Articles | Volume 28, issue 7
https://doi.org/10.5194/hess-28-1539-2024
https://doi.org/10.5194/hess-28-1539-2024
Research article
 | 
04 Apr 2024
Research article |  | 04 Apr 2024

Multi-model approach in a variable spatial framework for streamflow simulation

Cyril Thébault, Charles Perrin, Vazken Andréassian, Guillaume Thirel, Sébastien Legrand, and Olivier Delaigue

Related authors

Technical note: How many models do we need to simulate hydrologic processes across large geographical domains?
Wouter J. M. Knoben, Ashwin Raman, Gaby J. Gründemann, Mukesh Kumar, Alain Pietroniro, Chaopeng Shen, Yalan Song, Cyril Thébault, Katie van Werkhoven, Andrew W. Wood, and Martyn P. Clark
Hydrol. Earth Syst. Sci., 29, 2361–2375, https://doi.org/10.5194/hess-29-2361-2025,https://doi.org/10.5194/hess-29-2361-2025, 2025
Short summary
Catchment Attributes and MEteorology for Large-Sample SPATially distributed analysis (CAMELS-SPAT): Streamflow observations, forcing data and geospatial data for hydrologic studies across North America
Wouter J. M. Knoben, Kasra Keshavarz, Laura Torres-Rojas, Cyril Thébault, Nathaniel W. Chaney, Alain Pietroniro, and Martyn P. Clark
EGUsphere, https://doi.org/10.5194/egusphere-2025-893,https://doi.org/10.5194/egusphere-2025-893, 2025
Short summary

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Modelling approaches
Adaptation of root zone storage capacity to climate change and its effects on future streamflow in Alpine catchments: towards non-stationary model parameters
Magali Ponds, Sarah Hanus, Harry Zekollari, Marie-Claire ten Veldhuis, Gerrit Schoups, Roland Kaitna, and Markus Hrachowitz
Hydrol. Earth Syst. Sci., 29, 3545–3568, https://doi.org/10.5194/hess-29-3545-2025,https://doi.org/10.5194/hess-29-3545-2025, 2025
Short summary
Finding process-behavioural parameterisations of a hydrological model using a multi-step process-based calibration and evaluation scheme
Moritz M. Heuer, Hadysa Mohajerani, and Markus C. Casper
Hydrol. Earth Syst. Sci., 29, 3503–3525, https://doi.org/10.5194/hess-29-3503-2025,https://doi.org/10.5194/hess-29-3503-2025, 2025
Short summary
Merits and limits of SWAT-GL: application in contrasting glaciated catchments
Timo Schaffhauser, Florentin Hofmeister, Gabriele Chiogna, Fabian Merk, Ye Tuo, Julian Machnitzke, Lucas Alcamo, Jingshui Huang, and Markus Disse
Hydrol. Earth Syst. Sci., 29, 3227–3256, https://doi.org/10.5194/hess-29-3227-2025,https://doi.org/10.5194/hess-29-3227-2025, 2025
Short summary
Hydrological regime index for non-perennial rivers
Pablo Fernando Dornes and Rocío Noelia Comas
Hydrol. Earth Syst. Sci., 29, 2901–2923, https://doi.org/10.5194/hess-29-2901-2025,https://doi.org/10.5194/hess-29-2901-2025, 2025
Short summary
Assessing the adequacy of traditional hydrological models for climate change impact studies: a case for long short-term memory (LSTM) neural networks
Jean-Luc Martel, François Brissette, Richard Arsenault, Richard Turcotte, Mariana Castañeda-Gonzalez, William Armstrong, Edouard Mailhot, Jasmine Pelletier-Dumont, Gabriel Rondeau-Genesse, and Louis-Philippe Caron
Hydrol. Earth Syst. Sci., 29, 2811–2836, https://doi.org/10.5194/hess-29-2811-2025,https://doi.org/10.5194/hess-29-2811-2025, 2025
Short summary

Cited articles

Ajami, N. K., Duan, Q., Gao, X., and Sorooshian, S.: Multimodel Combination Techniques for Analysis of Hydrological Simulations: Application to Distributed Model Intercomparison Project Results, J. Hydrometeorol., 7, 755–768, https://doi.org/10.1175/JHM519.1, 2006. 
Ajami, N. K., Duan, Q., and Sorooshian, S.: An integrated hydrologic Bayesian multimodel combination framework: Confronting input, parameter, and model structural uncertainty in hydrologic prediction, Water Resour. Res., 43, W01403, https://doi.org/10.1029/2005WR004745, 2007. 
Andréassian, V., Hall, A., Chahinian, N., and Schaake, J.: Introduction and synthesis: Why should hydrologists work on a large number of basin data sets?, in: Large sample basin experiments for hydrological parametrization: results of the models parameter experiment-MOPEX, IAHS Red Books Series no. 307, AISH, 1–5, https://iahs.info/uploads/dms/13599.02-1-6-INTRODUCTION.pdf (last access: 23 March 2023), 2006. 
Arsenault, R., Gatien, P., Renaud, B., Brissette, F., and Martel, J.-L.: A comparative analysis of 9 multi-model averaging approaches in hydrological continuous streamflow simulation, J. Hydrol., 529, 754–767, https://doi.org/10.1016/j.jhydrol.2015.09.001, 2015. 
Artigue, G., Johannet, A., Borrell, V., and Pistre, S.: Flash flood forecasting in poorly gauged basins using neural networks: case study of the Gardon de Mialet basin (southern France), Nat. Hazards Earth Syst. Sci., 12, 3307–3324, https://doi.org/10.5194/nhess-12-3307-2012, 2012. 
Download
Short summary
Streamflow forecasting is useful for many applications, ranging from population safety (e.g. floods) to water resource management (e.g. agriculture or hydropower). To this end, hydrological models must be optimized. However, a model is inherently wrong. This study aims to analyse the contribution of a multi-model approach within a variable spatial framework to improve streamflow simulations. The underlying idea is to take advantage of the strength of each modelling framework tested.
Share