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Abstract. Deep learning hydrologic models have made their
way from research to applications. More and more national
hydrometeorological agencies, hydro power operators, and
engineering consulting companies are building Long Short-
Term Memory (LSTM) models for operational use cases. All
of these efforts come across similar sets of challenges – chal-
lenges that are different from those in controlled scientific
studies. In this paper, we tackle one of these issues: how to
deal with missing input data? Operational systems depend
on the real-time availability of various data products – most
notably, meteorological forcings. The more external depen-
dencies a model has, however, the more likely it is to expe-
rience an outage in one of them. We introduce and compare
three different solutions that can generate predictions even
when some of the meteorological input data do not arrive in
time, or not arrive at all: First, input replacing, which imputes
missing values with a fixed number; second, masked mean,
which averages embeddings of the forcings that are available
at a given time step; third, attention, a generalization of the
masked mean mechanism that dynamically weights the em-
beddings. We compare the approaches in different missing
data scenarios and find that, by a small margin, the masked
mean approach tends to perform best.

1 Introduction

Deep learning approaches for hydrologic modeling are now
making their way from research settings into real-world oper-
ational deployments (e.g., Nearing et al., 2024; Frame et al.,
2025; Read et al., 2021; Franken et al., 2022). Unfortunately,
the real world is messy and in many ways does not con-
form to the controlled settings we can assume in research
studies (Mitchell and Jolley, 1988). One prime example for
such complications is the occurrence of outages with input
data products: state-of-the-art operational hydrologic mod-
els rely on the real-time availability of several externally
provided meteorological forcing products. As an example,
the hydrologic model in Google’s flood forecasting system
uses four different weather data products from four differ-
ent data providers as inputs (Cohen, 2024). At any point in
time, one or more of these providers might experience an
outage and not deliver the data in time to make the next pre-
diction. Where the timely arrival of data is usually not an
issue in research contexts, not producing forecasts for days
or even weeks is not an option for operational systems that
are needed for flood forecasts or water management.

Moreover, models that can cope with missing input data
are useful in other settings, such as training on data products
that are available for different time periods or different spatial
extents: the observation that larger and more diverse training
sets generally benefit the prediction quality (Kratzert et al.,
2024) appears at odds with the fact that local meteorologi-
cal forcings tend to have higher resolution and be more ac-
curate than global ones (Clerc-Schwarzenbach et al., 2024).
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Figure 1. Different scenarios for missing input data (gray bars):
outages at individual time steps (top), data products starting at dif-
ferent points in time (middle), and local data products that are not
available for all basins (bottom). All of these scenarios reduce the
number of training samples for models that are not robust, i.e., that
cannot cope with missing data (yellow, small box), while the mod-
els presented in this paper are robust, i.e., they can be trained on all
samples with valid targets (purple, large box).

Our proposed methods can mitigate this tension, as they al-
low us to train a single global model that incorporates local
forcings where they are available (Fig. 1). Orthogonally to
spatial coverage, our methods further allow us to train mod-
els with forcings that have different temporal coverage. This
is especially useful for more recent data products based on
remote sensing information.

Inevitably, the quality of predictions degrades as fewer in-
put data products are available (Kratzert et al., 2021). For-
tunately, deep learning methods are flexible enough to offer
solutions that limit this decay while remaining competitively
accurate when all data are available. In the following sec-
tions, we present three strategies to accomplish this goal:

– First, input replacing replaces missing forcing data with
a fixed value and adds binary flags to indicate outages.

– Second, masked mean embeds each forcing product sep-
arately and averages the embeddings of all products that
are available at a given time.

– Third, we show how the masked mean strategy is a spe-
cial case of a theoretically more expressive but practi-
cally equally accurate attention mechanism (Bahdanau
et al., 2015) that can dynamically adjust the weighting
of each forcing product, e.g., depending on the static at-
tributes of a basin.

We evaluate these strategies in three settings:

– First, random time step dropout. We investigate how ac-
curacy deteriorates as forcings are missing at more and
more time steps during training and inference (corre-
sponding to the top row in Fig. 1).

– Second, sequence dropout. We investigate how accu-
racy deteriorates as certain forcings become entirely un-
available during inference (corresponding to the middle
row in Fig. 1).

– Third, regional forcing products. We investigate how the
proposed strategies allow training global models that
leverage regional forcing data (corresponding to the bot-
tom row in Fig. 1).

We are not the first to study deep learning models that are
robust to missing input data (Afifi and Elashoff, 1966). In
fact, today’s large language models rely heavily on learn-
ing schemes that train the model to predict words given
incomplete and masked-out input sentences (e.g., Devlin
et al., 2019; Raffel et al., 2020; Brown et al., 2020). These
masked language models use special mask tokens to indicate
dropped-out data, which – at a high level – are similar to
the binary indicators we use in the input replacing strategy.
Similar techniques are used in computer vision models, such
as Masked Autoencoders (He et al., 2022). Srivastava et al.
(2014) highlight an additional benefit of dropping out inputs
(or hidden activations) during training: dropout has a regular-
izing effect on training and therefore reduces overfitting and
leads to models that generalize better.

Data-driven methods are also used to explicitly impute
missing data (e.g., Schafer, 1997; Wu et al., 2020), includ-
ing in hydrological and meteorological applications (e.g.,
Gao et al., 2018; Yozgatligil et al., 2013). Imputation sub-
sequently allows using models that cannot cope with missing
data. However, this strategy requires an additional imputation
model that needs to be trained separately or jointly with the
downstream model, making the setup and training more com-
plex. As we are less focused on the reconstruction of missing
data and more focused on maintaining prediction accuracy,
we do not consider such approaches in this study.

Our masked mean and attention mechanisms also bear
similarity to deep learning approaches that merge multi-
modal input data, such as LANISTR (Ebrahimi et al., 2023).
Their approach merges inputs from different modalities (such
as images, text, or structured data) into a joint embedding
space, while allowing individual modalities to be missing at
training or inference time. Further, the attention mechanism’s
dynamic weighting of forcing embeddings can be seen as a
variant of the conditioning operation described by Perez et al.
(2018) and at a higher level by Dumoulin et al. (2018).

2 Data and methods

2.1 Data

We ran all experiments on the 531 basins of the CAMELS
dataset (Newman et al., 2015; Addor et al., 2017) that previ-
ous studies used, e.g., Kratzert et al. (2021). The CAMELS
dataset comes with three sets of daily meteorological forc-
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ings: Daymet (Thornton et al., 1997), Maurer (Maurer et al.,
2002), and NLDAS (Xia et al., 2012). We consider these
forcings the “external dependencies” in this study. All mod-
els use all 15 forcing variables (precipitation, solar radia-
tion, min/max temperature, and vapor pressure for each of
the three forcing products) and the same set of 26 static at-
tributes as Kratzert et al. (2021)1. All models are trained with
streamflow as the target variable.

Again following Kratzert et al. (2021), we trained our
models on the period 1 October 1999 to 30 September 2008,
validated on 1 October 1980 to 30 September 1989, and
tested them on 1 October 1989 to 30 September 1999. All
results in this paper refer to the test period.

2.2 Methods

The models we train in this paper closely follow the archi-
tecture that was used in Kratzert et al. (2021), except that we
employ different mechanisms to feed the input data into the
LSTM itself. The following paragraphs describe these ap-
proaches in more detail.

2.2.1 Input replacing

The first mechanism to cope with missing input data sets
any missing values to a fixed value and adds a binary flag
to indicate these replacements, before concatenating all in-
put data and flags (Fig. 2; see also Nearing et al., 2024). Op-
tionally, we can embed the concatenated vector (in our case,
through a small fully-connected network). This reduces the
feature dimensions before the vector is finally used as input
to the LSTM. Further, we can concatenate a positional en-
coding vector to the forcings before the embedding, making
the model aware of the current input’s position relative to the
overall sequence length (not shown in Fig. 2). In initial exper-
iments, we also tried to make the replacement value a learned
parameter instead of setting it to a fixed value, but we did not
see meaningful improvements when doing so. Hence, in all
subsequent experiments, we used zero as the fixed value.

2.2.2 Masked mean

This approach embeds the forcings of each provider through
individual embedding networks, each of them yielding an
embedding vector of the same size. At every input time step,
we average the non-NaN embeddings of that time step (i.e.,
the embeddings that correspond to providers that were avail-
able at that time step; hence the name “masked mean”) and
pass the resulting joint embedding on to the LSTM (Fig. 3).
The inputs to the embedding networks could be extended by
additional features, such as the static catchment attributes.
However, in our experiments we found that this deteriorated

1Unlike what is mentioned in Kratzert et al. (2021),
p_seasonality was actually not used as a static input, as the experi-
ment configuration files show.

the performance. The flood forecasting system described by
Cohen (2024) uses a masked mean approach in the current
operational model.

2.2.3 Attention

Readers who are familiar with deep learning might recognize
the masked mean architecture as the simplification of a more
general attention mechanism (Bahdanau et al., 2015). Atten-
tion mechanisms have become ubiquitous in deep learning,
as they are the core component of the popular Transformer
architecture (Vaswani et al., 2017). The most common real-
izations of attention allow the model to dynamically adjust
its focus on different input time steps. Appendix D provides
a brief introduction to the concept of attention for readers
who are not familiar with the topic.

In our case, we apply the attention mechanism over the
different available providers at each time step. Figure 4 illus-
trates the process. Similar to the masked mean approach, we
embed each forcing with its own embedding network, result-
ing in vectors that we use as both the keys and values of the
attention mechanism. Additionally, we concatenate the static
attributes with a positional embedding of the input time step
(not shown in Fig. 4 for brevity) and three binary flags that
indicate the availability of each forcing product at the given
time step. A separate embedding of the resulting concate-
nated vector acts as the query. Based on the similarity of the
query and each of the key vectors, we obtain a weighting by
which we average the values, i.e., the embedding vectors of
the forcing products. This weighted average is the input to
the LSTM. Hence, the attention mechanism, could – at least
in theory – learn to dynamically adjust its focus on each forc-
ing product based on the basin it is asked to predict.

2.3 Experiments

We conducted three experiments to test how well each ar-
chitecture can cope with different scenarios where input data
are missing in certain temporal periods or spatial regions. To
save computational resources, we performed one hyperpa-
rameter tuning and used the resulting best hyperparameters
for all further experiments. Appendix A covers our tuning
procedure in more detail. In all experiments, we trained each
model with three different random seeds.

2.3.1 Experiment 1: Forcings missing at individual
time steps

This experiment simulates short-term outages of certain in-
put products. Because the LSTMs used in hydrologic appli-
cations typically ingest input data with one year (365 d) of
lookback, even an outage for a single time step can cause
problems for the next year to come: for the next 365 d, there
will be a NaN input time step, which breaks models that can-
not deal with missing input data. We trained and evaluated
the different models with an increasing probability of ran-
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Figure 2. Illustration of the input replacing strategy. Each box represents an input variable (like precipitation, temperature) from one of
the forcing groups. NaNs in the input data for a given time step are replaced by zeros (gray boxes for forcing group 2), all forcings are
concatenated, together with one binary flag for each forcing group which indicates whether that group was NaN or not. The resulting vector
is passed through an embedding network to the LSTM.

Figure 3. Illustration of the masked mean strategy. Each forcing provider is projected to the same size through its own embedding network.
The resulting embeddings of valid providers are averaged and passed on to the LSTM.

domly missing input time steps. The time step dropout is
sampled independently at random, i.e., at each input time
step, each forcing is missing with probability ptime. This
means that all products can be missing at once for certain
time steps. We sweep ptime from 0 to 0.6 in increments of
0.1.

As baselines, we used the three-forcing model from
Kratzert et al. (2021). This shows the upper bound of per-
formance we can expect when no data are missing. We also
included the worst of the three single-forcing models (based
solely on NLDAS) from the same source as a point of refer-
ence.

2.3.2 Experiment 2: Forcings missing for the entire
time sequence

This experiment simulates extended time periods with miss-
ing input data. In practical applications, this may happen
when an input product has limited temporal coverage, either
because it became available later than other products, or be-
cause it went out of service or had an extended outage while
the model was still in use. We evaluated this scenario by run-
ning inference with samples where all time steps of one or
two providers were set to NaN, and we report the results for
each combination of one or two missing providers.

To make sure the models can cope with this scenario, we
trained the models with samples that contained NaNs of two
types: (1) dropout of individual time steps (as in the previous
experiment) with ptime = 0.1, and (2) dropout of entire input
sequences with psequence = 0.12. We made sure to never drop
all three sequences entirely, but allowed the case where all
three products are missing at individual time steps.

The natural baselines in these experiments are the corre-
sponding one- and two-forcing models from Kratzert et al.
(2021). These baselines are not robust to missing input data,
and they simply ingest the concatenated forcing variables
from one or two forcing groups.

2.3.3 Experiment 3: Forcings missing for certain
spatial regions

Finally, we explored how the different approaches to missing
input data fare in settings where an input product is missing
for certain regions in space. This is relevant because for many
regions there exist local meteorological data products that are
of higher quality than globally available ones. At the same

2We also performed some preliminary experiments with ptime =
0.0, psequence = 0.1 since this more closely matches the evaluation
setup, but saw no meaningful differences in the results.
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Figure 4. Illustration of the attention embedding strategy. Each forcing provider is projected to the same size through its own embedding
network. The resulting embedding vectors become the keys (k) and values (v). The static attributes, together with a binary flag for each
provider, serve as the query. The attention-weighted average of embeddings is passed on to the LSTM.

Figure 5. Map of the 531 CAMELS basins used in this study. For
the 51 basins in the Ohio, Cumberland, and Tennessee River basins
(purple), we assumed all three forcing to be available. For all other
basins (blue), we assumed only Daymet and Maurer forcings to be
available.

time, training on diverse sets of basins benefits performance
(see Kratzert et al., 2024). Hence, being able to merge local
high-quality forcing data with global streamflow could – at
least in theory – combine the best of two worlds.

We simulated this setting on the CAMELS dataset by
training models that received Daymet and Maurer forcings
everywhere, but NLDAS forcings only for the 51 basins in
the Ohio, Cumberland, and Tennessee River basins (USGS
site numbers starting in 03, cf. Wells, 1960, depicted in
Fig. 5). As baselines, we trained a model on all three forc-
ings but only the 51 basins, and a model on all 531 basins but
only the two forcings that we assumed as available anywhere
(Daymet and Maurer).

3 Results

3.1 Experiment 1: Forcings missing at individual time
steps

In the first experiment, we trained models at different proba-
bilities ptime of input products being NaN at individual time
steps. Figure 6 shows the resulting Nash–Sutcliffe efficiency
(NSE; Nash and Sutcliffe, 1970) and Kling–Gupta efficiency
(KGE; Gupta et al., 2009) values at ptime = 0.0,0.1, . . .,0.6,
and Appendix C contains plots with additional metrics. As
expected, the accuracy of all methods drops with increas-
ing amounts of NaNs. At 0 % NaNs, all methods perform
roughly as good as the three-forcing baseline from Kratzert
et al. (2021), which cannot cope with missing input data.
The models exhibit slightly worse NSE values than the base-
line, while masked mean and input replacing are slightly
better in KGE. These minor differences arise because our
newly trained models were tuned for a setting with moder-
ate amounts of missing input data and therefore use slightly
different hyperparameters than the three-forcings baseline.

As ptime increases, we see no clear winner in terms of
NSE; all methods decay by roughly equal amounts in this
metric. For KGE, the masked mean architecture tends to per-
form better than input replacing and attention: except for
ptime = 0.2, the masked mean results are significantly better
than those of input replacing (one-sided Wilcoxon signed-
rank test at α = 0.05). The attention mechanism generally
performs significantly worse than masked mean and input
replacing, except at the highest missing data probabilities.
To investigate why attention under-performs at low ptime, we
plotted the attention weights placed by the model on each set
of forcings (Fig. C3 in Appendix C), and found that, apart
from a select few basins, the weights fluctuate closely around
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Figure 6. Median NSE and KGE across 531 basins at different amounts of missing input time steps. The dotted horizontal line provides the
baseline of a model that cannot deal with missing data but is trained to ingest all three forcing groups at every time step. The dashed line
represents the baseline of a model that uses the worst individual set of forcings (NLDAS). Both baselines stem from Kratzert et al. (2021).
The shaded areas indicate the spread between minimum and maximum values across three seeds; the solid lines represent the median.

1/3. Hence, the model merely attempted to recover the solu-
tion that is hard-coded in the masked mean strategy.

3.2 Experiment 2: Forcings missing for the entire time
sequence

In this experiment, we evaluated to what extent the different
architectures can maintain their accuracy when one or two
sets of forcings are missing entirely at inference time. Fig-
ure 7 shows the resulting empirical cumulative distribution
functions (CDFs) of NSE values. Kratzert et al. (2021) al-
ready provide results which indicate that the availability of
fewer forcing products implies worse model performance.

The results from experiment 2 corroborate this finding. In
the experiments where one set of forcings is available at in-
ference time (first column in Fig. 7), the baseline trained on
that one set of forcings (dashed line) performs significantly
better than the missing-inputs architectures, but the effect
sizes in the comparison to masked mean and attention are
small (Cohen’s d < 0.1). The only exception to this is the
NLDAS-only experiment, where the baseline does not per-
form significantly better than masked mean and attention.
Input replacing tends to perform the worst across all eval-
uations.

In the experiments where two sets of forcings are available
at inference time (second column in Fig. 7), we find similar
results as in the experiments with one missing set of forc-
ings. However, the margins in accuracy between the differ-
ent methods are even smaller and likely not relevant for most
practical applications.

3.3 Experiment 3: Forcings missing for certain spatial
regions

The last experiment investigated how well the missing-input
architectures can incorporate regional input data, i.e., forc-

ings that are available only in a subset of the training basins.
Figure 8 shows the resulting empirical CDF curves of NSE
and KGE values, and Appendix C provides figures with ad-
ditional metrics.

Masked mean, attention, and input replacing all improve
the predictions when compared to the globally trained two-
forcing model. The three-forcing regional model trained only
on the 51 basins in the Ohio, Cumberland, and Tennessee
River basins is significantly better than input replacing and
attention, but not significantly better than masked mean
(one-sided Wilcoxon signed-rank test, α = 0.05). This pat-
tern is similar for the additional metrics from Appendix C.
However, from a practical hydrological perspective, all ap-
proaches perform quite similar, despite the statistical signifi-
cance.

4 Discussion and conclusions

In this study, we presented three different strategies to build
models that can provide streamflow predictions when parts
of the meteorological input data are missing. Input replacing
replaces NaNs with a fixed value, concatenates all forcings,
and adds binary flags to indicate the missing data. Masked
mean embeds each forcing product separately and averages
the embeddings of available forcings. Finally, attention gen-
eralizes the masked mean approach and dynamically calcu-
lates a weighting of the different embeddings. Across all ex-
periments (missing individual time steps, missing sequences,
regional forcings), the masked mean strategy tends to per-
form best, although the differences are often small and de-
pend on metrics. The fact that the models are unable to out-
perform the baseline trained on all three forcings but only
51 local basins (experiment 3) lets us conjecture that the
high-quality CAMELS forcings may not be the ideal testbed
for an evaluation of regional forcings. All three forcings
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Figure 7. Empirical cumulative distribution functions of NSE values across all 531 basins when two (first column) or one (second column)
forcing groups are continuously missing. The subplot titles denote which products we passed to the model during inference. The dotted line
represents the upper bound baseline, a model that is trained and evaluated with all three forcings; the dashed line represents the performance
of a model trained specifically for the available combination of forcings. All results show the mean performance across three seeds; curves
further to the right are better.

Figure 8. Empirical CDFs of NSE values across the 51 basins of the Ohio, Cumberland, and Tennessee River basins. The dashed line
represents the baseline model trained only on those basins but with all forcings. The dotted line is the baseline two-forcing model trained on
all 531 basins. The other models are trained on all 531 basins with NLDAS set to NaN outside of the 51 basins. All results show the mean
performance across three seeds.
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are of similar quality and the basins in the chosen region
are comparably similar and easy to predict, hence, a rather
small set of training gauges appears to already yield satis-
factory predictions and it becomes difficult to discern mean-
ingful differences. We therefore hypothesize that evaluations
on larger datasets and with forcings of more varied quality
would yield clearer conclusions. Unfortunately, these larger
datasets are still missing the type of widely accepted baseline
models and state-of-the-art LSTM configurations that exist
for CAMELS. Hence, for this study we chose to stick with
the CAMELS dataset in order to maintain consistency with
Kratzert et al. (2021) and to allow for easy reproduction of
experiments with limited resources. We see great potential
for future work that extends the experiment to such settings.

Notably, the attention mechanism – despite being strictly
more expressive than the masked mean strategy – does not
improve upon these results and largely learns to recover the
masked mean solution. We also experimented with analyzing
the attention weights grouped by time steps with falling/ris-
ing streamflow or by the forcing whose precipitation devi-
ated the furthest from the mean, but could not identify any
patterns (results not shown). Therefore, in its current form,
attention appears unnecessary. Nevertheless, we do encour-
age further work in this direction as our experiments do
not fully exhaust the space of possible attention configura-
tions, and we hypothesize that attention might play to its
strengths especially in settings where the quality of inputs
varies significantly across forcings, space, or time. Extending
the scope beyond established baselines, future work could
evaluate this, for example, with the new Caravan MultiMet
dataset (Shalev and Kratzert, 2024). Caravan MultiMet pro-
vides forcings from seven different providers for all basins in
the Caravan dataset and its extensions (Kratzert et al., 2023).
There are also many alternative approaches to calculating
query, keys, and values: e.g., incorporating the forcing in-
formation also into the query vector or incorporating static
information into the keys and values.

Lastly, we would like to look at the presented strategies
from a different perspective: we can view them as means
to inject additional data into a model. Such injections can
happen already during training (the multiple forcings we use
in our experiments are an example for this), but they could
also happen after training: for example, hydromet agencies
could download a publicly available global model and inject
locally available forcings or even lagged observations into
the model. We encourage exploring such approaches further,
as they could alleviate current trade-offs between training set
size and input data resolution.

Appendix A: Hyperparameter tuning

All hyperparameter tuning experiments used ptime =

psequence = 0.1. We chose these values as an intermediate
level of missing data to avoid the computational expense
of tuning each architecture for each experiment setup sep-
arately. As we built upon the established baselines from
Kratzert et al. (2021), we did not tune the LSTM architecture
itself for the experiments in this paper. Hence, all LSTMs are
trained with 365 daily input time steps, a hidden size of 256,
batch size 256, dropout fraction of 0.4 on the output head,
and an Adam optimizer with initial learning rate of 1×10−3,
which we lowered to 5× 10−4 in epoch 10 and to 1× 10−4

in epoch 25. We used the NSE∗ loss function from Kratzert
et al. (2019). For a more in-depth description of these set-
tings, we refer to Kratzert et al. (2019).

We did, however, tune the hyperparameters of the missing-
inputs mechanisms as well as the number of training epochs.
For input replacing configurations, we chose slightly larger
embedding sizes, such that the total parameter count in input
replacing configurations is roughly equal to the parameter
count in masked mean configurations. Attention configura-
tions are marginally larger as they have an additional query
embedding network, but we consider this difference irrele-
vant for the results in our comparisons – especially given that
the optimal attention configuration was not the largest one in
the hyperparameter grid.

We performed a grid search of the hyperparameter combi-
nations listed in Table A1. As for the main experiments, we
trained each combination with three different random seeds.
Finally, we chose the best configuration for each architecture
as the one with the best median NSE value across all basins
in the validation period, averaged across seeds. Table A2 lists
the best configuration for each architecture.
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Table A1. Hyperparameter tuning grid.

Hyperparameter Values

Embedding hidden layer sizes Input replacing [5], [7, 5], [17, 10], [17, 17, 10], [17, 17, 17, 10]
(ReLU-activated) Masked mean [5], [5, 5], [10, 10], [10, 10, 10], [10, 10, 10, 10]

Attention∗ [10, 10], [10, 10, 10], [10, 10, 10, 10]
Positional encoding size 0, 5
Number of attention heads 1, 2, 5
Evaluated epochs 5, 10, 15, 20, 25, 30, 35, 40

∗ We excluded configurations with hidden size 5, because the final embedding size must be divisible by the number of attention
heads.

Table A2. Best hyperparameter configurations based on validation period results.

Architecture Embedding hidden Positional Number of Epoch
layer sizes encoding size attention heads

Input replacing [17, 10] 5 – 30
Masked mean [10, 10, 10, 10] 0 – 35
Attention [10, 10, 10] 5 1 30

Appendix B: Computational resources

We conducted all experiments on Nvidia P100 GPU ma-
chines running Python 3.11 and NeuralHydrology 1.11.0
(with local modifications that are part of the 1.12.0 release).
In total, including preliminary experiments, hyperparameter
tuning, and final experiments, we trained approximately 800
models. This amounts to approximately 286 wall-time com-
putation days (measuring the time from writing the config-
uration to disk to the last Tensorboard update). We did not
spend any effort optimizing the runtime of these jobs; many
runs could have been sped up significantly, e.g., through in-
creased parallelism in data loading.

Appendix C: Additional figures

In consideration of the fact that no single metric adequately
captures the quality of a model (Gauch et al., 2023), we pro-
vide Fig. C1 as an extended version of Fig. 6 (showing the
performance with increasing number of NaN inputs for a va-
riety of additional metrics). Further, Fig. C2 extends Fig. 8
and shows empirical CDFs of the experiment with regional
forcings for additional metrics. We refer to Gauch et al.
(2023) for the definitions of these measures.

Lastly, Fig. C3 shows the fractional attention to each forc-
ing product for three models trained with different random
seeds (see experiment 1).
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Figure C1. Extended version of Fig. 6, showing additional metrics (see Gauch et al., 2023 for the definitions of these metrics).

Hydrol. Earth Syst. Sci., 29, 6221–6235, 2025 https://doi.org/10.5194/hess-29-6221-2025



M. Gauch et al.: How to deal w___ missing input data 6231

Figure C2. Extended version of Fig. 8, showing additional metrics (see Gauch et al., 2023 for the definitions of these metrics).
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Figure C3. Fraction of attention each product received at each
basin, averaged over time. The pie slices are scaled by their fraction
to (overly) emphasize differences. Each subplot shows the results
for a model trained with a different seed. For better overview, we
only plot a random sample of 100 gauges.

Appendix D: A very brief introduction to attention

This section gives a brief high-level introduction to attention,
since, as of now, attention is not a widely used concept in hy-
drologic deep learning applications. As the name suggests,
the main idea of “attention” is to provide neural networks
with a way to focus on specific parts of their inputs, de-
pending on the current context. Early attention mechanisms
come from language applications (Graves, 2013; Bahdanau
et al., 2015), where models would focus on relevant words in
the source language to produce the corresponding translated
words in the target language. With the introduction of the
Transformer architecture, attention became one of the most
widely used concepts in deep learning (Vaswani et al., 2017).
By now, attention and similar approaches have made their
way into applications in various fields, including hydrology
(e.g., Auer et al., 2024; Rasiya Koya and Roy, 2024).

One way to think about attention – and the origin of
today’s query/key/value nomenclature – is as a learned
similarity-based soft database retrieval (Fig. D1). Let us de-

Figure D1. High-level illustration of attention. The query vector
(left) is compared to each key vector (middle), and the correspond-
ing value vectors are merged in a weighted average according to the
similarity measure, producing the attention output (right).

construct this: by “database”, we refer to pairs of so-called
values and keys. That is, each value is an entry in the database
that we can retrieve with its associated key. Given a query,
we calculate a similarity score between the query and each
key (this constitutes the “similarity-based” component). All
three elements (query/keys/values) are network embeddings,
i.e., vectors. For example, one could embed a timeseries of
runoff observations as keys, create a one-to-one mapping to
the values and then use a given event as the query to search
for similar occurrences. The output of the attention opera-
tion is a weighted mean of all values, where the weight is
higher for values whose keys are more similar to the query
(hence “soft” lookup; we do not return a specific value from
the database but a weighted average across all values). For
example, if we use attention for a translation task, the query
would be a learned embedding of the word currently being
processed, and keys and values would be embeddings of all
source language words3. By adjusting the embedding net-
works, the model can now learn to achieve higher similarity
between query and words that are relevant for translating the
current word and lower similarity between query and irrele-
vant words. Finally, we can apply masking (setting the simi-
larity to zero) to disallow attention to certain words.

While the most common application of attention is re-
trieval along a temporal axis (such as the progression of
a sentence), the concept generalizes to retrieval of values
from arbitrary sets (Dosovitskiy et al., 2021; Ramsauer et al.,
2021). In this paper, we consider the embeddings of meteoro-
logical forcings as our key–value database (the embeddings
act both as keys and as values), and the static attributes of
a basin as our query. Hence, the model can learn to retrieve
different forcing combinations in different places.

We conclude this short introduction with the caveat that
deep learning is an active field, and at this point there are
thousands of publications leveraging, improving, or analyz-
ing attention mechanisms. Therefore, this introduction is by

3We ignore some specifics to language modeling here (e.g., posi-
tional encoding or tokenization), because they are not immediately
relevant to the attention mechanism at the high level of our expla-
nation.
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far not exhaustive, nor does it cover any of the formal and
mathematical aspects. For a deeper introduction, including
the actual equations, we refer to Alammar (2018), Rohrer
(2021), and Bishop and Bishop (2023).

Code and data availability. We conducted all experiments
with the NeuralHydrology library (Kratzert et al., 2022). The
CAMELS dataset necessary to run the experiments is available
at https://ral.ucar.edu/solutions/products/camels (last access: 10
November 2025; Newman et al., 2015; Addor et al., 2017).
The extended Maurer and NLDAS forcings (which include
daily minimum and maximum temperature) are available at
https://doi.org/10.4211/hs.17c896843cf940339c3c3496d0c1c077
(Kratzert, 2019a) and https://doi.org/10.4211/hs.
0a68bfd7ddf642a8be9041d60f40868c (Kratzert, 2019b). The
additional code for analyses and figures presented in this pa-
per are available at https://github.com/gauchm/missing-inputs
(https://doi.org/10.5281/zenodo.17362593, Gauch, 2025b).
Finally, all trained models and results files are available at
https://doi.org/10.5281/zenodo.15008460 (Gauch, 2025a).
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