Articles | Volume 15, issue 9
https://doi.org/10.5194/hess-15-2777-2011
https://doi.org/10.5194/hess-15-2777-2011
Research article
 | 
01 Sep 2011
Research article |  | 01 Sep 2011

Spectral representation of the annual cycle in the climate change signal

T. Bosshard, S. Kotlarski, T. Ewen, and C. Schär

Related subject area

Subject: Hydrometeorology | Techniques and Approaches: Mathematical applications
Using statistical models to depict the response of multi-timescale drought to forest cover change across climate zones
Yan Li, Bo Huang, and Henning W. Rust
Hydrol. Earth Syst. Sci., 28, 321–339, https://doi.org/10.5194/hess-28-321-2024,https://doi.org/10.5194/hess-28-321-2024, 2024
Short summary
Past, present and future rainfall erosivity in central Europe based on convection-permitting climate simulations
Magdalena Uber, Michael Haller, Christoph Brendel, Gudrun Hillebrand, and Thomas Hoffmann
Hydrol. Earth Syst. Sci., 28, 87–102, https://doi.org/10.5194/hess-28-87-2024,https://doi.org/10.5194/hess-28-87-2024, 2024
Short summary
The most extreme rainfall erosivity event ever recorded in China up to 2022: the 7.20 storm in Henan Province
Yuanyuan Xiao, Shuiqing Yin, Bofu Yu, Conghui Fan, Wenting Wang, and Yun Xie
Hydrol. Earth Syst. Sci., 27, 4563–4577, https://doi.org/10.5194/hess-27-4563-2023,https://doi.org/10.5194/hess-27-4563-2023, 2023
Short summary
The role of atmospheric rivers in the distribution of heavy precipitation events over North America
Sara M. Vallejo-Bernal, Frederik Wolf, Niklas Boers, Dominik Traxl, Norbert Marwan, and Jürgen Kurths
Hydrol. Earth Syst. Sci., 27, 2645–2660, https://doi.org/10.5194/hess-27-2645-2023,https://doi.org/10.5194/hess-27-2645-2023, 2023
Short summary
Study on a mother wavelet optimization framework based on change-point detection of hydrological time series
Jiqing Li, Jing Huang, Lei Zheng, and Wei Zheng
Hydrol. Earth Syst. Sci., 27, 2325–2339, https://doi.org/10.5194/hess-27-2325-2023,https://doi.org/10.5194/hess-27-2325-2023, 2023
Short summary

Cited articles

Allen, M. R. and Ingram, W. J.: Constraints on future changes in climate and the hydrologic cycle, Nature, 419, 224–232, https://doi.org/10.1038/nature01092, 2002.
Buytaert, W., Vuille, M., Dewulf, A., Urrutia, R., Karmalkar, A., and Célleri, R.: Uncertainties in climate change projections and regional downscaling in the tropical Andes: implications for water resources management, Hydrol. Earth Syst. Sci., 14, 1247–1258, https://doi.org/10.5194/hess-14-1247-2010, 2010.
Cameron, D., Beven, K., and Naden, P.: Flood frequency estimation by continuous simulation under climate change (with uncertainty), Hydrol. Earth Syst. Sci., 4, 393–405, https://doi.org/10.5194/hess-4-393-2000, 2000.
Christensen, J. H. and Christensen, O. B.: A summary of the PRUDENCE model projections of changes in European climate by the end of this century, Climatic Change, 81, 7–30, https://doi.org/10.1007/s10584-006-9210-7, 2007.
Christensen, J. H., Carter, T. R., Rummukainen, M., and Amanatidis, G.: Evaluating the performance and utility of regional climate models: the PRUDENCE project, Climatic Change, 81, 1–6, https://doi.org/10.1007/s10584-006-9211-6, 2007.
Download