Journal cover Journal topic
Hydrology and Earth System Sciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 5.153
IF5.153
IF 5-year value: 5.460
IF 5-year
5.460
CiteScore value: 7.8
CiteScore
7.8
SNIP value: 1.623
SNIP1.623
IPP value: 4.91
IPP4.91
SJR value: 2.092
SJR2.092
Scimago H <br class='widget-line-break'>index value: 123
Scimago H
index
123
h5-index value: 65
h5-index65
Volume 17, issue 11
Hydrol. Earth Syst. Sci., 17, 4415–4427, 2013
https://doi.org/10.5194/hess-17-4415-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
Hydrol. Earth Syst. Sci., 17, 4415–4427, 2013
https://doi.org/10.5194/hess-17-4415-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 08 Nov 2013

Research article | 08 Nov 2013

Considering rating curve uncertainty in water level predictions

A. E. Sikorska et al.

Related authors

Can integrative catchment management mitigate future water quality issues caused by climate change and socio-economic development?
Mark Honti, Nele Schuwirth, Jörg Rieckermann, and Christian Stamm
Hydrol. Earth Syst. Sci., 21, 1593–1609, https://doi.org/10.5194/hess-21-1593-2017,https://doi.org/10.5194/hess-21-1593-2017, 2017
Short summary
Gauge-adjusted rainfall estimates from commercial microwave links
Martin Fencl, Michal Dohnal, Jörg Rieckermann, and Vojtěch Bareš
Hydrol. Earth Syst. Sci., 21, 617–634, https://doi.org/10.5194/hess-21-617-2017,https://doi.org/10.5194/hess-21-617-2017, 2017
Short summary
Assessing the quality of digital elevation models obtained from mini unmanned aerial vehicles for overland flow modelling in urban areas
João P. Leitão, Matthew Moy de Vitry, Andreas Scheidegger, and Jörg Rieckermann
Hydrol. Earth Syst. Sci., 20, 1637–1653, https://doi.org/10.5194/hess-20-1637-2016,https://doi.org/10.5194/hess-20-1637-2016, 2016
Short summary
High-quality observation of surface imperviousness for urban runoff modelling using UAV imagery
P. Tokarczyk, J. P. Leitao, J. Rieckermann, K. Schindler, and F. Blumensaat
Hydrol. Earth Syst. Sci., 19, 4215–4228, https://doi.org/10.5194/hess-19-4215-2015,https://doi.org/10.5194/hess-19-4215-2015, 2015
Short summary
Determination of Curve Number for snowmelt-runoff floods in a small catchment
L. Hejduk, A. Hejduk, and K. Banasik
Proc. IAHS, 370, 167–170, https://doi.org/10.5194/piahs-370-167-2015,https://doi.org/10.5194/piahs-370-167-2015, 2015
Short summary

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Uncertainty analysis
Technical note: Uncertainty in multi-source partitioning using large tracer data sets
Alicia Correa, Diego Ochoa-Tocachi, and Christian Birkel
Hydrol. Earth Syst. Sci., 23, 5059–5068, https://doi.org/10.5194/hess-23-5059-2019,https://doi.org/10.5194/hess-23-5059-2019, 2019
Short summary
A systematic assessment of uncertainties in large scale soil loss estimation from different representations of USLE input factors – A case study for Kenya and Uganda
Christoph Schürz, Bano Mehdi, Jens Kiesel, Karsten Schulz, and Mathew Herrnegger
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2019-602,https://doi.org/10.5194/hess-2019-602, 2019
Revised manuscript accepted for HESS
Short summary
Assessment of climate change impact and difference on the river runoff in four basins in China under 1.5 and 2.0 °C global warming
Hongmei Xu, Lüliu Liu, Yong Wang, Sheng Wang, Ying Hao, Jingjin Ma, and Tong Jiang
Hydrol. Earth Syst. Sci., 23, 4219–4231, https://doi.org/10.5194/hess-23-4219-2019,https://doi.org/10.5194/hess-23-4219-2019, 2019
Short summary
Coupled machine learning and the limits of acceptability approach applied in parameter identification for a distributed hydrological model
Aynom T. Teweldebrhan, John F. Burkhart, Thomas V. Schuler, and Morten Hjorth-Jensen
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2019-464,https://doi.org/10.5194/hess-2019-464, 2019
Revised manuscript accepted for HESS
A likelihood framework for deterministic hydrological models and the importance of non-stationary autocorrelation
Lorenz Ammann, Fabrizio Fenicia, and Peter Reichert
Hydrol. Earth Syst. Sci., 23, 2147–2172, https://doi.org/10.5194/hess-23-2147-2019,https://doi.org/10.5194/hess-23-2147-2019, 2019
Short summary

Cited articles

Ajami, N. K., Duan, Q., and Sorooshian, S.: An integrated hydrologic Bayesian multimodel combination framework: Confronting input, parameter, and model structural uncertainty in hydrologic prediction, Water Resour. Res., 43, W01403, https://doi.org/10.1029/2005WR004745, 2007.
Banasik, K., Hejduk, L., and Barszcz, M.: Flood flow consequences of land use changes in a small urban catchment of Warsaw, in: 11th International Conference on Urban Drainage, 31, 10 pp., 2008.
Barszcz, M.: Forecast of probably flows caused by heavy rainfall on urbanized drainage basin of Słu\.zew Stream, Scientific Review Engineering and Environmental Sciences, 4, 3–21, 2009.
Beck, M. B.: Principles of Modelling, Water Sci. Technol., 24, 1–8, IWA Publishing, 1991.
Blöschl, G. and Montanari, A.: Climate change impacts – throwing the dice?, Hydrol. Process., 24, 374–381, https://doi.org/10.1002/hyp.7574, 2010.
Publications Copernicus
Download
Citation