Articles | Volume 17, issue 12
https://doi.org/10.5194/hess-17-4831-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/hess-17-4831-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Bridging the gap between GLUE and formal statistical approaches: approximate Bayesian computation
M. Sadegh
Department of Civil and Environmental Engineering, University of California, Irvine, 4130 Engineering Gateway, Irvine, CA 92697-2175, USA
J. A. Vrugt
Department of Civil and Environmental Engineering, University of California, Irvine, 4130 Engineering Gateway, Irvine, CA 92697-2175, USA
Department of Earth System Science, University of California Irvine, Irvine, USA
Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, the Netherlands
Viewed
Total article views: 6,238 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 12 Apr 2013)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
2,706 | 3,313 | 219 | 6,238 | 149 | 145 |
- HTML: 2,706
- PDF: 3,313
- XML: 219
- Total: 6,238
- BibTeX: 149
- EndNote: 145
Total article views: 3,416 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 05 Dec 2013)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
1,781 | 1,501 | 134 | 3,416 | 121 | 128 |
- HTML: 1,781
- PDF: 1,501
- XML: 134
- Total: 3,416
- BibTeX: 121
- EndNote: 128
Total article views: 2,822 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 12 Apr 2013)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
925 | 1,812 | 85 | 2,822 | 28 | 17 |
- HTML: 925
- PDF: 1,812
- XML: 85
- Total: 2,822
- BibTeX: 28
- EndNote: 17
Cited
52 citations as recorded by crossref.
- Stochastic modeling of suspended sediment load in alluvial rivers S. Shojaeezadeh et al. 10.1016/j.advwatres.2018.06.006
- Confidence intervals of the Kling-Gupta efficiency J. Vrugt & D. de Oliveira 10.1016/j.jhydrol.2022.127968
- Signature‐Domain Calibration of Hydrological Models Using Approximate Bayesian Computation: Theory and Comparison to Existing Applications D. Kavetski et al. 10.1002/2017WR020528
- Stochastic inversion for soil hydraulic parameters in the presence of model error: An example involving ground-penetrating radar monitoring of infiltration C. Köpke et al. 10.1016/j.jhydrol.2018.12.016
- On the use of distribution-adaptive likelihood functions: Generalized and universal likelihood functions, scoring rules and multi-criteria ranking J. Vrugt et al. 10.1016/j.jhydrol.2022.128542
- Using maximum likelihood to derive various distance-based goodness-of-fit indicators for hydrologic modeling assessment Q. Cheng et al. 10.1007/s00477-017-1507-8
- Uncertainty quantification in watershed hydrology: Which method to use? A. Gupta & R. Govindaraju 10.1016/j.jhydrol.2022.128749
- Comparison of GLUE and DREAM for the estimation of cultivar parameters in the APSIM-maize model M. Sheng et al. 10.1016/j.agrformet.2019.107659
- Estimating the parameters of a monthly hydrological model using hydrological signatures A. Matos et al. 10.1590/2318-0331.292420230121
- Relative model score: a scoring rule for evaluating ensemble simulations with application to microbial soil respiration modeling A. Elshall et al. 10.1007/s00477-018-1592-3
- Revising tortuosity and multi-fractal assumptions of unsaturated hydraulic conductivity from critical path analysis of percolation theory A. Rad et al. 10.1016/j.geoderma.2019.06.002
- A short history of philosophies of hydrological model evaluation and hypothesis testing K. Beven 10.1002/wat2.1761
- Robust and efficient uncertainty quantification for extreme events that deviate significantly from the training dataset using polynomial chaos-kriging V. Tran & J. Kim 10.1016/j.jhydrol.2022.127716
- Conditional interval reduction method: A possible new direction for the optimization of process based models R. Hollós et al. 10.1016/j.envsoft.2022.105556
- Multihazard Scenarios for Analysis of Compound Extreme Events M. Sadegh et al. 10.1029/2018GL077317
- A game theoretical low impact development optimization model for urban storm water management M. Latifi et al. 10.1016/j.jclepro.2019.118323
- The stationarity paradigm revisited: Hypothesis testing using diagnostics, summary metrics, and DREAM(ABC) M. Sadegh et al. 10.1002/2014WR016805
- Quantification of predictive uncertainty in hydrological modelling by harnessing the wisdom of the crowd: A large-sample experiment at monthly timescale G. Papacharalampous et al. 10.1016/j.advwatres.2019.103470
- A hybrid time- and signature-domain Bayesian inference framework for calibration of hydrological models: a case study in the Ren River basin in China S. Liu et al. 10.1007/s00477-022-02282-3
- Multi-objective conflict resolution optimization model for reservoir’s selective depth water withdrawal considering water quality M. Haghighat et al. 10.1007/s11356-020-10475-y
- Model Falsification from a Bayesian Viewpoint with Applications to Parameter Inference and Model Selection of Dynamical Systems A. Dasgupta & E. Johnson 10.1061/JENMDT.EMENG-7204
- Copula‐Based Convection‐Permitting Projections of Future Changes in Multivariate Drought Characteristics B. Zhang et al. 10.1029/2019JD030686
- Comparison of Likelihood-Free Inference Approach and a Formal Bayesian Method in Parameter Uncertainty Assessment: Case Study with a Single-Event Rainfall–Runoff Model M. Nourali 10.1061/(ASCE)HE.1943-5584.0002048
- Signature‐Domain Calibration of Hydrological Models Using Approximate Bayesian Computation: Empirical Analysis of Fundamental Properties F. Fenicia et al. 10.1002/2017WR021616
- Probabilistic programming: A review for environmental modellers C. Krapu & M. Borsuk 10.1016/j.envsoft.2019.01.014
- A novel reliability analysis method for a dependent system by copula model: a case study in operation tunnels maintenance W. Liu et al. 10.1007/s13349-022-00581-5
- Verification of short-term runoff forecasts for a small Philippine basin (Marikina) D. Kneis et al. 10.1080/02626667.2016.1183773
- Flow parameter estimation using laser absorption spectroscopy and approximate Bayesian computation J. Christopher et al. 10.1007/s00348-020-03122-2
- Bayesian calibration of a flood simulator using binary flood extent observations M. Balbi & D. Lallemant 10.5194/hess-27-1089-2023
- Multivariate Copula Analysis Toolbox (MvCAT): Describing dependence and underlying uncertainty using a Bayesian framework M. Sadegh et al. 10.1002/2016WR020242
- Development of a stochastic hydrological modeling system for improving ensemble streamflow prediction Y. Shen et al. 10.1016/j.jhydrol.2022.127683
- Impact of the numbers of observations and calibration parameters on equifinality, model performance, and output and parameter uncertainty Y. Her & I. Chaubey 10.1002/hyp.10487
- Evaluation of hydrological models at gauged and ungauged basins using machine learning-based limits-of-acceptability and hydrological signatures A. Gupta et al. 10.1016/j.jhydrol.2024.131774
- Parameter-state ensemble thinning for short-term hydrological prediction B. Davison et al. 10.5194/hess-23-741-2019
- A fuzzy multi-objective optimization approach for treated wastewater allocation S. Tayebikhorami et al. 10.1007/s10661-019-7557-2
- Facets of uncertainty: epistemic uncertainty, non-stationarity, likelihood, hypothesis testing, and communication K. Beven 10.1080/02626667.2015.1031761
- Bayesian inference and predictive performance of soil respiration models in the presence of model discrepancy A. Elshall et al. 10.5194/gmd-12-2009-2019
- Improving probabilistic hydroclimatic projections through high-resolution convection-permitting climate modeling and Markov chain Monte Carlo simulations S. Wang & Y. Wang 10.1007/s00382-019-04702-7
- ApproximateBayesian computation methods for daily spatiotemporal precipitation occurrence simulation B. Olson & W. Kleiber 10.1002/2016WR019741
- Embracing equifinality with efficiency: Limits of Acceptability sampling using the DREAM(LOA) algorithm J. Vrugt & K. Beven 10.1016/j.jhydrol.2018.02.026
- Improving Robustness of Hydrologic Ensemble Predictions Through Probabilistic Pre‐ and Post‐Processing in Sequential Data Assimilation S. Wang et al. 10.1002/2018WR022546
- Water balance model (WBM) v.1.0.0: a scalable gridded global hydrologic model with water-tracking functionality D. Grogan et al. 10.5194/gmd-15-7287-2022
- Parameter estimation for complex thermal-fluid flows using approximate Bayesian computation J. Christopher et al. 10.1103/PhysRevFluids.3.104602
- Automatic calibration and uncertainty quantification in waves dynamical downscaling R. Alonso & S. Solari 10.1016/j.coastaleng.2021.103944
- A computationally efficient method for uncertainty analysis of SWAT model simulations P. Athira et al. 10.1007/s00477-018-1538-9
- On constructing limits-of-acceptability in watershed hydrology using decision trees A. Gupta et al. 10.1016/j.advwatres.2023.104486
- Considering rating curve uncertainty in water level predictions A. Sikorska et al. 10.5194/hess-17-4415-2013
- Stochastic inversion for soil hydraulic parameters in the presence of model error: An example involving ground-penetrating radar monitoring of infiltration C. Köpke et al. 10.1016/j.jhydrol.2018.12.016
- An Improved Bayesian Structural Identification Using the First Two Derivatives of Log-Likelihood Measure J. Zhou et al. 10.1155/2015/236475
- Estimating hydrologic model uncertainty in the presence of complex residual error structures S. Samadi et al. 10.1007/s00477-017-1489-6
- Experimental Coupling of TOPMODEL with the National Water Model: Effects of Coupling Interface Complexity on Model Performance D. Kim et al. 10.1111/1752-1688.12953
- Markov chain Monte Carlo simulation using the DREAM software package: Theory, concepts, and MATLAB implementation J. Vrugt 10.1016/j.envsoft.2015.08.013
46 citations as recorded by crossref.
- Stochastic modeling of suspended sediment load in alluvial rivers S. Shojaeezadeh et al. 10.1016/j.advwatres.2018.06.006
- Confidence intervals of the Kling-Gupta efficiency J. Vrugt & D. de Oliveira 10.1016/j.jhydrol.2022.127968
- Signature‐Domain Calibration of Hydrological Models Using Approximate Bayesian Computation: Theory and Comparison to Existing Applications D. Kavetski et al. 10.1002/2017WR020528
- Stochastic inversion for soil hydraulic parameters in the presence of model error: An example involving ground-penetrating radar monitoring of infiltration C. Köpke et al. 10.1016/j.jhydrol.2018.12.016
- On the use of distribution-adaptive likelihood functions: Generalized and universal likelihood functions, scoring rules and multi-criteria ranking J. Vrugt et al. 10.1016/j.jhydrol.2022.128542
- Using maximum likelihood to derive various distance-based goodness-of-fit indicators for hydrologic modeling assessment Q. Cheng et al. 10.1007/s00477-017-1507-8
- Uncertainty quantification in watershed hydrology: Which method to use? A. Gupta & R. Govindaraju 10.1016/j.jhydrol.2022.128749
- Comparison of GLUE and DREAM for the estimation of cultivar parameters in the APSIM-maize model M. Sheng et al. 10.1016/j.agrformet.2019.107659
- Estimating the parameters of a monthly hydrological model using hydrological signatures A. Matos et al. 10.1590/2318-0331.292420230121
- Relative model score: a scoring rule for evaluating ensemble simulations with application to microbial soil respiration modeling A. Elshall et al. 10.1007/s00477-018-1592-3
- Revising tortuosity and multi-fractal assumptions of unsaturated hydraulic conductivity from critical path analysis of percolation theory A. Rad et al. 10.1016/j.geoderma.2019.06.002
- A short history of philosophies of hydrological model evaluation and hypothesis testing K. Beven 10.1002/wat2.1761
- Robust and efficient uncertainty quantification for extreme events that deviate significantly from the training dataset using polynomial chaos-kriging V. Tran & J. Kim 10.1016/j.jhydrol.2022.127716
- Conditional interval reduction method: A possible new direction for the optimization of process based models R. Hollós et al. 10.1016/j.envsoft.2022.105556
- Multihazard Scenarios for Analysis of Compound Extreme Events M. Sadegh et al. 10.1029/2018GL077317
- A game theoretical low impact development optimization model for urban storm water management M. Latifi et al. 10.1016/j.jclepro.2019.118323
- The stationarity paradigm revisited: Hypothesis testing using diagnostics, summary metrics, and DREAM(ABC) M. Sadegh et al. 10.1002/2014WR016805
- Quantification of predictive uncertainty in hydrological modelling by harnessing the wisdom of the crowd: A large-sample experiment at monthly timescale G. Papacharalampous et al. 10.1016/j.advwatres.2019.103470
- A hybrid time- and signature-domain Bayesian inference framework for calibration of hydrological models: a case study in the Ren River basin in China S. Liu et al. 10.1007/s00477-022-02282-3
- Multi-objective conflict resolution optimization model for reservoir’s selective depth water withdrawal considering water quality M. Haghighat et al. 10.1007/s11356-020-10475-y
- Model Falsification from a Bayesian Viewpoint with Applications to Parameter Inference and Model Selection of Dynamical Systems A. Dasgupta & E. Johnson 10.1061/JENMDT.EMENG-7204
- Copula‐Based Convection‐Permitting Projections of Future Changes in Multivariate Drought Characteristics B. Zhang et al. 10.1029/2019JD030686
- Comparison of Likelihood-Free Inference Approach and a Formal Bayesian Method in Parameter Uncertainty Assessment: Case Study with a Single-Event Rainfall–Runoff Model M. Nourali 10.1061/(ASCE)HE.1943-5584.0002048
- Signature‐Domain Calibration of Hydrological Models Using Approximate Bayesian Computation: Empirical Analysis of Fundamental Properties F. Fenicia et al. 10.1002/2017WR021616
- Probabilistic programming: A review for environmental modellers C. Krapu & M. Borsuk 10.1016/j.envsoft.2019.01.014
- A novel reliability analysis method for a dependent system by copula model: a case study in operation tunnels maintenance W. Liu et al. 10.1007/s13349-022-00581-5
- Verification of short-term runoff forecasts for a small Philippine basin (Marikina) D. Kneis et al. 10.1080/02626667.2016.1183773
- Flow parameter estimation using laser absorption spectroscopy and approximate Bayesian computation J. Christopher et al. 10.1007/s00348-020-03122-2
- Bayesian calibration of a flood simulator using binary flood extent observations M. Balbi & D. Lallemant 10.5194/hess-27-1089-2023
- Multivariate Copula Analysis Toolbox (MvCAT): Describing dependence and underlying uncertainty using a Bayesian framework M. Sadegh et al. 10.1002/2016WR020242
- Development of a stochastic hydrological modeling system for improving ensemble streamflow prediction Y. Shen et al. 10.1016/j.jhydrol.2022.127683
- Impact of the numbers of observations and calibration parameters on equifinality, model performance, and output and parameter uncertainty Y. Her & I. Chaubey 10.1002/hyp.10487
- Evaluation of hydrological models at gauged and ungauged basins using machine learning-based limits-of-acceptability and hydrological signatures A. Gupta et al. 10.1016/j.jhydrol.2024.131774
- Parameter-state ensemble thinning for short-term hydrological prediction B. Davison et al. 10.5194/hess-23-741-2019
- A fuzzy multi-objective optimization approach for treated wastewater allocation S. Tayebikhorami et al. 10.1007/s10661-019-7557-2
- Facets of uncertainty: epistemic uncertainty, non-stationarity, likelihood, hypothesis testing, and communication K. Beven 10.1080/02626667.2015.1031761
- Bayesian inference and predictive performance of soil respiration models in the presence of model discrepancy A. Elshall et al. 10.5194/gmd-12-2009-2019
- Improving probabilistic hydroclimatic projections through high-resolution convection-permitting climate modeling and Markov chain Monte Carlo simulations S. Wang & Y. Wang 10.1007/s00382-019-04702-7
- ApproximateBayesian computation methods for daily spatiotemporal precipitation occurrence simulation B. Olson & W. Kleiber 10.1002/2016WR019741
- Embracing equifinality with efficiency: Limits of Acceptability sampling using the DREAM(LOA) algorithm J. Vrugt & K. Beven 10.1016/j.jhydrol.2018.02.026
- Improving Robustness of Hydrologic Ensemble Predictions Through Probabilistic Pre‐ and Post‐Processing in Sequential Data Assimilation S. Wang et al. 10.1002/2018WR022546
- Water balance model (WBM) v.1.0.0: a scalable gridded global hydrologic model with water-tracking functionality D. Grogan et al. 10.5194/gmd-15-7287-2022
- Parameter estimation for complex thermal-fluid flows using approximate Bayesian computation J. Christopher et al. 10.1103/PhysRevFluids.3.104602
- Automatic calibration and uncertainty quantification in waves dynamical downscaling R. Alonso & S. Solari 10.1016/j.coastaleng.2021.103944
- A computationally efficient method for uncertainty analysis of SWAT model simulations P. Athira et al. 10.1007/s00477-018-1538-9
- On constructing limits-of-acceptability in watershed hydrology using decision trees A. Gupta et al. 10.1016/j.advwatres.2023.104486
6 citations as recorded by crossref.
- Considering rating curve uncertainty in water level predictions A. Sikorska et al. 10.5194/hess-17-4415-2013
- Stochastic inversion for soil hydraulic parameters in the presence of model error: An example involving ground-penetrating radar monitoring of infiltration C. Köpke et al. 10.1016/j.jhydrol.2018.12.016
- An Improved Bayesian Structural Identification Using the First Two Derivatives of Log-Likelihood Measure J. Zhou et al. 10.1155/2015/236475
- Estimating hydrologic model uncertainty in the presence of complex residual error structures S. Samadi et al. 10.1007/s00477-017-1489-6
- Experimental Coupling of TOPMODEL with the National Water Model: Effects of Coupling Interface Complexity on Model Performance D. Kim et al. 10.1111/1752-1688.12953
- Markov chain Monte Carlo simulation using the DREAM software package: Theory, concepts, and MATLAB implementation J. Vrugt 10.1016/j.envsoft.2015.08.013
Saved (final revised paper)
Saved (preprint)
Discussed (final revised paper)
Latest update: 21 Nov 2024