental 81 7 10 2
4. Brusaan 240 632 5.7 Warm summer continental 83 12 3 2
towards maritime temperate
5. Rénne A 147 786 7.3 Maritime temperate 23 46 27 4

The above mentioned methods were chosen based on thaititions. The first step of this test includes the identification
frequent application in climate change impact studies. Al-of two periods with the climate variable of interest having
though some of these methods might seem outdated frondifferent values, for instance a warm versus a cold or a wet
a climate modeler’s perspective, they are all still commonlyversus a dry period. The model is then calibrated on the pe-
used by impact modelers especially at smaller scales, partlyiod with one condition and validated on the period with the
because they are relatively simple to apply. other condition, which allows analyzing the model’s ability
to perform under shifting conditions. SST can automatically
transform into DSST, if the two segments by nature show
substantial differences in their conditions (Klemes, 1986).

To test how well bias correction methods work for condi-  To test the ability of different correction procedures to reli-
tions different from those that they were calibrated to, we ably work for changed climate conditions, we applied DSST
employed an approach that is based on one of the opeproposed by Klemes (1986) that was originally intended for
ational testing methods presented by Klemes (1986). Kle-hydrological models. Both SST and DSST are seldom used
me$ (1986) presented two methods of interest for systematito evaluate bias correction methods. We are aware of only a
testing of hydrological model transposability: split-sample few other studies using such a test: Bennett et al. (2010) and
testing (SST) for stationary conditions adifferential split- Terink et al. (2010) evaluated bias correction methods using
sample testing (DSST) for non-stationary conditions. SSTSST with two different time periods for which observations
implies the splitting of an available data record into two were available. A major limitation of this approach is that the
(preferably equally sized) segments in order to use one as caperiods should be long enough to represent natural climate
ibration and one as validation period. DSST however should yariability satisfactorily (Bennett et al., 2010). Furthermore,
according to Kleme$ (1986), be used under changing conunless the two periods are different in their conditions, the

3.4 Testing the stationarity assumption

www.hydrol-earth-syst-sci.net/17/5061/2013/ Hydrol. Earth Syst. Sci., 17, 506077, 2013
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Table 3. ERA40-driven RCM experiments (1961-2000) with a res- were not consecutive and the two subsets consisted of dif-
olution of 25 km from the ENSEMBLES EU project used in this ferent years for the evaluation of precipitation (Fig. 3b) and

study.

temperature-bias correction methods (Fig. 3c). Note that the
procedure ensured that the two subsets included the same

No. Institute  Model years for each RCM simulation and the observations.

1 c4 RCA3 To fully apply DSST, we performed a twofold cross-
2  CHMI Aladin validation (Fig. 3b and c). First, all correction methods were
3 DMI HIRHAM calibrated based on the first subset of years and then evalu-
4 EC GEMLAM ated for the second subset of years (case 1). In addition, the
5 ETHZ CLM two periods were switched and the correction methods were
6 HC HadRM3QO0 calibrated based on the second subset and validated using
7 HC HadRM3Q3 the first subset (case 2). This way, DSST allowed the evalua-
8 HC HadRM3Q16 tion of bias correction methods under challenging conditions,
9 ICTP RegCM namely considerably varying climate conditions for calibra-

10 KNMI RACMO tion and validation (Coron et al., 2012)

11 METNO HIRHAM " :

15 gl'j:? EERhéhOA 3.5 Evaluation of bias correction methods

12 3'\C/IE\IA SSSMES Different diagnostics (Table 5) were used to detect and esti-

mate model errors in uncorrected RCM simulations accord-
ing to Eq. (2) for both the calibration and validation period
of temperature as well as precipitation. Then, the same cal-

methods are not evaluated for use under changed condition§ulations were done to analyze the performance of each bias
This issue motivated us to rather use DSST that is better ablg0ITection method. This implies that we (1) studied whether
to evaluate performance under changing climate conditiondnodel errors were still present for the calibration data, (2) es-
(Li et al., 2012; Seiller et al., 2012; Tramblay et al., 2013). timated the amount of model errors present for the validation

The available 40 yr period 1961-2000 was separated int¢lat@ and (3) assessed the model error growth, i.e., the abso-
two 20 yr subsets with different climate conditions, one rep_Iute difference between model errors in validation and cali-
resenting current climate and the other one future climatePration data. The model error growth measure allowed study-
Our available 40yr period was not long enough to show!"9 the transferability of a bias correction method to different
a considerable trend in precipitation or temperature datdlimatic conditions.

(Fig. 3a), so we instead constructed the two subsets for each AS the above diagnostics were applied to the entire data
catchment as follows. series of a subset, they give no information about seasonal

differences. Thus, we additionally included an analysis of
1. All years were sorted ascending according to their an-the four seasons: winter (DJF), spring (MAM), summer (JJA)
nual amount of observed precipitation (Fig. 3b). and autumn (SON).

2. The first 20yr of the sorted data (i.e., the driest
years) were included in the first subset and the las## Results

20yr (i.e., wettest years) in the second subset for the ) _ )
precipitation-bias correction assessment. 4.1 DSST-induced climate change signal

3. Each RCM-simulated precipitation time series was re- 1he two designed subsets used in the conducted DSST fea-

arranged to match the annual order of sorted observeddred different climate conditions and were clearly non-

precipitation data and thereafter split into two subsetsStationary. In this study, the differences between the two sub-

as above. sets were within a range of 6-30 % for precipitation (Fig. 4,

left) and 0.9—-1.7C for temperature (Fig. 4, right). These val-

The same procedure was used for constructing two subsetses are in the same order of magnitude as the climate change
for the evaluation of temperature-bias correction methodssignals for Sweden that are projected by the ENSEMBLES
Ranking all years according to their observed annual meamroject (Van der Linden and Mitchell, 2009) and the ClIi-
temperature resulted in two series, where the first consistedhateCost project (Christensen et al., 2011) to occur until the
of the 20 coldest years and the second of the 20 warmes2050s (2041-2070) under emission scenario A1B or until the
years (Fig. 3c). Again, each RCM-simulated temperature2080s (2070-2099) under mitigation scenario E1 compared
time series was rearranged in the same annual order as ttie the baseline 1961-1990 (Christensen et al., 2011; Van der
sorted observed temperature data and thereafter split into twhinden and Mitchell, 2009).
subsets. This procedure resulted in series where the years

Hydrol. Earth Syst. Sci., 17, 50615077, 2013 www.hydrol-earth-syst-sci.net/17/5061/2013/
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Table 4. Overview of methods used to correct RCM-simulated precipitation and/or temperature data, for more information on the methods
see Teutschbein and Seibert (2012) and the specified references.

Method Variable Short Description Advantages) @nd Disadvantages (-) References
Raw RCM Precipitation
Output Data Temperature o RCM-simulated time series are used directly + simplest way to use RCM data

without any bias correction

systematic model errors are ignored
— can cause substantial errors in impact studies

Precipitation Precipitation Schmidli et al. (2006)
Threshold an RCM-specific threshold is calibrated such  + wet-day frequencies are corrected
that the number of RCM-simulated days ex-
ceeding this threshold matches the number of
observed days with precipitation

— mean, standard deviation (variance) and
wet-day intensities are not adjusted

.

rarely used as a “stand-alone” method but
often combined with other correction proce-

dures
Delta-Change Precipitation Gellens and Roulin (1998)
Correction Temperature e RCM-simulated future change signals + observations are used as a basis, which mak€gaham et al. (20074, b)
(anomalies) are superimposed upon observa- it a robust method Johnson and Sharma (2011)
tional time series Lettenmaier et al. (1999)
+
o usually done with a multiplicative correction corects he Te-an : Mpelasoka and Chiew (2009)
y done plic N — standard deviation (variance), wet-day Middelkoop et al. (2001)
for precipitation and an additive correction for . R "
frequencies and intensities are not corrected Moore et al. (2008)
temperature tal. (2012,
— potential future changes in climate dynamicgﬁﬁnussen etal. ( )
and variability are not accounted for Shabalova et al. (2003)
— all events change by the same amount
Linear Precipitation Lenderink et al. (2007)

Transformation ~Temperature

adjusts RCM time series with correction val-  + corrects the mean

ues based on the relationship between long- variability of corrected data is more consistent
term monthly mean observed and RCM with original RCM data

control run values

+

standard deviation (variance), wet-day
frequencies and intensities are not corrected

precipitation is typically corrected with a

factor and temperature with an additive term . .
— all events are adjusted with the same

correction factor

Local Intensity Precipitation Schmidli et al. (2006)
Scaling (LOCI) o combines a precipitation threshold with linear ~ + corrects mean, wet-day frequencies and
scaling (both described above) intensities
+ variability of corrected data is more consistent
with original RCM data
— standard deviation (variance) is not corrected
— all events are adjusted with the same
correction factor
Power Transfor- Precipitation Leander and Buishand (2007)
mation  a precipitation threshold can be introduced a + corrects mean and standard deviation Leander et al. (2008)
priori to avoid too many drizzle days (i.e., very (variance)
low but non-zero precipitation ) )
precip ) + events are adjusted non-linearly
e is a non-linear correction in an exponential + variability of corrected data is mor nsistent
form (a x P?) that combines the correction of V"’.lt%a I'Ityo|$20c|5|cdet atals more consistel
the coefficient of variation (CV) with a linear with origina ata
scaling + adjusts wet-day frequencies and intensities
only to some extend
Variance Scal- Temperature Chenetal. (2011)
ing e combines standard linear scaling with a + corrects mean and standard deviation
scaling based on standard deviations (variance)
+ variability of corrected data is more consistent
with original RCM data
— all events are adjusted with the same addends
and correction factor
Distribution Precipitation Block et al. (2009)
Mapping Temperature o matches the distribution functions of + corrects mean, standard deviation (varianceRoe et al. (2007)
observations and RCM-simulated climate val- wet-day frequencies and intensities Déqué et al. (2007)
ues + events are adjusted non-linearly Ines and Hansen (2006)

o . Johnson and Sharma (2011)
a precipitation threshold can be introduced to

. A thres 1 roducec + variability of corrected data is more consistenpiani et al. (2010)
avoid substantial distortion of the distribution with original RCM data Rojas et al. (2011)
caused by too many drizzle days (i.e., very low Sennikovs and Bethers (2009)
but non-zero precipitation) Sun et al. (2011)

also known as “quantile-quantile mapping”,
“probability mapping”, “statistical
downscaling” or “histogram equalization”
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Fig. 3. Exemplary procedure of the differential split-sample test (DSST). First, the annual ya)uesre sorted ascendir(b, c). For the
twofold cross-validation, first the lower-value years were used for calibration and the higher-value years for validation. In a second step,
calibration and validation periods were switched. This procedure was performed independently for precipitation and temperature.

Table 5.Overview of diagnostics used to detect and estimate model errors in raw and corrected RCM-simulated precipitation and/or temper-

ature data.

RCM-Simulated Climate Variable  Diagnostic Abbreviation
1. Mean )
2. 90th percentile X90)
N 3. Standard deviation of)
Precipitation
P 4. Probability of wet days Rwet
5. Intensity of wet days ifyet)
6. Maximum of consecutive 5 day precipitation  (Pregigy
1. Mean 0]
Temperature 2. 10th percent?le X10
3. 90th percentile X90)
4. Standard deviation of)

Hydrol. Earth Syst. Sci., 17, 50615077, 2013
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Table 6.Mean absolute error (MAE) of seasonally averaged precipitation [mthaf differently corrected ERA40-driven RCM simulations
compared to observed seasonally averaged precipitation for case-1 evaluation. Larger MAE values are shown in bold, medium MAE values
appear in regular font and smaller MAE values are underlined.

Bias Correction Method

Season Catchment
Raw Linear LOCI Power Distribution Delta

1. Tannfors 0.428 0.190 0.185 0.212 0.213 0.232

2. Storbacken 0.174 0.0950.095 0.111 0.105 0.105
Winter (DJF) 3. Vattholmaédn _0.085 0.131 0.106 0.080 0.070 0.140

4. Brusaan 0.257 0.109 0.095 0.101 0.100 0.130

5. Rénne A 0.236 0.358 0.323 0.268 0.237 0.337

1. Tannfors 0.244 0.081 0.078 0.143 0.153 0.081

2. Storbacken 0.290 0.348 0.367 0.436 0.455 0.353
Spring (MAM) 3. Vattholmadn 0.304  0.093 0.083 0.101 0.111 0.093

4, Brusaan 0.462 0.191 0.203 0.234 0.250 0.203

5. Rénne A 0.438 0.236 0.250 0.289 0.311 0.267

1. Tannfors 0.346 0.181 0.174 0.150 ~0.147 0.211

2. Storbacken 0.427 0.447 0.438 0.308 0.310 0.439
Summer (JJA) 3. Vattholmadn 0.285 0.157 0.150 0.154 _0.144  0.159

4. Brusadn 0.238 0.067 0.056 0.047 0.041 0.105

5. Rénne A 0.245 0.168 0.168 0.167 0.173 0.244

1. Tannfors ~0.129 0.248 0.243 0.196 0.191 0.260

2. Storbéacken 0.140 0.102 0.093 0.079 0.074 0.143
Autumn (SON) 3. Vattholmadn 0.174 0215 0.211  0.217 0.214 0.234

4. Brusaan ~0.111 0.191 0.181 0.182 0.177 0.162

5. Ronne A 0.098 0.144 0.131 0.120 0.107 0.145

4.2 RCM precipitation: model errors
1 Tannfors -| . .
M M The calculated precipitation model errors were displayed in
2 Storbacken 1 ISR el R gridded plots as a function of bias correction methodxis)
3 Vattholmaan - @ . HDI[H and catchment locatiory @xis) separately for each statistical
4 Brusain ’HE[H . @ . cﬁagnosnc_anc? separately for callbra_tlon and validation pe-
riod. Considering the case-1 evaluation procedure from dry
5 Ronne A+ DZH% . }—M——!- to wet years (Fig. 5), all precipitation-bias correction meth-
ods resulted in good estimates of the meanghowing only
06 0% 20% 30% 40% 10C 12C 14C 16C 18C small model errors during the designed calibration period
A Precipitation [%] A Temperature [*C] (Fig. 5, upper left panel). Analyzing other statistical diagnos-
Median tics, however, showed considerable differences between the
Range ofraw RCM smulations: Minty__| @ | _-iMax methods already during the calibration period (Fig. 5, left

10 25 75 90

panel column). Raw RCM simulations generally had large
model errors. Linear transformation was not able to consid-

Fia. 4. Differences between mean val fthe two constructed berably improve other statistical properties tha(Fig. 5, left
g. 4. Diferences between mean vajues otthe iwo constructed su panel column). For standard deviatian)( 90th percentiles
sets for precipitation (left) and temperature (right) shown for raw

RCM simulations (colored boxes) and observations (black circles).(xgo) and m_aX|mum 5_daY pr_empltatlon_ (Pregipw, power
transformation and distribution mapping seemed to work

best. The same could be observed for the probability of wet
In direct comparison to observations, the RCMs tended tadays Pwet) and the intensity of wet daysuer, which were
underestimate the mean climate change signals for both préd addition also most correct after applying LOCI. The delta-
cipitation (Fig. 4, left) and temperature (Fig. 4, right), which change approach always performed perfectly during calibra-

was most likely directly related to an underestimation of in- tion by its definition.
terannual variability by the RCMs. The overall model error pattern was fairly similar for cal-

ibration and validation period. The major difference was

‘ Precipitation Temperature ® Observations
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Fig. 6. Normalized precipitation model errors (different shades of
Fig. 5. Normalized precipitation model errors (different shades of blue) of 6 different statistical diagnostics (panel rows) for calibra-
blue) of 6 different statistical diagnostics (panel rows) for calibra- tion period (left panel column) and validation period (central panel
tion period (left panel column) and validation period (central panel column). The model error growth, i.e., the absolute difference be-
column). The model error growth, i.e., the absolute difference be-tween model errors in validation and calibration period, is shown
tween model errors in validation and calibration period, is shown asas well (right panel column). Each panel displays model error in-
well (right panel column). Each panel displays model error infor- formation depending on the 6 applied bias correction metheds (
mation depending on the 6 applied bias correction methodsi) axis) and the 5 catchment locationsgxis). The figure is based on
and the 5 catchment locationsdxis). The figure is based on case-1 case-2 evaluation with calibration on wet years and validation on
evaluation with calibration on dry years and validation on wet years.dry years.

that the model error during validation period increased con-tation showed large deviations inas well asPyet andiwet.
siderably (Fig. 5, central panel column, shown as darkerConsequently, the delta-change method showed the strongest
blue shading). This fact was also supported by the calcuymodel error growth. The case-2 evaluation procedure from
lated model error growth (Fig. 5, right panel column). Linear Wet to dry years (Fig. 6) mostly confirmed the results of the
transformation tended to have a slightly larger model errorcase-1 evaluation.

growth, whereas distribution mapping had the least. An inter-

esting fact is that the delta-change approach, despite the illu-

sory perfect fit during calibration, was outperformed by other

methods during validation: Delta-change corrected precipi-

Hydrol. Earth Syst. Sci., 17, 50615077, 2013 www.hydrol-earth-syst-sci.net/17/5061/2013/
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Fig. 7. Normalized temperature model errors (different shades ofFig. 8. Normalized temperature model errors (different shades of
blue) of 4 different statistical diagnostics (panel rows) for calibra- blue) of 4 different statistical diagnostics (panel rows) for calibra-
tion period (left panel column) and validation period (central panel tion period (left panel column) and validation period (central panel
column). The model error growth, i.e., the absolute difference be-column). The model error growth, i.e., the absolute difference be-
tween model errors in validation and calibration period, is shown astween model errors in validation and calibration period, is shown as
well (right panel column). Each panel displays model error infor- well (right panel column). Each panel displays model error infor-
mation depending on the 5 applied bias correction methodsif) mation depending on the 5 applied bias correction methodsif)

and the 5 catchment locations &xis). The figure is based on case- and the 5 catchment locations gxis). The figure is based on case-
1 evaluation with calibration on cold years and validation on warm 2 evaluation with calibration on warm years and validation on cold
years. years.

rection methods were generally able to improve raw RCM
simulations (except for catchment 5, Rénne A, in winter and
The analysis of seasonally averaged raw and corrected RCMeatchment 2, Storbécken, in spring). Power transformation
simulated precipitation for the validation period revealed and distribution mapping performed better than other meth-
only a weak pattern in terms of the influence of different ods in winter, summer and autumn, which are seasons that
correction methods, seasons and catchments on model eare characterized by somewhat higher monthly precipitation.
rors (Table 6). The mean absolute error (MAE) was gener-On the other hand, linear scaling and LOCI performed gen-
ally large for raw RCM-simulated precipitation, except for erally better in spring, a season with lower monthly precip-
autumn. During autumn, which is characterized by mediumitation. Furthermore, bias correction methods worked better
to high monthly precipitation, raw RCM simulations were for catchments in south central Sweden (i.e., catchments 3,
relatively close to observations and the correction method$/attholmadn, and 4, Brusaan), which are generally drier than
were not able to provide further enhancement (except foithe other three catchments.

catchment 2, Storbacken). During all other seasons the cor-

4.3 RCM precipitation: seasonal analysis
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4.4 RCM temperature: model errors Precipitation Temperature
Diagnostics Diagnostics

The same type of gridded plots were created to demonstrate N
. Tannfors
the calculated temperature model errors: in terms of the case-
1 evaluation procedure from cold to warm years (Fig. 7), all Storbéicken
temperature-bias correction methods resulted in very good Vattholmaan
w estimates during the designed calibration period (Fig. 7, Brusaan

upper left panel). Substantial differences between the cor- Roénne A

rection methods became apparent with help of other statis- 255858 : 5 8 £ O
tical diagnostics (Fig. 7, left panel column): linear transfor- G g o z2 = g i) g ¢ = g
mation was the only method not able to sufficiently correct - a2 - 5 8

o. Variance-scaled and distribution-mapped RCM tempera- g = g

ture had both the most corregt o and X g9 during the con-
trol period. Again, the delta-change approach is perfect (i.e., poor [N | Good
model-error-free) by definition. Performance

During validation with warmer years (Fig. 7, central panel
row), the bias correction methods performed somewnhat difiy 9 overall performance of precipitation (left) and temperature
ferently. Especially variance scaling showed larger model eryyignt) biases correction methods. Each panel displays model error
rors ino and X10 compared to the other methods. Distribu- information depending on the applied bias correction metheds (
tion mapping, however, had relatively lgw o, X10 andXgg axis) and the 5 catchment locations gxis). Each plot combines
model errors. The model error growth (Fig. 7, right panel normalized model errors of different statistical diagnostics and was
column) identified variance scaling and the delta-changecreated by superimposing the different panels from Figs. 5 and 6 for
method as the two approaches with the largest model erroprecipitation (left) as well as the panels from Figs. 7 and 8 for tem-
increase. The delta-change approach again had one of tr{éerature (right). Light color fields represent small model errors and
largest model errors during validation and, thus, the strongeéfme model error growth; darker colors characterize larger model
model error growth. Overall, a north—south gradient became 0™ and more model error growth.
apparent. Raw and adjusted RCM temperatures were char-
acterized by a larger model error and a stronger model erroy ¢ overall performance of bias correction methods
growth for the northern catchments with cold climate condi-
tions compared to the catchments with a warmer climate. | order to obtain information on the overall performance of

These findings were confirmed by the case-2 evaluationsach bias correction method and its transferability to differ-
procedure from warm to cold years (Fig. 8). The results weregnt climate conditions, we first normalized the model errors
essentially the same as for the case-1 evaluation; only thaif raw and corrected RCM simulations to bring them to a
linear transformation performed worse and showed |argercommon Comparab|e scale (Shown in F|gs 5_8) These nor-
model errors during validation (Fig. 8, central panel col- malized errors were then averaged over different diagnostics,
umn). Moreover, the north—-south gradient was even morgyyer both the case-1 and case-2 evaluation and over both sub-
pronounced in all panels for validation and model error sets (calibration and validation). Thus, we obtained a combi-
growth (Fig. 8, central and right panel column). nation of the results in Figs. 5 and 6 for precipitation and in
Figs. 7 and 8 for temperature.

The obtained signal was reasonably clear for both precipi-
The evaluation of seasonally averaged raw and correcte&auon ('.:'g' 9, left) and temperature (Fig. 9, right): raw RCM

Simulations had the largest model error. In general, the more

RCM-simulated temperature showed clear differences be- dvanced the algorithm of a bi rrection method was. th
tween correction methods, seasons and catchments for e vanced the aigo ot & ias correction method was, the

validation period (Table 7). The mean absolute error (MAE) smaller was the model error present after correction (Fig. 9,

was generally large for raw RCM-simulated temperature. A::rom Igft toh”ghLOT thex ams?j. ;—.h's.bme.ans that I_mear: trans-”
north—south gradient was visible with northern catchments ormation had the fargest and distri ut_|on mapping the small-
showing larger model errors in raw and corrected temper-eSt model errors. Furthermore, the simple delta-change ap-
ature. Furthermore, there was a clear seasonal di1’“ferencé’:r0""Ch resulted in relatively large model errors.

winter temperatures (cold season) were much more flawed
than temperatures in all other (warmer) seasons. Distribution
mapping consistently showed lowest MAE values.

4.5 RCM temperature: seasonal analysis

Hydrol. Earth Syst. Sci., 17, 50615077, 2013 www.hydrol-earth-syst-sci.net/17/5061/2013/
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Table 7. MAE of seasonally averaged temperatu?€] of differently corrected ERA40-driven RCM simulations compared to observed

seasonally averaged temperature for case-1 evaluation. Larger MAE values are shown in bold, medium MAE values appear in regular font

and smaller MAE values are underlined.

5 Discussion

Bias Correction Method

Season Catchment
Raw Linear LOCI Power Distribution Delta
1 Tannfors 3.659 1544 3.659 3.659 0.610 1.704
2 Storbacken 0.983 1.326 0.983 0.983 0.476 1.438
Winter (DJF) 3 Vattholmadn 0.326 1.476 0.326 0.326 0.807 1.463
4 Brusaan 0.382 0.888 0.382 0.382 0.382 0.968
5 Rénne A 0.280 0.486 0.280 0.280 0.456 0.554
1 Tannfors 1.498 0.170 1.498 1.498 0.349 0.357
2 Storbacken 1.236 0.251 1.236 1.236 0.459 0.265
Spring (MAM) 3 Vattholmaén 0.754 0.242 0.754  0.754  0.227 0.261
4 Brusaan 0.544 0.150 0.544 0.544 0.281 0.171
5 Rénne A 0.583 0.159 0.583 0.583 0.177 0.104
1 Tannfors 0.858 0.445 0.858 0.858 0.452 0.465
2 Storbacken 1.469 0.332 1.469 1.469 0.325 0.367
Summer (JJA) 3 Vattholmadn 0.419 0.279 0.419 0.419 ~0.205 0.259
4 Brusaan 0.486 0.213 0.486 0.486 0.276 0.140
5 Rénne A 0.665 0.165 0.665 0.665 0.207 0.238
1 Tannfors 1.957 0.313 1.957 1.957 0.215 0.486
2 Storbacken 0.298 0.207 0.298 0.298 0.293 0.366
Autumn (SON) 3 Vattholmadn 0.187 0.127 0.187 0.187 0.106 0.569
4 Brusaan 0.201 0.135 0.201 0.201 0.153 0.437
5 Rénne A 0.222 0.180 0.222 0.222 0.173 0.248

Based on all findings in this study, distribution mapping
showed the best overall performance and transferability to
potentially changed climate conditions, as it was able to cor-
rect statistical moments other than the mean and standard de-
viation. LOCI and power transformation (both for precipita-
tion) as well as variance scaling (for temperature) performed
moderately. It should be noted that variance scaling is not
advisable as it is based on the invalid assumption that all lo-
cal variability is related to larger-scale variability and, fur-
thermore, tends to augment the mean square errors of uncor-
rected data (Von Storch, 1999). Linear transformation and the
delta-change method were the least able to correct for overall
model errors in the validation period.
In this study, we did not try to answer the “main question
[...], whether and when the application of bias correction
methods [...] is justified or not” (Ehret et al., 2012). Bias
correction methods are often criticized to diminish the ad-
vantages of climate models, but even with today’s much ad-
vanced climate models, bias correction is often unavoidable
for climate-change impact studies as uncorrected RCM sim-
ulations are a source of large uncertainties and would con-
sequently hamper subsequent impact simulations. However,
one needs to be aware that there are several problematic as-
pects related to bias correction methods (Ehret et al., 2012):

www.hydrol-earth-syst-sci.net/17/5061/2013/

— physical causes of model errors are not taken into ac-

count and, thus, a proper physical foundation is miss-
ing (Teutschbein and Seibert, 2012);

— spatiotemporal field consistency and relations between

climate variables are modified (Ehret et al., 2012);

— conservation principles are not met (Ehret et al., 2012);

— feedback mechanisms are neglected (Ehret et al.,

2012);

— the stationarity (time invariance) assumption is likely

not met under changing climate conditions (Ehret et
al., 2012; Maraun, 2012; Maraun et al., 2010; Vannit-
sem, 2008);

— variability ranges might be reduced without physical

justification (Ehret et al., 2012);

— the climate-change signal might be altered (Dosio et

al., 2012; Hagemann et al., 2011);

— the choice for a correction technique is an additional

source of uncertainty (Chen et al., 2011; Teutschbein
and Seibert, 2012; Teutschbein et al., 2011);

Hydrol. Earth Syst. Sci., 17, 5080677, 2013
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— the added value of bias correction methods is questhis is more difficult and the fundamental question is how
tionable in a complex modeling chain with other major transferable the different methods are. The differential split-
sources of uncertainty (Muerth et al., 2013); sample test suggested here is a simple and yet powerful

tool to evaluate this. It is possible to create two subsets of

— impacts of bias correction methods and related unceryata with considerably different climate conditions and non-
tainties are not communicated to end-users (Ehret ektationary model errors based on time series of observations
al., 2012); and RCM simulations of current climate (no future simula-

. tions necessary). Thus, the transferability of different bias

- effec'_[s of unsystematic (random) r_nodel errors COUIdcorrection methods can be tested under non-stationary con-
by mistake be blamed on systematic errors and, thereaitions.
fore, accidentally be modified by correction methods The delta-change approach and the linear transforma-
(Maraun et al., 2010). tion are the two most common transfer methods and have

For current climate conditions, Teutschbein and Seib-P€€n widely used (Gellens and Roulin, 1998; Graham et al.,

ert (2012) demonstrated that most correction approaches ag007a, b; Lettenmaier et al., 1999; Middelkoop et al., 2001;
plied are able to improve raw RCM data to some extent, but00re et al., 2008; Shabalova et al., 2003), because they are
that there are considerable differences in the quality of agStraightforward and easy to implement due to their simplic-
justed RCM temperature and precipitation. In this paper, waly- Ygt, our_valldqtlon of these correction approaches with
showed how DSST can be used to analyze the transferabilif© differential split-sample test showed that these two meth-
of correction approaches to different climate conditions. Us-0dS result in large deviations and are the least reliable un-

ing DSST allows identifying clear differences in reproducing 9€r changed conditions. These findings remain to be con-
i firmed for other catchments and other geographic regions,

conditions similar to and conditions different from those tha o o 1
the correction approaches were calibrated to. These differPUt based on the findings in this study we question the use of

ences are an indicator for improper algorithm and parametef€ délta-change method or the linear transformation to cor-
transfers. rect RCM scenarios of future conditions for climate change

By using the coldest/driest and warmest/wettest years fofmpact studies. Instead, we would like to recommend distri-

separation of the periods, we certainly pushed the correcPUtion mapping as the best-performing correction method,

tion methods. This was done on purpose, because we belieEcause it was best able to cope with non-stationary condi-

that reliable simulations of the more extreme years are estions. However, regardiess of the used method, our results

sential for certain impact assessments, such as drought arfffmenstrate that the — in most climate impact studies un-
flood modeling under future climate conditions. To test the 8v0idable —use of bias correction approaches for conditions
transferability of correction approaches on conditions of adifferent from those being used for their parameterization,
less extreme climate-change signal, it is also possible to usBlght result in significant uncertainties. In this study RCMs
more moderate extrapolations by applying, for instance, théjr.lve.n by ERA40 reanalysis data were evaluated and uncer-
generalized split-sample test (GSST) as proposed by Corolftinties can be expected to be even larger when using GCM
etal. (2012). driven RCMs.

We would like to emphasize that DSST is a rather sim-
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non-stationarities is to use a pseudo-reality, which is basednq spatial Planning (Grant no. 2007-1433). The authors thank
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ing an inter-model cross-validation with other RCM simu- providing observed meteorological data. The ENSEMBLES data
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6 Conclusions
The choice between bias correction algorithms plays a large
role in assessing hydrological climate change impacts. For
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