Articles | Volume 17, issue 12
https://doi.org/10.5194/hess-17-4831-2013
https://doi.org/10.5194/hess-17-4831-2013
Research article
 | 
05 Dec 2013
Research article |  | 05 Dec 2013

Bridging the gap between GLUE and formal statistical approaches: approximate Bayesian computation

M. Sadegh and J. A. Vrugt

Related authors

Physical, social, and biological attributes for improved understanding and prediction of wildfires: FPA FOD-Attributes dataset
Yavar Pourmohamad, John T. Abatzoglou, Erin J. Belval, Erica Fleishman, Karen Short, Matthew C. Reeves, Nicholas Nauslar, Philip E. Higuera, Eric Henderson, Sawyer Ball, Amir AghaKouchak, Jeffrey P. Prestemon, Julia Olszewski, and Mojtaba Sadegh
Earth Syst. Sci. Data, 16, 3045–3060, https://doi.org/10.5194/essd-16-3045-2024,https://doi.org/10.5194/essd-16-3045-2024, 2024
Short summary
Copulas for hydroclimatic applications – A practical note on common misconceptions and pitfalls
Faranak Tootoonchi, Jan Olaf Haerter, Olle Räty, Thomas Grabs, Mojtaba Sadegh, and Claudia Teutschbein
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2020-306,https://doi.org/10.5194/hess-2020-306, 2020
Preprint withdrawn
Short summary

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Uncertainty analysis
A data-centric perspective on the information needed for hydrological uncertainty predictions
Andreas Auer, Martin Gauch, Frederik Kratzert, Grey Nearing, Sepp Hochreiter, and Daniel Klotz
Hydrol. Earth Syst. Sci., 28, 4099–4126, https://doi.org/10.5194/hess-28-4099-2024,https://doi.org/10.5194/hess-28-4099-2024, 2024
Short summary
A decomposition approach to evaluating the local performance of global streamflow reanalysis
Tongtiegang Zhao, Zexin Chen, Yu Tian, Bingyao Zhang, Yu Li, and Xiaohong Chen
Hydrol. Earth Syst. Sci., 28, 3597–3611, https://doi.org/10.5194/hess-28-3597-2024,https://doi.org/10.5194/hess-28-3597-2024, 2024
Short summary
Technical note: Complexity–uncertainty curve (c-u-curve) – a method to analyse, classify and compare dynamical systems
Uwe Ehret and Pankaj Dey
Hydrol. Earth Syst. Sci., 27, 2591–2605, https://doi.org/10.5194/hess-27-2591-2023,https://doi.org/10.5194/hess-27-2591-2023, 2023
Short summary
Technical note: The CREDIBLE Uncertainty Estimation (CURE) toolbox: facilitating the communication of epistemic uncertainty
Trevor Page, Paul Smith, Keith Beven, Francesca Pianosi, Fanny Sarrazin, Susana Almeida, Liz Holcombe, Jim Freer, Nick Chappell, and Thorsten Wagener
Hydrol. Earth Syst. Sci., 27, 2523–2534, https://doi.org/10.5194/hess-27-2523-2023,https://doi.org/10.5194/hess-27-2523-2023, 2023
Short summary
Why do our rainfall–runoff models keep underestimating the peak flows?
András Bárdossy and Faizan Anwar
Hydrol. Earth Syst. Sci., 27, 1987–2000, https://doi.org/10.5194/hess-27-1987-2023,https://doi.org/10.5194/hess-27-1987-2023, 2023
Short summary

Cited articles

Ajami, N. K., Duan, Q., and Sorooshian, S.: An integrated hydrologic Bayesian multimodel combination framework: Confronting input, parameter, and model structural uncertainty in hydrologic prediction, Water Resour. Res., 43, W01403, https://doi.org/10.1029/2005WR004745, 2007.
Aronica, G., Bates, P. D., and Horritt, M. S.: Assessing the uncertainty in distributed model predictions using observed binary pattern information within GLUE, Hydrol. Proccess., 16, 2001–2016, 2002.
Barnes, C., Filippi, S., Stumpf, M. P. H., and Thorne, T.: Considerate approaches to achieving sufficiency for ABC model selection, available at: http://arxiv.org/pdf/1106.6281v2.pdf (last access: 1 December 2013), 2011.
Bates, B. C. and Campbell, E. P.: A Markov chain Monte Carlo scheme for parameter estimation and inference in conceptual rainfall-runoff modeling, Water Resour. Res., 37, 937–947, 2001.
Beaumont, M. A., Zhang, W., and Balding, D. J.: Approximate Bayesian computation in population genetics, Genetics, 162, 2025–2035, 2002.
Download