Articles | Volume 17, issue 5
https://doi.org/10.5194/hess-17-1809-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Special issue:
https://doi.org/10.5194/hess-17-1809-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Reducing cloud obscuration of MODIS snow cover area products by combining spatio-temporal techniques with a probability of snow approach
V. López-Burgos
Hydrology and Water Resources, The University of Arizona, Tucson, AZ, USA
now at: USDA Forest Service, Rocky Mountain Research Station, Boise, ID, USA
H. V. Gupta
Hydrology and Water Resources, The University of Arizona, Tucson, AZ, USA
M. Clark
Hydrometeorological Applications Program, Research Applications Laboratory, Boulder, CO, USA
Related authors
No articles found.
Ashish Manoj J, Ralf Loritz, Hoshin Gupta, and Erwin Zehe
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-375, https://doi.org/10.5194/hess-2024-375, 2024
Preprint under review for HESS
Short summary
Short summary
Traditional hydrological models typically operate in a forward mode, simulating streamflow and other catchment fluxes based on precipitation input. In this study, we explored the possibility of reversing this process—inferring precipitation from streamflow data—to improve flood event modelling. We then used the generated precipitation series to run hydrological models, resulting in more accurate estimates of streamflow and soil moisture.
Luis Andres De la Fuente, Mohammad Reza Ehsani, Hoshin Vijai Gupta, and Laura Elizabeth Condon
Hydrol. Earth Syst. Sci., 28, 945–971, https://doi.org/10.5194/hess-28-945-2024, https://doi.org/10.5194/hess-28-945-2024, 2024
Short summary
Short summary
Long short-term memory (LSTM) is a widely used machine-learning model in hydrology, but it is difficult to extract knowledge from it. We propose HydroLSTM, which represents processes like a hydrological reservoir. Models based on HydroLSTM perform similarly to LSTM while requiring fewer cell states. The learned parameters are informative about the dominant hydrology of a catchment. Our results show how parsimony and hydrological knowledge extraction can be achieved by using the new structure.
Luis Andres De la Fuente, Mohammad Reza Ehsani, Hoshin Vijai Gupta, and Laura E. Condon
EGUsphere, https://doi.org/10.5194/egusphere-2023-666, https://doi.org/10.5194/egusphere-2023-666, 2023
Preprint archived
Short summary
Short summary
Long Short-Term Memory (LSTM) is a widely-used machine learning (ML) model in hydrology. However, it is difficult to extract knowledge from it. We propose HydroLSTM which represents processes analogous to a hydrological reservoir. Models using HydroLSTM perform similarly to LSTM but require fewer cell states. The learned parameters are informative about the dominant hydroclimatic characteristics of a catchment. Our results demonstrate how hydrological knowledge is encoded in the new structure.
Jonathan M. Frame, Frederik Kratzert, Daniel Klotz, Martin Gauch, Guy Shalev, Oren Gilon, Logan M. Qualls, Hoshin V. Gupta, and Grey S. Nearing
Hydrol. Earth Syst. Sci., 26, 3377–3392, https://doi.org/10.5194/hess-26-3377-2022, https://doi.org/10.5194/hess-26-3377-2022, 2022
Short summary
Short summary
The most accurate rainfall–runoff predictions are currently based on deep learning. There is a concern among hydrologists that deep learning models may not be reliable in extrapolation or for predicting extreme events. This study tests that hypothesis. The deep learning models remained relatively accurate in predicting extreme events compared with traditional models, even when extreme events were not included in the training set.
Jianjun Zhang, Guangyao Gao, Bojie Fu, Cong Wang, Hoshin V. Gupta, Xiaoping Zhang, and Rui Li
Hydrol. Earth Syst. Sci., 24, 809–826, https://doi.org/10.5194/hess-24-809-2020, https://doi.org/10.5194/hess-24-809-2020, 2020
Short summary
Short summary
We proposed an approach that integrates universal multifractals and a segmentation algorithm to precisely identify extreme precipitation (EP) and assess spatiotemporal EP variation over the Loess Plateau, using daily data. Our results explain how EP contributes to the widely distributed severe natural hazards. These findings are of great significance for ecological management in the Loess Plateau. Our approach is also helpful for spatiotemporal EP assessment at the regional scale.
Gabriela Chiquito Gesualdo, Paulo Tarso Oliveira, Dulce Buchala Bicca Rodrigues, and Hoshin Vijai Gupta
Hydrol. Earth Syst. Sci., 23, 4955–4968, https://doi.org/10.5194/hess-23-4955-2019, https://doi.org/10.5194/hess-23-4955-2019, 2019
Short summary
Short summary
We investigate the influence of anticipated climate change on water security in the Jaguari Basin, which is the main source of freshwater for 9 million people in the São Paulo metropolitan region. Our findings indicate an expansion of the basin critical period, and identify October and November as the most vulnerable months. There is an urgent need to implement efficient mitigation and adaptation policies that recognize the annual pattern of variation between insecure and secure periods.
Ralf Loritz, Axel Kleidon, Conrad Jackisch, Martijn Westhoff, Uwe Ehret, Hoshin Gupta, and Erwin Zehe
Hydrol. Earth Syst. Sci., 23, 3807–3821, https://doi.org/10.5194/hess-23-3807-2019, https://doi.org/10.5194/hess-23-3807-2019, 2019
Short summary
Short summary
In this study, we develop a topographic index explaining hydrological similarity within a energy-centered framework, with the observation that the majority of potential energy is dissipated when rainfall becomes runoff.
Naoki Mizukami, Oldrich Rakovec, Andrew J. Newman, Martyn P. Clark, Andrew W. Wood, Hoshin V. Gupta, and Rohini Kumar
Hydrol. Earth Syst. Sci., 23, 2601–2614, https://doi.org/10.5194/hess-23-2601-2019, https://doi.org/10.5194/hess-23-2601-2019, 2019
Short summary
Short summary
We find that Nash–Sutcliffe (NSE)-based model calibrations result in poor reproduction of high-flow events, such as the annual peak flows that are used for flood frequency estimation. The use of Kling–Gupta efficiency (KGE) results in annual peak flow estimates that are better than from NSE, with only a slight degradation in performance with respect to other related metrics.
Ralf Loritz, Hoshin Gupta, Conrad Jackisch, Martijn Westhoff, Axel Kleidon, Uwe Ehret, and Erwin Zehe
Hydrol. Earth Syst. Sci., 22, 3663–3684, https://doi.org/10.5194/hess-22-3663-2018, https://doi.org/10.5194/hess-22-3663-2018, 2018
Short summary
Short summary
In this study we explore the role of spatially distributed information on hydrological modeling. For that, we develop and test an approach which draws upon information theory and thermodynamic reasoning. We show that the proposed set of methods provide a powerful framework for understanding and diagnosing how and when process organization and functional similarity of hydrological systems emerge in time and, hence, when which landscape characteristic is important in a model application.
Tirthankar Roy, Hoshin V. Gupta, Aleix Serrat-Capdevila, and Juan B. Valdes
Hydrol. Earth Syst. Sci., 21, 879–896, https://doi.org/10.5194/hess-21-879-2017, https://doi.org/10.5194/hess-21-879-2017, 2017
Short summary
Short summary
This study presents and compares two different approaches to using satellite-derived estimates of actual evapotranspiration (ET) to improve the performance of a conceptual rainfall–runoff model. In the first approach, the ET process within the model is constrained using the satellite ET estimates, while in the second one, the model structure is altered. Results indicate that both the approaches improve streamflow forecasting, while the second one also improves the ET simulations significantly.
Hernan A. Moreno, Hoshin V. Gupta, Dave D. White, and David A. Sampson
Hydrol. Earth Syst. Sci., 20, 1241–1267, https://doi.org/10.5194/hess-20-1241-2016, https://doi.org/10.5194/hess-20-1241-2016, 2016
Short summary
Short summary
We use a distributed hydrologic model to document the potential impacts of a forest restoration project on the mean and extreme hydrologic conditions on a water-supply, semi-arid basin. Results show shifts in spatio-temporal patterns of interception, soil moisture, evapotranspiration, snow persistence and runoff production differently in contrasting aspect slopes. Forest thinning leads to net loss of surface water storage and to a less regulated runoff response during hydrologic extremes.
Z. H. He, F. Q. Tian, H. V. Gupta, H. C. Hu, and H. P. Hu
Hydrol. Earth Syst. Sci., 19, 1807–1826, https://doi.org/10.5194/hess-19-1807-2015, https://doi.org/10.5194/hess-19-1807-2015, 2015
S. Gharari, M. Shafiei, M. Hrachowitz, R. Kumar, F. Fenicia, H. V. Gupta, and H. H. G. Savenije
Hydrol. Earth Syst. Sci., 18, 4861–4870, https://doi.org/10.5194/hess-18-4861-2014, https://doi.org/10.5194/hess-18-4861-2014, 2014
U. Ehret, H. V. Gupta, M. Sivapalan, S. V. Weijs, S. J. Schymanski, G. Blöschl, A. N. Gelfan, C. Harman, A. Kleidon, T. A. Bogaard, D. Wang, T. Wagener, U. Scherer, E. Zehe, M. F. P. Bierkens, G. Di Baldassarre, J. Parajka, L. P. H. van Beek, A. van Griensven, M. C. Westhoff, and H. C. Winsemius
Hydrol. Earth Syst. Sci., 18, 649–671, https://doi.org/10.5194/hess-18-649-2014, https://doi.org/10.5194/hess-18-649-2014, 2014
H. V. Gupta, C. Perrin, G. Blöschl, A. Montanari, R. Kumar, M. Clark, and V. Andréassian
Hydrol. Earth Syst. Sci., 18, 463–477, https://doi.org/10.5194/hess-18-463-2014, https://doi.org/10.5194/hess-18-463-2014, 2014
Z. He, F. Tian, H. C. Hu, H. V. Gupta, and H. P. Hu
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hessd-11-1253-2014, https://doi.org/10.5194/hessd-11-1253-2014, 2014
Revised manuscript not accepted
Related subject area
Subject: Snow and Ice | Techniques and Approaches: Remote Sensing and GIS
Detecting snowfall events over the Arctic using optical and microwave satellite measurements
Extending the utility of space-borne snow water equivalent observations over vegetated areas with data assimilation
Assimilation of airborne gamma observations provides utility for snow estimation in forested environments
Characterizing 4 decades of accelerated glacial mass loss in the west Nyainqentanglha Range of the Tibetan Plateau
Estimating spatiotemporally continuous snow water equivalent from intermittent satellite observations: an evaluation using synthetic data
Development and validation of a new MODIS snow-cover-extent product over China
Processes governing snow ablation in alpine terrain – detailed measurements from the Canadian Rockies
Evaluation of MODIS and VIIRS cloud-gap-filled snow-cover products for production of an Earth science data record
Characterising spatio-temporal variability in seasonal snow cover at a regional scale from MODIS data: the Clutha Catchment, New Zealand
Icelandic snow cover characteristics derived from a gap-filled MODIS daily snow cover product
The recent developments in cloud removal approaches of MODIS snow cover product
Now you see it, now you don't: a case study of ephemeral snowpacks and soil moisture response in the Great Basin, USA
Assessment of a multiresolution snow reanalysis framework: a multidecadal reanalysis case over the upper Yampa River basin, Colorado
Snow cover dynamics in Andean watersheds of Chile (32.0–39.5° S) during the years 2000–2016
A new remote hazard and risk assessment framework for glacial lakes in the Nepal Himalaya
A snow cover climatology for the Pyrenees from MODIS snow products
Cloud obstruction and snow cover in Alpine areas from MODIS products
Application of MODIS snow cover products: wildfire impacts on snow and melt in the Sierra Nevada
LiDAR measurement of seasonal snow accumulation along an elevation gradient in the southern Sierra Nevada, California
Early 21st century snow cover state over the western river basins of the Indus River system
Validation of the operational MSG-SEVIRI snow cover product over Austria
CREST-Snow Field Experiment: analysis of snowpack properties using multi-frequency microwave remote sensing data
Snow cover dynamics and hydrological regime of the Hunza River basin, Karakoram Range, Northern Pakistan
Responses of snowmelt runoff to climatic change in an inland river basin, Northwestern China, over the past 50 years
Assessing the application of a laser rangefinder for determining snow depth in inaccessible alpine terrain
Emmihenna Jääskeläinen, Kerttu Kouki, and Aku Riihelä
Hydrol. Earth Syst. Sci., 28, 3855–3870, https://doi.org/10.5194/hess-28-3855-2024, https://doi.org/10.5194/hess-28-3855-2024, 2024
Short summary
Short summary
Snow cover is an important variable when studying the effect of climate change in the Arctic. Therefore, the correct detection of snowfall is important. In this study, we present methods to detect snowfall accurately using satellite observations. The snowfall event detection results of our limited area are encouraging. We find that further development could enable application over the whole Arctic, providing necessary information on precipitation occurrence over remote areas.
Justin M. Pflug, Melissa L. Wrzesien, Sujay V. Kumar, Eunsang Cho, Kristi R. Arsenault, Paul R. Houser, and Carrie M. Vuyovich
Hydrol. Earth Syst. Sci., 28, 631–648, https://doi.org/10.5194/hess-28-631-2024, https://doi.org/10.5194/hess-28-631-2024, 2024
Short summary
Short summary
Estimates of 250 m of snow water equivalent in the western USA and Canada are improved by assimilating observations representative of a snow-focused satellite mission with a land surface model. Here, by including a gap-filling strategy, snow estimates could be improved in forested regions where remote sensing is challenging. This approach improved estimates of winter maximum snow water volume to within 4 %, on average, with persistent improvements to both spring snow and runoff in many regions.
Eunsang Cho, Yonghwan Kwon, Sujay V. Kumar, and Carrie M. Vuyovich
Hydrol. Earth Syst. Sci., 27, 4039–4056, https://doi.org/10.5194/hess-27-4039-2023, https://doi.org/10.5194/hess-27-4039-2023, 2023
Short summary
Short summary
An airborne gamma-ray remote-sensing technique provides reliable snow water equivalent (SWE) in a forested area where remote-sensing techniques (e.g., passive microwave) typically have large uncertainties. Here, we explore the utility of assimilating the gamma snow data into a land surface model to improve the modeled SWE estimates in the northeastern US. Results provide new insights into utilizing the gamma SWE data for enhanced land surface model simulations in forested environments.
Shuhong Wang, Jintao Liu, Hamish D. Pritchard, Linghong Ke, Xiao Qiao, Jie Zhang, Weihua Xiao, and Yuyan Zhou
Hydrol. Earth Syst. Sci., 27, 933–952, https://doi.org/10.5194/hess-27-933-2023, https://doi.org/10.5194/hess-27-933-2023, 2023
Short summary
Short summary
We assessed and compared the glacier areal retreat rate and surface thinning rate and the effects of topography, debris cover and proglacial lakes in the west Nyainqentanglha Range (WNT) during 1976–2000 and 2000–2020. Our study will help us to better understand the glacier change characteristics in the WNT on a long timescale and will serve as a reference for glacier changes in other regions on the Tibetan Plateau.
Xiaoyu Ma, Dongyue Li, Yiwen Fang, Steven A. Margulis, and Dennis P. Lettenmaier
Hydrol. Earth Syst. Sci., 27, 21–38, https://doi.org/10.5194/hess-27-21-2023, https://doi.org/10.5194/hess-27-21-2023, 2023
Short summary
Short summary
We explore satellite retrievals of snow water equivalent (SWE) along hypothetical ground tracks that would allow estimation of SWE over an entire watershed. The retrieval of SWE from satellites has proved elusive, but there are now technological options that do so along essentially one-dimensional tracks. We use machine learning (ML) algorithms as the basis for a track-to-area (TTA) transformation and show that at least one is robust enough to estimate domain-wide SWE with high accuracy.
Xiaohua Hao, Guanghui Huang, Zhaojun Zheng, Xingliang Sun, Wenzheng Ji, Hongyu Zhao, Jian Wang, Hongyi Li, and Xiaoyan Wang
Hydrol. Earth Syst. Sci., 26, 1937–1952, https://doi.org/10.5194/hess-26-1937-2022, https://doi.org/10.5194/hess-26-1937-2022, 2022
Short summary
Short summary
We develop and validate a new 20-year MODIS snow-cover-extent product over China, which is dedicated to addressing known problems of the standard snow products. As expected, the new product significantly outperforms the state-of-the-art MODIS C6.1 products; improvements are particularly clear in forests and for the daily cloud-free product. Our product has provided more reliable snow knowledge over China and can be accessible freely https://dx.doi.org/10.11888/Snow.tpdc.271387.
Michael Schirmer and John W. Pomeroy
Hydrol. Earth Syst. Sci., 24, 143–157, https://doi.org/10.5194/hess-24-143-2020, https://doi.org/10.5194/hess-24-143-2020, 2020
Short summary
Short summary
The spatial distribution of snow water equivalent (SWE) and melt are important for hydrological applications in alpine terrain. We measured the spatial distribution of melt using a drone in very high resolution and could relate melt to topographic characteristics. Interestingly, melt and SWE were not related spatially, which influences the speed of areal melt out. We could explain this by melt varying over larger distances than SWE.
Dorothy K. Hall, George A. Riggs, Nicolo E. DiGirolamo, and Miguel O. Román
Hydrol. Earth Syst. Sci., 23, 5227–5241, https://doi.org/10.5194/hess-23-5227-2019, https://doi.org/10.5194/hess-23-5227-2019, 2019
Short summary
Short summary
Global snow cover maps have been available since 2000 from the MODerate resolution Imaging Spectroradiometer (MODIS), and since 2000 and 2011 from the Suomi National Polar-orbiting Partnership (S-NPP) and the Visible Infrared Imaging Radiometer Suite (VIIRS), respectively. These products are used extensively in hydrological modeling and climate studies. New, daily cloud-gap-filled snow products are available from both MODIS and VIIRS, and are being used to develop an Earth science data record.
Todd A. N. Redpath, Pascal Sirguey, and Nicolas J. Cullen
Hydrol. Earth Syst. Sci., 23, 3189–3217, https://doi.org/10.5194/hess-23-3189-2019, https://doi.org/10.5194/hess-23-3189-2019, 2019
Short summary
Short summary
Spatio-temporal variability of seasonal snow cover is characterised from 16 years of MODIS data for the Clutha Catchment, New Zealand. No trend was detected in snow-covered area. Spatial modes of variability reveal the role of anomalous winter airflow. The sensitivity of snow cover duration to temperature and precipitation variability is found to vary spatially across the catchment. These findings provide new insight into seasonal snow processes in New Zealand and guidance for modelling efforts.
Andri Gunnarsson, Sigurður M. Garðarsson, and Óli G. B. Sveinsson
Hydrol. Earth Syst. Sci., 23, 3021–3036, https://doi.org/10.5194/hess-23-3021-2019, https://doi.org/10.5194/hess-23-3021-2019, 2019
Short summary
Short summary
In this study a gap-filled snow cover product for Iceland is developed using MODIS satellite data and validated with both in situ observations and alternative remote sensing data sources with good agreement. Information about snow cover extent, duration and changes over time is presented, indicating that snow cover extent has been increasing slightly for the past few years.
Xinghua Li, Yinghong Jing, Huanfeng Shen, and Liangpei Zhang
Hydrol. Earth Syst. Sci., 23, 2401–2416, https://doi.org/10.5194/hess-23-2401-2019, https://doi.org/10.5194/hess-23-2401-2019, 2019
Short summary
Short summary
This paper is a review article on the cloud removal methods of MODIS snow cover products.
Rose Petersky and Adrian Harpold
Hydrol. Earth Syst. Sci., 22, 4891–4906, https://doi.org/10.5194/hess-22-4891-2018, https://doi.org/10.5194/hess-22-4891-2018, 2018
Short summary
Short summary
Ephemeral snowpacks are snowpacks that persist for less than 2 months. We show that ephemeral snowpacks melt earlier and provide less soil water input in the spring. Elevation is strongly correlated with whether snowpacks are ephemeral or seasonal. Snowpacks were also more likely to be ephemeral on south-facing slopes than north-facing slopes at high elevations. In warm years, the Great Basin shifts to ephemerally dominant as rain becomes more prevalent at increasing elevations.
Elisabeth Baldo and Steven A. Margulis
Hydrol. Earth Syst. Sci., 22, 3575–3587, https://doi.org/10.5194/hess-22-3575-2018, https://doi.org/10.5194/hess-22-3575-2018, 2018
Short summary
Short summary
Montane snowpacks are extremely complex to represent and usually require assimilating remote sensing images at very fine spatial resolutions, which is computationally expensive. Adapting the grid size of the terrain to its complexity was shown to cut runtime and storage needs by half while preserving the accuracy of ~ 100 m snow estimates. This novel approach will facilitate the large-scale implementation of high-resolution remote sensing data assimilation over snow-dominated montane ranges.
Alejandra Stehr and Mauricio Aguayo
Hydrol. Earth Syst. Sci., 21, 5111–5126, https://doi.org/10.5194/hess-21-5111-2017, https://doi.org/10.5194/hess-21-5111-2017, 2017
Short summary
Short summary
In Chile there is a lack of hydrological data, which complicates the analysis of important hydrological processes. In this study we validate a remote sensing product, i.e. the MODIS snow product, in Chile using ground observations, obtaining good results. Then MODIS was use to evaluated snow cover dynamic during 2000–2016 at five watersheds in Chile. The analysis shows that there is a significant reduction in snow cover area in two watersheds located in the northern part of the study area.
David R. Rounce, Daene C. McKinney, Jonathan M. Lala, Alton C. Byers, and C. Scott Watson
Hydrol. Earth Syst. Sci., 20, 3455–3475, https://doi.org/10.5194/hess-20-3455-2016, https://doi.org/10.5194/hess-20-3455-2016, 2016
Short summary
Short summary
Glacial lake outburst floods pose a significant threat to downstream communities and infrastructure as they rapidly unleash stored lake water. Nepal is home to many potentially dangerous glacial lakes, yet a holistic understanding of the hazards faced by these lakes is lacking. This study develops a framework using remotely sensed data to investigate the hazards and risks associated with each glacial lake and discusses how this assessment may help inform future management actions.
S. Gascoin, O. Hagolle, M. Huc, L. Jarlan, J.-F. Dejoux, C. Szczypta, R. Marti, and R. Sánchez
Hydrol. Earth Syst. Sci., 19, 2337–2351, https://doi.org/10.5194/hess-19-2337-2015, https://doi.org/10.5194/hess-19-2337-2015, 2015
Short summary
Short summary
There is a good agreement between the MODIS snow products and observations from automatic stations and Landsat snow maps in the Pyrenees. The optimal thresholds for which a MODIS pixel is marked as snow-covered are 40mm in water equivalent and 150mm in snow depth.
We generate a gap-filled snow cover climatology for the Pyrenees. We compute the mean snow cover duration by elevation and aspect classes. We show anomalous snow patterns in 2012 and consequences on hydropower production.
P. Da Ronco and C. De Michele
Hydrol. Earth Syst. Sci., 18, 4579–4600, https://doi.org/10.5194/hess-18-4579-2014, https://doi.org/10.5194/hess-18-4579-2014, 2014
Short summary
Short summary
The negative impacts of cloud obstruction in snow mapping from MODIS and a new reliable cloud removal procedure for the Italian Alps.
P. D. Micheletty, A. M. Kinoshita, and T. S. Hogue
Hydrol. Earth Syst. Sci., 18, 4601–4615, https://doi.org/10.5194/hess-18-4601-2014, https://doi.org/10.5194/hess-18-4601-2014, 2014
P. B. Kirchner, R. C. Bales, N. P. Molotch, J. Flanagan, and Q. Guo
Hydrol. Earth Syst. Sci., 18, 4261–4275, https://doi.org/10.5194/hess-18-4261-2014, https://doi.org/10.5194/hess-18-4261-2014, 2014
Short summary
Short summary
In this study we present results from LiDAR snow depth measurements made over 53 sq km and a 1600 m elevation gradient. We found a lapse rate of 15 cm accumulated snow depth and 6 cm SWE per 100 m in elevation until 3300 m, where depth sharply decreased. Residuals from this trend revealed the role of aspect and highlighted the importance of solar radiation and wind for snow distribution. Lastly, we compared LiDAR SWE estimations with four model estimates of SWE and total precipitation.
S. Hasson, V. Lucarini, M. R. Khan, M. Petitta, T. Bolch, and G. Gioli
Hydrol. Earth Syst. Sci., 18, 4077–4100, https://doi.org/10.5194/hess-18-4077-2014, https://doi.org/10.5194/hess-18-4077-2014, 2014
S. Surer, J. Parajka, and Z. Akyurek
Hydrol. Earth Syst. Sci., 18, 763–774, https://doi.org/10.5194/hess-18-763-2014, https://doi.org/10.5194/hess-18-763-2014, 2014
T. Y. Lakhankar, J. Muñoz, P. Romanov, A. M. Powell, N. Y. Krakauer, W. B. Rossow, and R. M. Khanbilvardi
Hydrol. Earth Syst. Sci., 17, 783–793, https://doi.org/10.5194/hess-17-783-2013, https://doi.org/10.5194/hess-17-783-2013, 2013
A. A. Tahir, P. Chevallier, Y. Arnaud, and B. Ahmad
Hydrol. Earth Syst. Sci., 15, 2275–2290, https://doi.org/10.5194/hess-15-2275-2011, https://doi.org/10.5194/hess-15-2275-2011, 2011
J. Wang, H. Li, and X. Hao
Hydrol. Earth Syst. Sci., 14, 1979–1987, https://doi.org/10.5194/hess-14-1979-2010, https://doi.org/10.5194/hess-14-1979-2010, 2010
J. L. Hood and M. Hayashi
Hydrol. Earth Syst. Sci., 14, 901–910, https://doi.org/10.5194/hess-14-901-2010, https://doi.org/10.5194/hess-14-901-2010, 2010
Cited articles
Ackerman, S. A., Strabala, K. I., Menzel, P. W. P., Frey, R. A., Moeller, C. C., and Gumley, L. E.: Discriminating clear sky from clouds with MODIS, J. Geophys Res., 103, 32141–32157, 1998.
Andreadis, K. M. and Lettenmaier, D. P.: Assimilating remotely sensed snow observations into a macroscale hydrology model, Adv. Water Resour., 29, 872–886, 2006.
Bitner, D., Carroll, T., Cline, D., and Romanov, P.: An assessment of the differences between three satellite snow cover mapping techniques, Hydrol. Process., 16, 3723–3733, 2002.
Carroll, T., Cline, D., Fall, G., Nilsson, A., Li, L., and Rost, A.: NOHRSC operations and the simulation of snow cover properties for the conterminous US, 69 Annual Meeting of the Western Snow Conference, Sun Valley, Idaho, 16–19 April 2001, available at: http://www.westernsnowconference.org/node/185 (last access: 3 May 2013), 2001.
Clark, M. P. and Slater, A. G.: Probabilistic quantitative precipitation estimation in complex terrain, J. Hydrometeorol., 7, 3–22, 2006.
Clark, M. P., Slater, A. G., Barrett, A. P., Rajagopalan, B., McCabe, G. J., Hay, L. E., and George, H. L.: Assimilation of snow covered area information into hydrologic and land-surface models, Adv. Water Res., 29, 1029–1221, 2006.
Dewalle, D. R. and Rango, A.: Principles of Snow Hydrology, 1st Edn., Cambridge University Press, 420 pp., 2008.
Earman, S., Campbell, A. R., Phillips, F. M., and Newman, B. D.: Isotopic exchange between snow and atmospheric water vapor: estimation of the snowmelt component of groundwater recharge in the Southwestern United States, J. Geophys. Res., 111, D09302, https://doi.org/10.1029/2005JD006470, 2006.
Gafurov, A. and Bárdossy, A.: Cloud removal methodology from MODIS snow cover product, Hydrol. Earth Syst. Sci., 13, 1361–1373, https://doi.org/10.5194/hess-13-1361-2009, 2009.
Gao, Y., Xie, H., Yao, T., and Xue, C.: Integrated assessment on multi-temporal and multi-sensor combinations for reducing cloud obscuration of MODIS snow cover products of the Pacific Northwest USA, Remote Sens. Environ., 114, 1662–1675, 2010.
Gomez-Landesa, E. and Rango, A.: Assessment of MODIS channels land 2 snow cover mapping capability, EOS T. Am. Geophys. Un., Vol. 81, 2000.
Hall, D. K. and Riggs, G. A.: Accuracy assessment of the MODIS snow products, Hydrol. Process., 21, 1534–1547, 2007.
Hawkins, T. W.: Parameterization of the snowmelt runoff model for the Salt-Verde System, Arizona during drought conditions, Journal of the Arizona-Nevada Academy of Science, 38, 66–73, 2006.
Jacobs, K. L., Garfin, G. M., and Morehouse, B. J.: Climate science and drought planning: the Arizona experience, J. Am. Water Resour. As., 41, 437–445, 2005.
Justice, C. O., Vermote, E., Townshend, J. R. G., Defries, R., Roy, D. P., Hall, D. K., Salomonson, V. V., Privette, J. L., Riggs, G., Strahler A., Lucht, W., Myneni, R. B., Knyazikhin, Y., Running, S. W., Nemani, R. R., Wan, Z. M., Huete, A. R., van Leeuwen, W., Wolfe, R. E, Giglio, L., Muller, J. P., Lewis, P., and Barnsley, M. J.: The moderate resolution imaging spectroradiometer (MODIS): land remote sensing for global change research, IEEE T. Geosci. Remote, 36, 1228–1249, 1998.
Klein, A. G. and Barnett, A. C.: Validation of daily MODIS snow cover maps of the Upper Rio Grande River Basin for the 2000–2001 snow year, Remote Sens. Environ., 86, 162–176, 2003.
Klein, A. G., Hall, D. K., and Riggs, G. A.: Improving snow-cover mapping in forests through the use of a canopy reflectance model, Hydrol. Process., 12, 1723–1744, 1998.
Klein, A. G., Hall, D. K., and Nolin, A. W.: Development of a prototype snow albedo algorithm for the NASA MODIS instrument, in: Proceedings of the 57th Eastern Snow Conference, 15–17 May 2000, Syracuse, NY, 143–157, 2000.
Lichtenegger, J., Seidel, K., Keller, M., and Haefner, H.: Snow surface measurements from digital Landsat MSS data, Nord. Hydrol., 12, 275–288, 1981.
Loader, C: Local Regression and Likelihood, Springer, New York, New York, 308 pp., 1999.
López-Burgos, V.: Reducing Cloud Obscuration on MODIS Snow Cover Area Products by Applying Spatio-Temporal Techniques Combined with Topographic Effects, MS Thesis, Department of Hydrology and Water Resources, The University of Arizona, Tucson, AZ, 124 pp., 2010.
Lucas, R. M. and Harrison, A. R.: Snow observation by satellite: a review, Remote Sens. Rev., 4, 285–348, 1990.
McGuire, M., Wood, A. W., Hamlet, A. F., and Lettenmaier, D. P.: Use of satellite data for stream flow and reservoir storage forecasts in the Snake River Basin, ID, J. Water Res. Pl.-ASCE, 132, 97–110, https://doi.org/10.1061/(ASCE)0733-9496(2006)132:2(97), 2005.
Maurer, E. P., Rhoads, J. D., Dubayah, R. O., and Lettenmaier, D. P.: Evaluation of the snowcovered area data product from MODIS, Hydrol. Process., 17, 59–71, 2003.
Megdal, S: Securing Sustainable Water Supplies in Arizona, IDS-Water-White Paper, available at: https://wrrc.arizona.edu/sites/wrrc.arizona.edu/files/mgdalReport.pdf (last access: May 2013), 2004.
Molotch, N. P., Fassnacht, S. R., Bales, R. C., and Helfrich, S. R.: Estimating the distribution of snow water equivalent and snow extent beneath cloud cover in the Salt-Verde River basin, Arizona, Hydrol. Process., 18, 1595–1611, 2004.
Parajka, J. and Blöschl, G.: Validation of MODIS snow cover images over Austria, Hydrol. Earth Syst. Sci., 10, 679–689, https://doi.org/10.5194/hess-10-679-2006, 2006.
Parajka, J. and Blösch, G.: Spatio-temporal combination of MODIS images – potential for snow cover mapping, Water Resour. Res., 44, W03406, https://doi.org/10.1029/2007WR006204, 2008.
Parajka, J., Pepe, M., Rampini, A., Rossi, S., and Blöschl, G.: A regional snow-line method for estimating snow cover from MODIS during cloud cover, J. Hydrol., 381, 203–212, 2010.
PRISM Climate Group at Oregon State University: United States Average Monthly or Annual Maximum Temperature, 1971–2000, available at: http://www.prism.oregonstate.edu/products/matrix.phtml?vartype=tmax&view=data (last access: 3 December 2012), 2006a.
PRISM Climate Group at Oregon State University: United States Average Monthly or Annual Minimum Temperature, 1971–2000, available at: http://www.prism.oregonstate.edu/products/matrix.phtml?vartype=tmin&view=data (last access: 3 December 2012), 2006b.
Rango, A.: The snowmelt-runoff model, in: Proceedings of the ARS Natural Resources Modeling Symposium, Pinyree Park, CO, 16–21 October 1983, 321–325, 1985.
Riggs, G. A. and Hall, D. K.: Reduction of cloud obscuration in the MODIS snow data product, in: Proceedings of the 59th Eastern Snow Conference, Stowe, VT, 6–7 June 2002, 205–212, 2002
Rinne, J. N.: Hydrology of the Salt River and its reservoirs, Central Arizona, Journal of the Arizona Academy of Science, 10, 75–86, 1975.
Rodell, M. and Houser, P. R.: Updating a land surface model with MODIS-derived snow cover, J. Hydrometeorol., 5, 1064–1075, 2004.
Schmugge, T. J., Kustas, W. P., Ritchie, J. C., Jackson, T. J., and Rango, A.: Remote sensing in hydrology, Adv. Water Resour., 25, 1367–1385, 2002.
Seidel, K., Ade, F., and Lichtenegger, J.: Aumenting LANDSAT MASS data with topographic information for enhanced registration and classification, IEEE T. Geosci. Remote, GE-21, 252–258, 1983.
Serreze, M. C., Clark, M. P., Armstrong, R. L., McGuiness, D. A., and Pulwarty, R. S.: Characteristics of the Western United States snowpack from snowpack telemetry (SNOTEL) data, Water Resour. Res., 35, 2145–2160, 1999.
Simic, A., Fernandes, R., Brown, R., Romanov, P., and Park, W.: Validation of Vegetation, MODIS, and GOES+SSM/I snow cover products over Canada based on surface snow depth observations, Hydrol. Process., 18, 1089–1104, 2004.
Tekeli, A., Akyürek, Z., Sorman, A. A., Sensoy, A., and Sorman, A. Ü.: Using MODIS snow cover maps in modeling snowmelt runoff process in the eastern part of Turkey, Remote Sens. Environ., 97, 216–230, 2005.
Wilks, D. S.: Statistical Methods in the Atmospheric Sciences, 2nd Edn., Academic Press, Burlington, Massachusetts, 648 pp., 2005.
Wolfe, R. E., Roy, D. P., and Vermonte, E.: MODIS land data storage, gridding, and compositing methodology: level 2 grid, IEEE T. Geosci. Remote, 36, 1324–1338, 1998.
Xie, H., Wang, X., and Liang, T.: Development and assessment of combined Terra and Aqua snow cover products in Colorado Plateau, USA and northern Xinjiang, China, J. Appl. Remote Sens., 3, 033559, https://doi.org/10.1117/1.3265996, 2009
Zhou, X., Xie, H., and Hendrickx, J. M. H.: Statistical evaluation of remotely sensed snowcover products with constraints from streamflow and SNOTEL measurements, Remote Sens. Environ., 94, 214–231, 2005.
Special issue