Articles | Volume 29, issue 21
https://doi.org/10.5194/hess-29-6221-2025
https://doi.org/10.5194/hess-29-6221-2025
Research article
 | 
13 Nov 2025
Research article |  | 13 Nov 2025

How to deal w___ missing input data

Martin Gauch, Frederik Kratzert, Daniel Klotz, Grey Nearing, Deborah Cohen, and Oren Gilon

Related authors

Technical note: An approach for handling multiple temporal frequencies with different input dimensions using a single LSTM cell
Eduardo Acuña Espinoza, Frederik Kratzert, Daniel Klotz, Martin Gauch, Manuel Álvarez Chaves, Ralf Loritz, and Uwe Ehret
Hydrol. Earth Syst. Sci., 29, 1749–1758, https://doi.org/10.5194/hess-29-1749-2025,https://doi.org/10.5194/hess-29-1749-2025, 2025
Short summary
Analyzing the generalization capabilities of a hybrid hydrological model for extrapolation to extreme events
Eduardo Acuña Espinoza, Ralf Loritz, Frederik Kratzert, Daniel Klotz, Martin Gauch, Manuel Álvarez Chaves, and Uwe Ehret
Hydrol. Earth Syst. Sci., 29, 1277–1294, https://doi.org/10.5194/hess-29-1277-2025,https://doi.org/10.5194/hess-29-1277-2025, 2025
Short summary
EARLS: A runoff reconstruction dataset for Europe
Daniel Klotz, Peter Miersch, Thiago V. M. do Nascimento, Fabrizio Fenicia, Martin Gauch, and Jakob Zscheischler
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-450,https://doi.org/10.5194/essd-2024-450, 2025
Revised manuscript under review for ESSD
Short summary
HESS Opinions: Never train a Long Short-Term Memory (LSTM) network on a single basin
Frederik Kratzert, Martin Gauch, Daniel Klotz, and Grey Nearing
Hydrol. Earth Syst. Sci., 28, 4187–4201, https://doi.org/10.5194/hess-28-4187-2024,https://doi.org/10.5194/hess-28-4187-2024, 2024
Short summary
A data-centric perspective on the information needed for hydrological uncertainty predictions
Andreas Auer, Martin Gauch, Frederik Kratzert, Grey Nearing, Sepp Hochreiter, and Daniel Klotz
Hydrol. Earth Syst. Sci., 28, 4099–4126, https://doi.org/10.5194/hess-28-4099-2024,https://doi.org/10.5194/hess-28-4099-2024, 2024
Short summary

Cited articles

Addor, N., Newman, A. J., Mizukami, N., and Clark, M. P.: The CAMELS data set: catchment attributes and meteorology for large-sample studies, Hydrol. Earth Syst. Sci., 21, 5293–5313, https://doi.org/10.5194/hess-21-5293-2017, 2017. a, b
Afifi, A. A. and Elashoff, R. M.: Missing Observations in Multivariate Statistics I. Review of the Literature, Journal of the American Statistical Association, 61, 595–604, 1966. a
Alammar, J.: Visualizing A Neural Machine Translation Model (Mechanics of Seq2seq Models With Attention), Google Research Blog, https://jalammar.github.io/visualizing-neural-machine-translation-mechanics-of-seq2seq-models-with-attention/ (last access: 10 November 2025), 2018. a
Auer, A., Gauch, M., Kratzert, F., Nearing, G., Hochreiter, S., and Klotz, D.: A data-centric perspective on the information needed for hydrological uncertainty predictions, Hydrol. Earth Syst. Sci., 28, 4099–4126, https://doi.org/10.5194/hess-28-4099-2024, 2024. a
Bahdanau, D., Cho, K., and Bengio, Y.: Neural Machine Translation by Jointly Learning to Align and Translate, in: 3rd International Conference on Learning Representations (ICLR), arXiv, https://doi.org/10.48550/arXiv.1409.0473, 2015. a, b, c
Download
Short summary
Missing input data are one of the most common challenges when building deep learning hydrological models. We present and analyze different methods that can produce predictions when certain inputs are missing during training or inference. Our proposed strategies provide high accuracy while allowing for more flexible data handling and being robust to outages in operational scenarios.
Share