Articles | Volume 28, issue 23
https://doi.org/10.5194/hess-28-5173-2024
https://doi.org/10.5194/hess-28-5173-2024
Research article
 | 
02 Dec 2024
Research article |  | 02 Dec 2024

Estimating response times, flow velocities, and roughness coefficients of Canadian Prairie basins

Kevin R. Shook, Paul H. Whitfield, Christopher Spence, and John W. Pomeroy

Related authors

The spatial extent of hydrological and landscape changes across the mountains and prairies of Canada in the Mackenzie and Nelson River basins based on data from a warm-season time window
Paul H. Whitfield, Philip D. A. Kraaijenbrink, Kevin R. Shook, and John W. Pomeroy
Hydrol. Earth Syst. Sci., 25, 2513–2541, https://doi.org/10.5194/hess-25-2513-2021,https://doi.org/10.5194/hess-25-2513-2021, 2021
Short summary
Summary and synthesis of Changing Cold Regions Network (CCRN) research in the interior of western Canada – Part 2: Future change in cryosphere, vegetation, and hydrology
Chris M. DeBeer, Howard S. Wheater, John W. Pomeroy, Alan G. Barr, Jennifer L. Baltzer, Jill F. Johnstone, Merritt R. Turetsky, Ronald E. Stewart, Masaki Hayashi, Garth van der Kamp, Shawn Marshall, Elizabeth Campbell, Philip Marsh, Sean K. Carey, William L. Quinton, Yanping Li, Saman Razavi, Aaron Berg, Jeffrey J. McDonnell, Christopher Spence, Warren D. Helgason, Andrew M. Ireson, T. Andrew Black, Mohamed Elshamy, Fuad Yassin, Bruce Davison, Allan Howard, Julie M. Thériault, Kevin Shook, Michael N. Demuth, and Alain Pietroniro
Hydrol. Earth Syst. Sci., 25, 1849–1882, https://doi.org/10.5194/hess-25-1849-2021,https://doi.org/10.5194/hess-25-1849-2021, 2021
Short summary

Cited articles

Abrahams, A. D., Parsons, A. J., and Wainwright, J.: Resistance to overland flow on semiarid grassland and shrubland hillslopes, Walnut Gulch, southern Arizona, J. Hydrol., 156, 431–446, https://doi.org/10.1016/0022-1694(94)90088-4, 1994. 
Agriculture and Agri-food Canada: Land Cover for Agricultural Regions of Canada, circa 2000 – Open Government Portal, https://open.canada.ca/data/en/dataset/16d2f828-96bb-468d-9b7d-1307c81e17b8 (last access: 1 April 2022), 2009. 
Alberta Agriculture and Forestry, Government of Alberta: Areal Extent of Wetlands, Areal Extent of Wetlands, https://open.alberta.ca/opendata/gda-57f606f5-4b81-446e-aaf6-f5b93c092a96 (last access: 14 June 2020), 2016. 
Anderson, E., Chlumsky, R., McCaffrey, D., Trubilowicz, J., Shook, K. R., and Whitfield, P. H.: R-functions for Canadian hydrologists: A Canada-wide collaboration, Can. Water Resour. J./Revue canadienne des ressources hydriques, 44, 108–112, https://doi.org/10.1080/07011784.2018.1492884, 2019. 
Annand, H.: The influence of climate change and wetland managment on prairie hydrology – insights from Smith Creek, Saskatchewan, PhD thesis, University of Saskatchewan, https://harvest.usask.ca/server/api/core/bitstreams/faad51d2-d55a-4099-bad4-5ced54bdffb5/content (last access: 29 June 2022), 2022. 
Download
Short summary
Recent studies suggest that the velocities of water running off landscapes in the Canadian Prairies may be much smaller than generally assumed. Analyses of historical flows for 23 basins in central Alberta show that many of the rivers responded more slowly and that the flows are much slower than would be estimated from equations developed elsewhere. The effects of slow flow velocities on the development of hydrological models of the region are discussed, as are the possible causes.
Share