Articles | Volume 29, issue 15
https://doi.org/10.5194/hess-29-3745-2025
https://doi.org/10.5194/hess-29-3745-2025
Research article
 | 
14 Aug 2025
Research article |  | 14 Aug 2025

Two-dimensional differential form of distributed Xinanjiang model

Jianfei Zhao, Zhongmin Liang, Vijay P. Singh, Taiyi Wen, Yiming Hu, Binquan Li, and Jun Wang

Related authors

Nonparametric estimation method for river cross-sections with point cloud data from UAV photography URiver-X version 1.0 -methodology development
Taesam Lee, Jaewoo Park, Sunghyun Hwang, and Vijay Singh
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2023-57,https://doi.org/10.5194/gmd-2023-57, 2023
Revised manuscript not accepted
Short summary
Statistical post-processing of precipitation forecasts using circulation classifications and spatiotemporal deep neural networks
Tuantuan Zhang, Zhongmin Liang, Wentao Li, Jun Wang, Yiming Hu, and Binquan Li
Hydrol. Earth Syst. Sci., 27, 1945–1960, https://doi.org/10.5194/hess-27-1945-2023,https://doi.org/10.5194/hess-27-1945-2023, 2023
Short summary
Multicriteria assessment framework of flood events simulated with vertically mixed runoff model in semiarid catchments in the middle Yellow River
Dayang Li, Zhongmin Liang, Yan Zhou, Binquan Li, and Yupeng Fu
Nat. Hazards Earth Syst. Sci., 19, 2027–2037, https://doi.org/10.5194/nhess-19-2027-2019,https://doi.org/10.5194/nhess-19-2027-2019, 2019
Short summary
Connections between meteorological and hydrological droughts in a semi-arid basin of the middle Yellow River
Binquan Li, Changchang Zhu, Zhongmin Liang, Guoqing Wang, and Yu Zhang
Proc. IAHS, 379, 403–407, https://doi.org/10.5194/piahs-379-403-2018,https://doi.org/10.5194/piahs-379-403-2018, 2018
Short summary
Non-stationary hydrological frequency analysis based on the reconstruction of extreme hydrological series
Y. M. Hu, Z. M. Liang, X. L. Jiang, and H. Bu
Proc. IAHS, 371, 163–166, https://doi.org/10.5194/piahs-371-163-2015,https://doi.org/10.5194/piahs-371-163-2015, 2015
Short summary

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Mathematical applications
Understanding meteorological and physio-geographical controls of variability of flood event classes in headstream catchments of China
Yongyong Zhang, Yongqiang Zhang, Xiaoyan Zhai, Jun Xia, Qiuhong Tang, Wei Wang, Jian Wu, Xiaoyu Niu, and Bing Han
Hydrol. Earth Syst. Sci., 29, 3257–3275, https://doi.org/10.5194/hess-29-3257-2025,https://doi.org/10.5194/hess-29-3257-2025, 2025
Short summary
Technical note: Streamflow seasonality using directional statistics
Wouter R. Berghuijs, Kate Hale, and Harsh Beria
Hydrol. Earth Syst. Sci., 29, 2851–2862, https://doi.org/10.5194/hess-29-2851-2025,https://doi.org/10.5194/hess-29-2851-2025, 2025
Short summary
Technical note: Quadratic Solution of the Approximate Reservoir Equation (QuaSoARe)
Julien Lerat
Hydrol. Earth Syst. Sci., 29, 2003–2021, https://doi.org/10.5194/hess-29-2003-2025,https://doi.org/10.5194/hess-29-2003-2025, 2025
Short summary
Climatic, topographic, and groundwater controls on runoff response to precipitation: evidence from a large-sample data set
Zahra Eslami, Hansjörg Seybold, and James W. Kirchner
EGUsphere, https://doi.org/10.5194/egusphere-2025-35,https://doi.org/10.5194/egusphere-2025-35, 2025
Short summary
Processes and controls of regional floods over eastern China
Yixin Yang, Long Yang, Jinghan Zhang, and Qiang Wang
Hydrol. Earth Syst. Sci., 28, 4883–4902, https://doi.org/10.5194/hess-28-4883-2024,https://doi.org/10.5194/hess-28-4883-2024, 2024
Short summary

Cited articles

Anhui Provincial Department of Water Resources (APDWR): Anhui Water Information, http://yc.wswj.net/ahsxx/LOL/, last access: 9 August 2025. 
Bates, P. D., Horritt, M. S., and Fewtrell, T. J.: A simple inertial formulation of the shallow water equations for efficient two-dimensional flood inundation modelling, J. Hydrol., 387, 33–45, https://doi.org/10.1016/j.jhydrol.2010.03.027, 2010. 
Beven, K.: Towards an alternative blueprint for a physically based digitally simulated hydrologic response modelling system, Hydrol. Process., 16, 189–206, https://doi.org/10.1002/hyp.343, 2002. 
Beven, K. J., Kirkby, M. J., Freer, J. E., and Lamb, R.: A history of TOPMODEL, Hydrol. Earth Syst. Sci., 25, 527–549, https://doi.org/10.5194/hess-25-527-2021, 2021. 
Bisht, G. and Riley, W. J.: Development and verification of a numerical library for solving global terrestrial multiphysics problems, J. Adv. Model. Earth Sy., 11, 1516–1542, https://doi.org/10.1029/2018MS001560, 2019. 
Download
Short summary
This paper reformulates the model equations of the distributed Xinanjiang hydrological model in fully differential form and incorporates two-dimensional slope runoff routing methods, which are solved using appropriate numerical techniques. The main contribution is to provide an approach for distributed hydrological models that have evolved from lumped counterparts to reduce inherited numerical errors and to improve terrain representation, thereby enhancing their physical realism and simulation accuracy.
Share