Articles | Volume 28, issue 20
https://doi.org/10.5194/hess-28-4755-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-28-4755-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Experimental investigation of the interplay between transverse mixing and pH reaction in porous media
Adi Biran
Faculty of Civil and Environmental Engineering, Technion, Haifa, Israel
Tomer Sapar
Faculty of Civil and Environmental Engineering, Technion, Haifa, Israel
Ludmila Abezgauz
Faculty of Civil and Environmental Engineering, Technion, Haifa, Israel
Yaniv Edery
CORRESPONDING AUTHOR
Faculty of Civil and Environmental Engineering, Technion, Haifa, Israel
Related authors
No articles found.
Evgeny Shavelzon, Erwin Zehe, and Yaniv Edery
EGUsphere, https://doi.org/10.22541/essoar.173687429.91307309/v1, https://doi.org/10.22541/essoar.173687429.91307309/v1, 2025
Short summary
Short summary
We analyze how chemical reactions and fluid movement interact in porous materials, focusing on how water paths form in underground environments. Using a thermodynamic approach, we track energy dissipation and entropy changes to understand this process. Over time, water channels become more defined, reducing chemical mixing and energy loss. Eventually, the system stabilizes, with flow concentrated in efficient pathways, minimizing further reactions and energy use.
Evgeny Shavelzon and Yaniv Edery
Hydrol. Earth Syst. Sci., 28, 1803–1826, https://doi.org/10.5194/hess-28-1803-2024, https://doi.org/10.5194/hess-28-1803-2024, 2024
Short summary
Short summary
We investigate the interaction of transport with dissolution–precipitation reactions in porous media using the concepts of entropy and work to quantify the emergence of preferential flow paths. We show that the preferential-flow-path phenomenon and the hydraulic power required to maintain the driving pressure drop intensify over time along with the heterogeneity due to the interaction between the transport and the reactive processes. This is more pronounced in diffusion-dominated flows.
Yaniv Edery, Martin Stolar, Giovanni Porta, and Alberto Guadagnini
Hydrol. Earth Syst. Sci., 25, 5905–5915, https://doi.org/10.5194/hess-25-5905-2021, https://doi.org/10.5194/hess-25-5905-2021, 2021
Short summary
Short summary
The interplay between dissolution, precipitation and transport is widely encountered in porous media, from CO2 storage to cave formation in carbonate rocks. We show that dissolution occurs along preferential flow paths with high hydraulic conductivity, while precipitation occurs at locations close to yet separated from these flow paths, thus further funneling the flow and changing the probability density function of the transport, as measured on the altered conductivity field at various times.
Erwin Zehe, Ralf Loritz, Yaniv Edery, and Brian Berkowitz
Hydrol. Earth Syst. Sci., 25, 5337–5353, https://doi.org/10.5194/hess-25-5337-2021, https://doi.org/10.5194/hess-25-5337-2021, 2021
Short summary
Short summary
This study uses the concepts of entropy and work to quantify and explain the emergence of preferential flow and transport in heterogeneous saturated porous media. We found that the downstream concentration of solutes in preferential pathways implies a downstream declining entropy in the transverse distribution of solute transport pathways. Preferential flow patterns with lower entropies emerged within media of higher heterogeneity – a stronger self-organization despite a higher randomness.
Cited articles
Acharya, R. C., Valocchi, A. J., Werth, C. J., and Willingham, T. W.: Pore-scale simulation of dispersion and reaction along a transverse mixing zone in two-dimensional porous media, Water Resour. Res., 43, W10435, https://doi.org/10.1029/2007WR005969, 2007. a
Agmon, N.: The Grotthuss mechanism, Chem. Phys. Lett., 244, 456–462, https://doi.org/10.1016/0009-2614(95)00905-J, 1995. a, b
Al-Khulaifi, Y., Lin, Q., Blunt, M. J., and Bijeljic, B.: Reaction Rates in Chemically Heterogeneous Rock: Coupled Impact of Structure and Flow Properties Studied by X-ray Microtomography, Environ. Sci. Technol., 51, 4108–4116, https://doi.org/10.1021/acs.est.6b06224, 2017. a
Alhashmi, Z., Blunt, M. J., and Bijeljic, B.: Predictions of dynamic changes in reaction rates as a consequence of incomplete mixing using pore scale reactive transport modeling on images of porous media, J. Contam. Hydrol., 179, 171–181, https://doi.org/10.1016/j.jconhyd.2015.06.004, 2015. a
Almarcha, C., Trevelyan, P. M., Grosfils, P., and De Wit, A.: Chemically driven hydrodynamic instabilities, Phys. Rev. Lett., 104, 044501, https://doi.org/10.1103/PhysRevLett.104.044501, 2010. a
Amdursky, N., Lin, Y., Aho, N., and Groenhof, G.: Exploring fast proton transfer events associated with lateral proton diffusion on the surface of membranes, P. Natl. Acad. Sci. USA, 116, 2443–2451, https://doi.org/10.1073/pnas.1812351116, 2019. a
Avnir, Y. and Barenholz, Y.: pH determination by pyranine: Medium-related artifacts and their correction, Anal. Biochem., 347, 34–41, https://doi.org/10.1016/j.ab.2005.09.026, 2005. a
Bard, A. J., Faulkner, L. R., and White, H. S.: Electrochemical methods: fundamentals and applications, John Wiley & Sons, ISBN 0471055425, 2022. a
Barzan, M. and Hajiesmaeilbaigi, F.: Investigation the concentration effect on the absorption and fluorescence properties of Rhodamine 6G dye, Optik, 159, 157–161, https://doi.org/10.1016/j.ijleo.2018.01.075, 2018. a, b, c
Battiato, I. and Tartakovsky, D. M.: Applicability regimes for macroscopic models of reactive transport in porous media, J. Contam. Hydrol., 120–121, 18–26, https://doi.org/10.1016/j.jconhyd.2010.05.005, 2011. a
Beyhaghi, S. and Pillai, K.: Estimation of tortuosity and effective diffusivity tensors using closure formulation in a sintered polymer wick during transport of a nondilute, multicomponent liquid mixture, Special Topics & Reviews in Porous Media: An International Journal, 2, https://doi.org/10.1615/SpecialTopicsRevPorousMedia.v2.i4.20, 2011. a
Bockris, J. O. and Reddy, A. K.: Volume 1: Modern Electrochemistry: Ionics, Springer, ISBN 978-0-306-45554-4, 1999. a
Borgman, O., Gomez, F., Le Borgne, T., and Méheust, Y.: Impact of structural heterogeneity on solute transport and mixing in unsaturated porous media: An experimental study, EGU General Assembly 2023, Vienna, Austria, 24–28 Apr 2023, EGU23-11028, https://doi.org/10.5194/egusphere-egu23-11028, 2023. a
Bossis, G. and Brady, J. F.: Self‐diffusion of Brownian particles in concentrated suspensions under shear, J. Chem. Phys., 87, 5437–5448, https://doi.org/10.1063/1.453708, 1987. a
Browne, C. A. and Datta, S. S.: Harnessing elastic instabilities for enhanced mixing and reaction kinetics in porous media, arXiv [preprint], https://doi.org/10.48550/arXiv.2311.07431, 2023. a
Carrera, J., Saaltink, M. W., Soler-Sagarra, J., Wang, J., and Valhondo, C.: Reactive Transport: A Review of Basic Concepts with Emphasis on Biochemical Processes, Energies, 15, 925, https://doi.org/10.3390/en15030925, 2022. a
Carrillo‐González, R., Šimůnek, J., Sauvé, S., and Adriano, D.: Mechanisms and Pathways of Trace Element Mobility in Soils, in: Advances in Agronomy, vol. 91, Academic Press, 111–178, https://doi.org/10.1016/S0065-2113(06)91003-7, 2006. a
Chiogna, G. and Bellin, A.: Analytical solution for reactive solute transport considering incomplete mixing within a reference elementary volume, Water Resour. Res., 49, 2589–2600, https://doi.org/10.1002/wrcr.20200, 2013. a
Datta, S. S., Chiang, H., Ramakrishnan, T., and Weitz, D. A.: Spatial fluctuations of fluid velocities in flow through a three-dimensional porous medium, Phys. Rev. Lett., 111, 064501, https://doi.org/10.1103/PhysRevLett.111.064501, 2013. a
Dehkharghani, A., Waisbord, N., Dunkel, J., and Guasto, J. S.: Bacterial scattering in microfluidic crystal flows reveals giant active Taylor–Aris dispersion, P. Natl. Acad. Sci. USA, 116, 11119–11124, 2019. a
Dentz, M., Le Borgne, T., Englert, A., and Bijeljic, B.: Mixing, spreading and reaction in heterogeneous media: A brief review, J. Contam. Hydrol., 120, 1–17, 2011. a
Donten, M. L., VandeVondele, J., and Hamm, P.: Speed Limits for Acid – Base Chemistry in Aqueous Solutions, CHIMIA, 66, 182, https://doi.org/10.2533/chimia.2012.182, 2012. a
Edery, Y., Scher, H., and Berkowitz, B.: Dissolution and precipitation dynamics during dedolomitization, Water Resour. Res., 47, W08535, https://doi.org/10.1029/2011WR010551, 2011. a
Edery, Y., Dror, I., Scher, H., and Berkowitz, B.: Anomalous reactive transport in porous media: Experiments and modeling, Phys. Rev. E, 91, 052130, https://doi.org/10.1103/PhysRevE.91.052130, 2015. a
Edery, Y., Stolar, M., Porta, G., and Guadagnini, A.: Feedback mechanisms between precipitation and dissolution reactions across randomly heterogeneous conductivity fields, Hydrol. Earth Syst. Sci., 25, 5905–5915, https://doi.org/10.5194/hess-25-5905-2021, 2021. a
Eliyahu-Yakir, Y., Abezgauz, L., and Edery, Y.: From mixing to displacement of miscible phases in porous media: The role of heterogeneity and inlet pressures, Physical Review Fluids, 9, 084501, https://doi.org/10.1103/PhysRevFluids.9.084501, 2024. a, b
Fogler, H. S.: Essentials of chemical reaction engineering, Pearson education, ISBN 0132317176, 2011. a
Gendron, P.-O., Avaltroni, F., and Wilkinson, K. J.: Diffusion Coefficients of Several Rhodamine Derivatives as Determined by Pulsed Field Gradient–Nuclear Magnetic Resonance and Fluorescence Correlation Spectroscopy, J. Fluoresc., 18, 1093–1101, https://doi.org/10.1007/s10895-008-0357-7, 2008. a, b
Geurts, P. M. G.: New Atomic Force Microscopy based analysis tools for investigation of multiphase flow and reactive transport in porous media, Master thesis, 2021. a
Ghaderi Zefreh, M., Nilsen, H. M., Lie, K. A., Raynaud, X., and Doster, F.: Streamline simulation of a reactive advective flow with discontinuous flux function, Comput. Geosci., 23, 255–271, https://doi.org/10.1007/s10596-018-9771-3, 2019. a
Goldberg-Yehuda, N., Assouline, S., Mau, Y., and Nachshon, U.: Compaction effects on evaporation and salt precipitation in drying porous media, Hydrol. Earth Syst. Sci., 26, 2499–2517, https://doi.org/10.5194/hess-26-2499-2022, 2022. a
Guadagnini, A., Sanchez-Vila, X., Saaltink, M. W., Bussini, M., and Berkowitz, B.: Application of a mixing-ratios based formulation to model mixing-driven dissolution experiments, Adv. Water Resour., 32, 756–766, https://doi.org/10.1016/j.advwatres.2008.07.005, 2009. a
Guo, J.-T., Wei, Y.-Q., Chen, S.-L., Sun, W., Fan, T.-T., Xu, M.-R., and Zhang, C.-C.: Measurement of pore diffusion factor of porous solid materials, Petrol. Sci., 19, 1897–1904, 2022. a
Hassanali, A., Prakash, M. K., Eshet, H., and Parrinello, M.: On the recombination of hydronium and hydroxide ions in water, P. Natl. Acad. Sci. USA, 108, 20410–20415, https://doi.org/10.1073/pnas.1112486108, 2011. a, b
Himmelsbach, T., Hotzl, H., and Maloszewski, P.: Solute transport processes in a highly permeable fault zone of Lindau fractured rock test site (Germany), Ground Water, 36, 792–800, 1998. a
Holzbecher, E.: 12 – Reactive Transport in Porous Media – Concepts and Numerical Approaches, in: Transport Phenomena in Porous Media III, edited by: Ingham, D. B. and Pop, I., Pergamon, Oxford, 305–340, ISBN 978-0-08-044490-1, https://doi.org/10.1016/B978-008044490-1/50016-8, 2005. a
Huang, P.-W., Flemisch, B., Qin, C.-Z., Saar, M. O., and Ebigbo, A.: Validating the Nernst–Planck transport model under reaction-driven flow conditions using RetroPy v1.0, Geosci. Model Dev., 16, 4767–4791, https://doi.org/10.5194/gmd-16-4767-2023, 2023. a
Katz, G. E., Berkowitz, B., Guadagnini, A., and Saaltink, M. W.: Experimental and modeling investigation of multicomponent reactive transport in porous media, J. Contam. Hydrol., 120-121, 27–44, https://doi.org/10.1016/j.jconhyd.2009.11.002, 2011. a
Kim, J.-H., Ochoa, J. A., and Whitaker, S.: Diffusion in anisotropic porous media, Transport Porous Med., 2, 327–356, 1987. a
Lai, P., Moulton, K., and Krevor, S.: Pore-scale heterogeneity in the mineral distribution and reactive surface area of porous rocks, Chem. Geol., 411, 260–273, https://doi.org/10.1016/j.chemgeo.2015.07.010, 2015. a
Li, L., Peters, C. A., and Celia, M. A.: Upscaling geochemical reaction rates using pore-scale network modeling, Adv. Water Resour., 29, 1351–1370, https://doi.org/10.1016/j.advwatres.2005.10.011, 2006. a
Li, L., Peters, C. A., and Celia, M. A.: Effects of mineral spatial distribution on reaction rates in porous media, Water Resour. Res., 43, W01419, https://doi.org/10.1029/2005WR004848, 2007a. a
Li, L., Peters, C. A., and Celia, M. A.: Reply to “Comment on upscaling geochemical reaction rates using pore-scale network modeling” by Peter C. Lichtner and Qinjun Kang, Adv. Water Resour., 30, 691–695, https://doi.org/10.1016/j.advwatres.2006.05.002, 2007b. a
Lichtner, P. C.: Continuum formulation of multicomponent-multiphase reactive transport, Rev. Mineral., 34, 1–82, 1996. a
Lichtner, P. C. and Kang, Q.: Comment on: “Upscaling geochemical reaction rates using pore-scale network modeling” by Li, Peters and Celia, Adv. Water Resour., 30, 686–690, https://doi.org/10.1016/j.advwatres.2006.05.005, 2007. a, b
Liu, C., Shang, J., and Zachara, J. M.: Multispecies diffusion models: A study of uranyl species diffusion, Water Resour. Res., 47, W12514, https://doi.org/10.1029/2011WR010575, 2011. a
Loyaux-Lawniczak, S., Lehmann, F., and Ackerer, P.: Acid/base front propagation in saturated porous media: 2D laboratory experiments and modeling, J. Contam. Hydrol., 138, 15–21, 2012. a
Neina, D.: The Role of Soil pH in Plant Nutrition and Soil Remediation, Applied and Environmental Soil Science, 2019, e5794869, https://doi.org/10.1155/2019/5794869, 2019. a
Nissan, A. and Berkowitz, B.: Reactive Transport in Heterogeneous Porous Media Under Different Péclet Numbers, Water Resour. Res., 55, 10119–10129, https://doi.org/10.1029/2019WR025585, 2019. a
Noiriel, C. and Soulaine, C.: Pore-Scale Imaging and Modelling of Reactive Flow in Evolving Porous Media: Tracking the Dynamics of the Fluid–Rock Interface, Transport Porous Med., 140, 181–213, https://doi.org/10.1007/s11242-021-01613-2, 2021. a
Nützmann, G., Viotti, P., and Aagaard, P. (Eds.): Reactive transport in soil and groundwater: processes and models, Springer, Berlin, ISBN 978-3-540-26744-7, 2005. a
Parkhurst, D. L. and Appelo, C. A. J.: PHREEQC (Version 2) – A Computer Program for Speciation, Batch-Reaction, One-Dimensional Transport, and Inverse Geochemical Calculations, Denver, Colorado, USA, US Geological Survey, Water Resources Division, https://doi.org/10.3133/wri994259, 2013. a
Penn, C. J. and Camberato, J. J.: A Critical Review on Soil Chemical Processes that Control How Soil pH Affects Phosphorus Availability to Plants, Agriculture, 9, 120, https://doi.org/10.3390/agriculture9060120, 2019. a
Quintard, M.: Diffusion in isotropic and anisotropic porous systems: Three-dimensional calculations, Transport Porous Med., 11, 187–199, 1993. a
Quintard, M. and Whitaker, S.: Transport in ordered and disordered porous media: volume-averaged equations, closure problems, and comparison with experiment, Chem. Eng. Sci., 48, 2537–2564, 1993. a
Ray, N., Rupp, A., Schulz, R., and Knabner, P.: Old and new approaches predicting the diffusion in porous media, Transport Porous Med., 124, 803–824, 2018. a
Rolle, M., Muniruzzaman, M., Haberer, C. M., and Grathwohl, P.: Coulombic effects in advection-dominated transport of electrolytes in porous media: Multicomponent ionic dispersion, Geochim. Cosmochim. Ac., 120, 195–205, 2013. a
Rolle, M., Sprocati, R., Masi, M., Jin, B., and Muniruzzaman, M.: Nernst-Planck-based description of transport, coulombic interactions, and geochemical reactions in porous media: Modeling approach and benchmark experiments, Water Resour. Res., 54, 3176–3195, 2018. a
Shavelzon, E. and Edery, Y.: Shannon entropy of transport self-organization due to dissolution–precipitation reaction at varying Peclet numbers in initially homogeneous porous media, Hydrol. Earth Syst. Sci., 28, 1803–1826, https://doi.org/10.5194/hess-28-1803-2024, 2024. a
Sparks, D. L., Singh, B., and Siebecker, M. G.: Chapter 3 - Chemistry of Soil Organic Matter, in: Environmental Soil Chemistry (Third Edition), edited by: Sparks, D. L., Singh, B., and Siebecker, M. G., Academic Press, Boston, 105–167, ISBN 978-0-443-14034-1, https://doi.org/10.1016/B978-0-443-14034-1.00003-4, 2024. a
Steefel, C. I. and MacQuarrie, K. T. B.: Chapter 2. Approaches to Modeling of Reactive Transport in Porous Media, in: Reactive Transport in Porous Media, edited by: Lichtner, P. C., Steefel, C. I., and Oelkers, E. H., De Gruyter, 83–130, ISBN 978-1-5015-0979-7, https://doi.org/10.1515/9781501509797-005, 1996. a
Stocks-Fischer, S., Galinat, J. K., and Bang, S. S.: Microbiological precipitation of CaCO3, Soil Biol. Biochem., 31, 1563–1571, https://doi.org/10.1016/S0038-0717(99)00082-6, 1999. a
Stolze, L., Battistel, M., and Rolle, M.: Oxidative Dissolution of Arsenic-Bearing Sulfide Minerals in Groundwater: Impact of Hydrochemical and Hydrodynamic Conditions on Arsenic Release and Surface Evolution, Environ. Sci. Technol., 56, 5049–5061, https://doi.org/10.1021/acs.est.2c00309, 2022. a
Tartakovsky, A. M., Meakin, P., Scheibe, T. D., and Wood, B. D.: A smoothed particle hydrodynamics model for reactive transport and mineral precipitation in porous and fractured porous media, Water Resour. Res., 43, W05437, https://doi.org/10.1029/2005WR004770, 2007. a
Tartakovsky, A. M., Redden, G., Lichtner, P. C., Scheibe, T. D., and Meakin, P.: Mixing-induced precipitation: Experimental study and multiscale numerical analysis, Water Resour. Res., 44, W06S04, https://doi.org/10.1029/2006WR005725, 2008. a
Tartakovsky, A. M., Tartakovsky, G. D., and Scheibe, T. D.: Effects of incomplete mixing on multicomponent reactive transport, Adv. Water Resour., 32, 1674–1679, 2009. a
Thabet, K., Le Gal La Salle, A., Quarez, E., and Joubert, O.: Chapter 4 – Protonic-based ceramics for fuel cells and electrolyzers, in: Solid Oxide-Based Electrochemical Devices, edited by: Lo Faro, M., Academic Press, 91–122, ISBN 978-0-12-818285-7, https://doi.org/10.1016/B978-0-12-818285-7.00004-6, 2020. a
Thullner, M., Van Cappellen, P., and Regnier, P.: Modeling the impact of microbial activity on redox dynamics in porous media, Geochim. Cosmochim. Ac., 69, 5005–5019, https://doi.org/10.1016/j.gca.2005.04.026, 2005. a, b
Tuckerman, M. E., Chandra, A., and Marx, D.: Structure and Dynamics of OH−(aq), Accounts Chem. Res., 39, 151–158, https://doi.org/10.1021/ar040207n,2006. a
Valocchi, A. J., Bolster, D., and Werth, C. J.: Mixing-Limited Reactions in Porous Media, Transport Porous Med., 130, 157–182, https://doi.org/10.1007/s11242-018-1204-1, 2019. a
Varcoe, J. R., Atanassov, P., Dekel, D. R., Herring, A. M., Hickner, M. A., Kohl, P. A., Kucernak, A. R., Mustain, W. E., Nijmeijer, K., and Scott, K.: Anion-exchange membranes in electrochemical energy systems, Energ. Environ. Sci., 7, 3135–3191, 2014. a
Ward, B. B., Arp, D. J., and Klotz, M. G.: Nitrification, American Society for Microbiology Press, ISBN 978-1-55581-481-6, 2011. a
Wolke, C. T., Fournier, J. A., Dzugan, L. C., Fagiani, M. R., Odbadrakh, T. T., Knorke, H., Jordan, K. D., McCoy, A. B., Asmis, K. R., and Johnson, M. A.: Spectroscopic snapshots of the proton-transfer mechanism in water, Science, 354, 1131–1135, https://doi.org/10.1126/science.aaf8425, 2016. a
Zhang, Y., Cao, Z., Hou, F., and Cheng, J.: Characterizing Preferential Flow Paths in Texturally Similar Soils under Different Land Uses by Combining Drainage and Dye-Staining Methods, Water, 13, 219, https://doi.org/10.3390/w13020219, 2021. a
Short summary
In Earth sciences, pH-driven reactions in porous environments impact natural processes like mineral dissolution and groundwater remediation. Traditional models struggle due to pore-scale complexities. This study explores how porous structure and flow rate affect mixing and chemical reactions. Surprisingly, pH-driven reactions occur faster than predicted, emphasizing water’s unique pH behavior in porous media.
In Earth sciences, pH-driven reactions in porous environments impact natural processes like...