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Abstract. Accounting for the variability of hydrological
processes and climate conditions between catchments and
within catchments remains a challenge in rainfall–runoff
modelling. Among the many approaches developed over the
past decades, multi-model approaches provide a way to con-
sider the uncertainty linked to the choice of model structure
and its parameter estimates. Semi-distributed approaches
make it possible to account explicitly for spatial variability
while maintaining a limited level of complexity. However,
these two approaches have rarely been used together. Such a
combination would allow us to take advantage of both meth-
ods. The aim of this work is to answer the following question:
what is the possible contribution of a multi-model approach
within a variable spatial framework compared to lumped sin-
gle models for streamflow simulation?

To this end, a set of 121 catchments with limited anthro-
pogenic influence in France was assembled, with precipi-
tation, potential evapotranspiration, and streamflow data at
the hourly time step over the period 1998–2018. The semi-
distribution set-up was kept simple by considering a single
downstream catchment defined by an outlet and one or more
upstream sub-catchments. The multi-model approach was
implemented with 13 rainfall–runoff model structures, three
objective functions, and two spatial frameworks, for a total
of 78 distinct modelling options. A simple averaging method
was used to combine the various simulated streamflow at the
outlet of the catchments and sub-catchments. The lumped
model with the highest efficiency score over the whole catch-
ment set was taken as the benchmark for model evaluation.

Overall, the semi-distributed multi-model approach yields
better performance than the different lumped models consid-

ered individually. The gain is mainly brought about by the
multi-model set-up, with the spatial framework providing a
benefit on a more occasional basis. These results, based on
a large catchment set, evince the benefits of using a multi-
model approach in a variable spatial framework to simulate
streamflow.

1 Introduction

1.1 Uncertainty in rainfall–runoff modelling

A rainfall–runoff model is a numerical tool based on a sim-
plified representation of a real-world system, namely the
catchment (Moradkhani and Sorooshian, 2008). It usually
computes streamflow time series from climatic data, such
as rainfall and potential evapotranspiration. Many rainfall–
runoff models have been developed according to various as-
sumptions in order to meet specific needs (e.g. water re-
sources management, flood and low-flow forecasting, hydro-
electricity), with choices and constraints concerning the fol-
lowing (Perrin, 2000):

– the temporal resolution, i.e. the way variables and pro-
cesses are aggregated over time;

– the spatial resolution, i.e. the way spatial variability is
taken into account more or less explicitly in the model;

– the description of dominant processes.

Different models will necessarily produce different
streamflow simulations. Intuitively, one often expects that
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working at a finer spatio-temporal scale should allow for a
better description of the processes (Atkinson et al., 2002).
However, this generally leads to additional complexity, i.e. a
larger number of parameters, which requires more informa-
tion to be estimated and often yields more uncertain results
(Her and Chaubey, 2015).

Uncertainty in rainfall–runoff models depends on the as-
sumptions made regarding the choice of the general struc-
ture and also on the parameter estimates. The variety of
model structures and equations results in a large variability
of streamflow simulations (Ajami et al., 2007). The spatial
and temporal resolutions also result in different streamflow
simulations. Due to the complexity of the real system and
the lack of information to parameterize the various equations
over the whole catchment, parameter estimates must be set.
Usually, these parameters are determined for each entity of
interest by minimizing the error induced by the simulation
compared to an observation. The choice of the optimization
algorithm, the objective function, and the streamflow trans-
formation is therefore also a source of uncertainty. Since in-
put data are used to derive model structures and parameters,
the uncertainty associated with these data also contributes to
the overall model uncertainty (Beven, 1993; Liu and Gupta,
2007; Pechlivanidis et al., 2011; McMillan et al., 2012).

Various approaches aim to improve models by taking un-
certainties into account, among which are multi-model ap-
proaches, which are the main topic of our research.

1.2 Multi-model approach

The multi-model approach consists in using several models
in order to take advantage of the strengths of each one. This
concept has been gaining momentum in hydrology since the
end of the 20th century for simulation (e.g. Shamseldin et
al., 1997) and forecasting (e.g. Loumagne et al., 1995). In
this section, we distinguish between probabilistic and deter-
ministic approaches.

A probabilistic multi-model approach seeks an explicit
quantification of the uncertainty associated with simulations
or forecasts through statistical methods. The ensemble con-
cept has commonly been applied in meteorology for sev-
eral decades, and subsequently has been widely used in hy-
drology to improve prediction (i.e. simulation or forecast).
The international Hydrologic Ensemble Prediction Experi-
ment initiative (Schaake et al., 2007) fostered the work on
this topic. The ensemble concept has also been adapted to
rainfall–runoff models in order to reduce modelling bias:
Duan et al. (2007) used multiple predictions made by several
rainfall–runoff models using the same hydroclimatic forcing
variables. An ensemble consisting of nine different models
(from three different structures and parameterizations) was
constructed and applied to three catchments in the United
States. The predictions were then combined through a statis-
tical procedure (Bayesian model averaging or BMA), which
assigns larger weight to a probabilistic likelihood measure.

The authors showed that the probabilistic multi-model ap-
proach improves flow prediction and quantifies model un-
certainty compared to using a single rainfall–runoff model.
Block et al. (2009) coupled both multiple climate and mul-
tiple rainfall–runoff models, increasing the pool of stream-
flow forecast ensemble members and accounting for cumu-
lative sources of uncertainty. In their study, 10 scenarios
were built for each of the three climatic models and ap-
plied to two rainfall–runoff models, i.e. 60 different fore-
casts. This super-ensemble was applied to the Iguatu catch-
ment in Brazil and showed better performance than the hy-
droclimatic or rainfall–runoff model ensembles studied sep-
arately. Note that the authors tested three different combi-
nation methods: pooling, linear regression weighting, and a
kernel density estimator. They found that the last technique
seems to perform better. Velázquez et al. (2011) showed that
the combination of different climatic scenarios with several
models in a forecasting context leads to a reduction in un-
certainty, particularly when the forecast horizon increases.
However, such methods generate a large number of scenar-
ios and can therefore become time-consuming and difficult
to analyse. The probabilistic combination of simulations re-
mains a major topic in the scientific community (see Bogner
et al., 2017).

A deterministic multi-model approach seeks to define a
single best streamflow time series, which often consists in a
combination of the simulations of individual models. Sham-
seldin et al. (1997) tested three methods in order to com-
bine model outputs: a simple average, a weighted average,
and a non-linear neural network procedure. Their study was
conducted on a sample of 11 catchments mainly located in
southeast Asia using five different lumped models operat-
ing at the daily time step and showed that multiple mod-
els perform better than models applied individually. Simi-
lar conclusions were reached in the Distributed Model Inter-
comparison Project (DMIP) (Smith et al., 2004) conducted
by Georgakakos et al. (2004) in simulation or by Ajami et
al. (2006) for forecasting. In both articles, 6 to 10 rainfall–
runoff models were applied at the hourly time step over a few
catchments in the United States. These studies showed that a
model that performs poorly individually can contribute pos-
itively to the multi-model set-up. Winter and Nychka (2010)
specify that the composition of the multi-model set-up is im-
portant. Indeed, using 19 global climate models, the authors
have shown that simple – or weighted – average combina-
tions are more efficient if the individual models used pro-
duce very different results. Studies combining rainfall–runoff
models by machine learning techniques led to the same con-
clusions (see, for example, Zounemat-Kermani et al., 2021,
for a review).

All of the aforementioned multi-model approaches only
focus on the structural aspect of rainfall–runoff models.
Some authors have also combined streamflow generated
from different parameterizations of the same rainfall–runoff
model. Oudin et al. (2006) proposed combining two out-
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puts obtained with a single model (GR4J) from two calibra-
tions, one adapted to high flows and the other to low flows,
by weighting each of the simulations on the basis of a sea-
sonal index (filling rate of the production reservoir). Such a
method makes it possible to provide good efficiency in both
low and high flows, whereas usually an a priori modelling
choice must be made to focus on a specific streamflow range.
More recently, Wan et al. (2021) used a multi-model ap-
proach based on four rainfall–runoff models calibrated with
four objective functions on a large set of 383 Chinese catch-
ments. The authors showed that methods based on weighted
averaging outperform the ensemble members, except in low-
flow simulation. They also highlighted the benefit of using
several structures with different objective functions. The size
of the ensemble was also studied, and it was found that using
more than nine ensemble members does not further improve
performance. Note that different results for optimal size can
be found in the literature (Arsenault et al., 2015; Kumar et
al., 2015).

The aforementioned studies were carried out within a
fixed spatial framework (e.g. lumped, semi-distributed, dis-
tributed), i.e. considering that the model structures imple-
mented are relevant over the whole modelling domain. Im-
plicitly, the underlying assumption is that a fixed rainfall–
runoff model can capture the main hydrological processes af-
fecting streamflow in a catchment (and its sub-catchments).
However, this may not be true. Introducing a variable spatial
modelling framework into the multi-model approach could
help to overcome this issue.

1.3 Scope of the paper

This study intends to test whether streamflow simulation can
be improved through a multi-model approach. More pre-
cisely, we aim here to deal with the uncertainty stemming
from (i) the spatial dimension (e.g. catchment division, ag-
gregation of hydroclimatic forcing, boundary conditions),
(ii) the general structure of the model (e.g. formulation of wa-
ter storages, filling/draining equations), and (iii) the parame-
ter estimation (e.g. calibration algorithm, objective function,
calibration period). However, we decided here not to focus
on quantifying these uncertainties individually (as it could
be done with a probabilistic ensemble), but we focus on the
aggregated impact of all uncertainties through comparing the
deterministic averaging combination of several models with
a single one. Ultimately, our aim is to answer the following
question: what is the possible contribution of a multi-model
approach within a variable spatial framework compared to
lumped single models for streamflow simulation?

This study follows on from the work of Squalli (2020),
who carried out exploratory multi-model tests on lumped and
semi-distributed configurations at a daily time step. The re-
mainder of the paper is organized as follows: first, the catch-
ment set, the hydroclimatic data, the spatial framework, and
the rainfall–runoff models used for this work are presented.

The multi-model methodology and the calibration/evaluation
procedure are described. Then we present, analyse, and dis-
cuss the results. Last, we summarize the main conclusions of
this work and discuss its perspectives.

2 Material and methods

2.1 Catchments and hydroclimatic data

This study was conducted at an hourly time step us-
ing precipitation, potential evapotranspiration and stream-
flow time series over the period 1998–2018 (Delaigue et
al., 2020). Precipitation (P ) was extracted from the radar-
based COMEPHORE re-analysis produced by Météo-France
(Tabary et al., 2012), which provides information at a 1 km2

resolution and which has already been extensively used in
hydrological studies (Artigue et al., 2012; van Esse et al.,
2013; Bourgin et al., 2014; Lobligeois et al., 2014; Saadi et
al., 2021).

Potential evapotranspiration (E0) is calculated with the
formula proposed by Oudin et al. (2005). This equation was
chosen for its simplicity, as the only input required is daily
air temperature (from the SAFRAN re-analysis of Météo-
France; see Vidal et al., 2010) and extra-terrestrial radia-
tion (which only depends on the Julian day and the latitude).
Once calculated, the daily potential evapotranspiration was
disaggregated to the hourly time step using a simple parabola
(Lobligeois, 2014). These steps for converting daily tempera-
ture data into hourly potential evapotranspiration are directly
possible in the airGR software (Coron et al., 2017, 2021; de-
veloped using the R programming language; R Core Team,
2020), which was used for this work. We did not use any
gap-filling method since all climatic data were complete dur-
ing the study period.

Streamflow time series (Q) were extracted from the na-
tional streamflow archive Hydroportail (Dufeu et al., 2022),
which makes the data produced by hydrometric services
in regional environmental agencies in charge of measuring
flows in France, as well as by other data producers (e.g. hy-
dropower companies and dam managers), available. Before
being archived, flow data undergo quality control procedures
applied by data producers, with corrections when necessary.
Quality codes are also available, although this information is
not uniformly provided for all stations. These data are freely
available on the Hydroportail website and are widely used in
France for hydraulic and hydrological studies.

Here, we focus on simulating streamflow at the main
catchment outlet, addressing the issue from a large-sample-
hydrology (LSH) perspective (Andréassian et al., 2006;
Gupta et al., 2014), in which many catchments are used. For
this study, 121 catchments spread over mainland France with
limited human influence were selected (Fig. 1). The first cri-
terion used to select catchments is based on streamflow avail-
ability. Here, a threshold of 10 % maximum gaps per year
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Figure 1. Boundaries (in red) and outlets (black dots) of the 121
catchments selected for this study.

over the whole period was considered (1999–2018). How-
ever, this criterion may be slightly too restrictive (e.g. re-
moval of a station installed in 2000 and presenting contin-
uous data since then). In order to overcome this problem, we
decided to allow this threshold to be exceeded for a max-
imum of 3 years over the whole period considered. It is
therefore a compromise between having a large number of
catchments for the study and having a long enough period
for model calibration and evaluation. The catchment selec-
tion also considered the level of human influence. In France,
the vast majority of catchments have human influence (e.g.
dams, dikes, irrigation, or urbanization). Here, streamflow
with limited human influence corresponds to gauged stations
where the streamflow records have a hydrological behaviour
considered close enough to a natural streamflow (e.g. low
water withdrawals, influences far enough upstream to be suf-
ficiently diluted downstream) not to strongly limit model
performance. This was based on numerical indicators on
the influence of dams and local expertise. Although snow-
dominant or glacial regimes were rejected (due to lack of
data or anthropogenic influence), the various catchments se-
lected offer a wide hydroclimatic variability (Table 1).

2.2 Principle of catchment spatial discretization

In this work, two spatial frameworks are used: lumped and
semi-distributed. A lumped model considers the catchment
as a single entity, while the semi-distribution seeks to divide
this catchment into several sub-catchments in order to partly
take into account the spatial variability of hydroclimatic forc-
ing and physical characteristics within the catchment.

Generally, the division of a catchment is defined on the
basis of expertise and requires good knowledge of its char-
acteristics (hydrological response units based on geology or
land use). From a large-sample hydrology perspective, an au-
tomatic definition of semi-distribution was needed. To this
end, we simplified the problem by looking at a first-order
distribution, i.e. a single downstream catchment defined by
an outlet and one or more upstream sub-catchments. The
underlying assumption is therefore that a second-order dis-
tribution (i.e. further dividing the upstream sub-catchments
into a few smaller sub-catchments) will have a more lim-
ited impact on model behaviour than the first, when consid-
ering the main downstream outlet. This assumption is based
on the work of Lobligeois et al. (2014) which showed that
a multitude of sub-basins of approximately 4 km2 provide
limited gain compared to a few sub-catchments of 64 km2.
Under these hypotheses, we developed an automatic proce-
dure to select semi-distributed configurations nested in each
other, which we termed “Matryoshka doll”. This approach
consists in creating different simple and distinct combina-
tions of upstream–downstream gauged catchments starting
from the main downstream station and progressively moving
upstream.

Specifically, the Matryoshka doll selection approach
(Fig. 2) was implemented as follows:

1. Select a downstream station defining a catchment with
one or more gauged internal points.

2. Restrict the upstream sub-catchment partitioning to a
first-order split, i.e. going back only to the nearest up-
stream station(s) without going back to the stations fur-
ther upstream and respecting a size criterion to avoid
sensitivity issues which may result from a too-small or
too-large downstream catchment (in this study, we lim-
ited the area of the upstream sub-catchments to a value
between 10 % and 70 % of the area of the total catch-
ment). This step creates a combination of stations defin-
ing a single downstream catchment (which receives the
upstream contributions).

3. If the upstream catchments have one or more internal
gauged points, repeat step 1 and consider them as a
downstream catchment.

The Matryoshka doll approach allows us to create dis-
tinct configurations (i.e. there cannot be two different semi-
distributed configurations for the same downstream catch-
ment) and therefore avoids over-sampling issues.

The semi-distributed approach consists in performing
lumped modelling in each sub-catchment by linking them
through a hydraulic routing scheme. Thus, we need to dis-
tinguish between the first-order upstream catchment (Fig. 2,
dark grey), where we applied a lumped rainfall–runoff
model, and the downstream catchment (Fig. 2, light grey),
where the rainfall–runoff model was applied after integrating
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Table 1. Minimum, median, and maximum values of some characteristics of the 121 catchments (P stands for mean annual precipitation,
E0 for mean annual potential evapotranspiration, Q for mean annual flow).

Main characteristics of the catchment areas Min. Med. Max.

Catchment area [km2] 15 880 110 188
Mean annual precipitation [mm yr−1] 661 960 1699
Mean annual potential evapotranspiration [mm yr−1] 551 682 829
Mean annual flow [mm yr−1] 89 336 1046
Humidity index (P/E0) [–] 1.0 1.4 2.9
Runoff coefficient (Q/P ) [–] 0.1 0.4 0.7

Figure 2. Illustration of the Matryoshka doll approach to the Vézère River at Larche. The steps of the method are shown in the columns and
the discretization levels in the rows. From this initial catchment (top left), three semi-distributed configurations were obtained (number of
rows). For each semi-distributed configuration, the boundary of the catchment considered is in red, the first-order upstream catchments are
filled in dark grey, and the downstream catchment is in light grey.

the upstream inflows using a runoff-runoff model (hydraulic
routing scheme). It is therefore important to differentiate be-
tween the routing part of hydrological models (enabling us to
distribute the quantity of water contributing to the streamflow
in the sub-catchment of interest, i.e. the intra-sub-catchment
propagation, in time) and the hydraulic routing scheme (en-
abling us to propagate the streamflow simulated at one outlet
to downstream catchment, i.e. the inter-sub-basin propaga-
tion). For this study, a single hydraulic routing scheme was
applied. It is a time lag between the upstream and down-
stream outlet, as done by Lobligeois et al. (2014). In order

to reduce the computation time, the authors propose calcu-
lating a lumped parameter C0 corresponding to the average
flow velocity over the downstream catchment. Since the hy-
draulic lengths di (i.e. the distance between the downstream
outlet and each upstream sub-catchment) are known, the tran-
sit time Ti can be calculated as follows:

Ti =
di

C0
. (1)

This approach is fairly simple but offers comparative per-
formance to that of more complex routing models such as lag
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and route schemes (with linear or quadratic reservoirs) that
account for peak-shaving phenomena (results not shown for
the sake of brevity).

2.3 Models

In the context of this study, a model is defined as a configu-
ration composed of a model structure and an associated set
of parameters (i.e. which may vary according to the objective
function selected for calibration). These models will be ap-
plied independently in a lumped or a semi-distributed mod-
elling framework.

For this study, the airGRplus software (Coron et al., 2022),
based on the works of Perrin (2000) and Mathevet (2005),
was used. It includes various rainfall–runoff model struc-
tures running at the daily time step. airGRplus is an add-
on to airGR (Coron et al., 2017, 2021). An adaptation of
the work made by Perrin and Mathevet was carried out to
use these structures at the hourly time step (mostly ensuring
consistency of parameter ranges when changing simulation
time steps and changing fixed time-dependent parameters).
Finally, a set of 13 structures available in airGRplus, already
widely tested in France and adapted to the hourly time step,
was selected (Table 2). They are simplified versions of orig-
inal rainfall–runoff models taken from the literature (except
GR5H, which corresponds to the original version). To avoid
confusion with the original models, a four-letter abbrevia-
tion was used here. Since the various catchments used for
this study do not experience much snowfall, no snow module
was implemented.

The objective function used for parameter calibration is
the Kling–Gupta efficiency (KGE) (Gupta et al., 2009), de-
fined by

KGE= 1−
√
(r − 1)2+ (α− 1)2+ (β − 1)2, (2)

with r the correlation, α the ratio between standard devia-
tions, and β the ratio between the means (i.e. the bias) of the
observed and simulated streamflow.

Thirel et al. (2023) showed that streamflow transforma-
tions are adapted to a specific modelling objective (e.g. low
flows, floods). However, they highlighted that it is difficult
to represent a wide range of streamflow with a single trans-
formation. According to this study, we selected three trans-
formations, two of which target high flows (Q+0.5) and low
flows (Q−0.5), respectively, and one which is intermediate
(Q+0.1).

The algorithm used for model calibration comes from
Michel (1991) and is available in the airGR package (Coron
et al., 2017, 2021). It combines a global and a local optimiza-
tion approach. First, a coarse screening of the parameters
space is performed using either a rough predefined grid or
a list of parameter sets. Then a steepest descent local search
algorithm is performed, starting from the result of the screen-
ing procedure. Such calibration (over 10 years of hourly data)

is about 0.5 to 6 min long (depending mainly of the catch-
ment considered and the number of free parameters) and
gives a single parameter set for a chosen objective function.
Thus, we did not focus explicitly here on parameter uncer-
tainty; i.e. we did not use multiple parameters sets for a single
objective function as can be done with Monte Carlo simula-
tions, for example. Such an approach would be interesting to
consider as a perspective for this work but will not be covered
here for computation time constraints. In a semi-distributed
context, the calibration is carried out sequentially, i.e. in each
sub-catchment from upstream to downstream. Note that the
calibration takes slightly more time in the downstream catch-
ment due to the additional free parameter of the routing func-
tion.

Overall, 13 structures and three objective functions were
used, resulting in 39 models. Applied over two different spa-
tial frameworks, a total of 78 distinct modelling options were
available for this study.

2.4 Multi-model methodology

The multi-model approach consists in running various
rainfall–runoff models. More specifically, here, we are inter-
ested in a deterministic combination of the different stream-
flow simulations. Let us recall that for our study, a model
corresponds to the association of a structure and an objec-
tive function. By definition, a model is imperfect. Indeed, the
different structures have been designed to meet different ob-
jectives (e.g. water resources management, forecasting, and
climate change) in different geographical or geological con-
texts (e.g. high mountains, karstic zone, and alluvial plain).
The objective functions (e.g. optimization algorithm, objec-
tive function, streamflow transformations), selected to opti-
mize the parameters, are also choices that will eventually
impact the simulation. The hypothesis made here is that the
multi-model approach makes it possible to take advantage of
the strengths of each model.

In the lumped framework, we consider every model in
each catchment. In the semi-distributed framework, we con-
sider every model in each sub-catchment. As the calibration
is sequential, the various models are first applied to each
upstream sub-catchment, and then their simulated stream-
flow is propagated to the downstream catchment to be mod-
elled. However, transferring every upstream possibility to
the downstream catchment is excessively time consuming.
Therefore, the simulated streamflow in each upstream sub-
catchment was first set with an a priori choice, whatever the
model used, and then transferred to the downstream catch-
ment (this choice is discussed in Sect. 4.4).

The multi-model framework enables these different
streamflow simulations to be combined in each catchment
and sub-catchment in order to create multiple additional sim-
ulations. At the downstream outlet, we will consider mixed
combinations, using streamflow simulations from lumped
and semi-distributed modelling (Fig. 3). To this end, deter-
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Table 2. List of rainfall–runoff models available in the airGRplus software at the hourly time step and used for this work.

Original name Number of free References Name used in
parameters this study

Topmodel 7 Beven and Kirkby (1979) TOPM
IHACRES 6 Jakeman et al. (1990) IHAC
HBV 9 Bergström and Forsman (1973) HBV0
Mohyse 8 Turcotte et al. (2010) MOHY
Mordor 6 Garçon (1999) MORD
Simhyd 8 Vaze et al. (2011) SIMH
SMAR 9 O’Connell et al. (1970) SMA0
TANK 10 Sugawara (1979) TAN0
Gardenia 8 Thiéry (1982) GARD
PDM 8 Moore and Clarke (1981) PDM0
CREC 8 Cormary and Guilbot (1973) CRE0
NAM 10 Nielsen and Hansen (1973) NAM0
GR5H 5 Ficchì et al. (2019) GR5H

ministic averaging methods were used. Here, we will focus
on a simple average combination (SAC), i.e. giving an equal
weight to all models combined, defined by

QSAC =

∑n
i=1Qi

n
, (3)

with QSAC the streamflow from a simple average combina-
tion andQi the simulated streamflow with a model i selected
among the n models.

Note that a weighted average combination (WAC) was also
tested but did not significantly change the mean results and
was therefore not used further (discussed in Sect. 4.3).

The number of possible combinations on a given outlet
from the total number of available streamflow simulations
increases exponentially and can be computed by

nc =

nsim∑
i=2

(nsim

i

)
, (4)

with i the number of streamflow simulations to choose from
the total number of available streamflow simulations nsim.

As an indication, there are approximately 1000 combina-
tions for a streamflow ensemble simulated by 10 models, but
there are over 1 000 000 solutions for 20 models in a lumped
framework. Although a single combination is quick to per-
form (between 0.1 and 0.2 s), the number of combinations
quickly becomes a limiting factor in terms of computation
time. For this study, combinations will be set to a maximum
of four different streamflow time series among the total num-
ber of models available, i.e. approximately 1 500 000 differ-
ent combinations (discussed in Sect. 4.2):

nc =

4∑
i=2

(
78
i

)
≈ 1 500000. (5)

The objective of these combinations is to create a large
set of simulations from which the best multi-model approach

will be selected. Here we aim to obtain simulations that can
perform well over a wide range of streamflow, and that can
be applied to a large number of French catchments. There-
fore, the best models (and multi-model approach) correspond
to those which will achieve the highest performance in each
catchment on average during the evaluation periods.

2.5 Testing methodology

A split-sample test (Klemeš, 1986), commonly used in hy-
drology, was implemented. This practice consists in separat-
ing a streamflow time series into two distinct periods, the
first for calibration and the second for evaluation, and then
exchanging these two periods. The two periods chosen are
1999–2008 and 2009–2018. An initialization period of at
least 2 years was used before each test period to avoid er-
rors attributable to the wrong estimation of initial conditions
within the rainfall–runoff model.

For this study, results will only be analysed for evaluation
(i.e. over the two untrained periods). Model performance was
evaluated on two levels.

– With a general criterion. Model performance was evalu-
ated with a composite criterion focusing on a wide range
of streamflow, defined as follows:

KGEcomp =
KGE

(
Q+0.5

)
+KGE

(
Q+0.1

)
+KGE(Q−0.5)

3
. (6)

– With event-based criteria. Model performance was eval-
uated with several criteria characterizing flood and low
flows. In a context of high flows (5447 events se-
lected), the timing of the peak (i.e. the date at which the
flood peak was reached), the flood peak (i.e. the maxi-
mum streamflow value observed during the flood) and
the flood flow (i.e. mean streamflow during the event)
were analysed. In a context of low flows (1332 events
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Table 3. Minimum, median, and maximum values of flood and low-
flow characteristics over the 121 catchments.

Flood Min. Med. Max.
characteristics

Number of events [–] 18.00 50.00 50.00
Mean flood duration [h] 2.22 6.18 143.04
Mean flood peak [mm h−1] 0.05 0.35 1.71
Mean flood flow [mm h−1] 0.03 0.15 0.85

Low-flow characteristics Min. Med. Max.

Number of events [–] 3.00 11.00 19.00
Mean annual low-flow duration [d] 17.67 51.82 127.25
Mean annual low-flow severity [mm d−1] 0.02 1.81 13.97

selected), the annual low-flow duration (i.e. number
of low-flow days) and severity (i.e. largest cumulative
streamflow deficit) were studied. Table 3 provides typ-
ical ranges of values of flood and low-flow characteris-
tics over the catchment set. Please refer to Appendix A
and B for more details on the event selection method.

In a multi-model framework, the best (i.e. giving the best
performance over the evaluation periods) model or combina-
tion of models for each catchment can be determined. There-
fore, this model or combination of models will differ from
one catchment to another. For this work we chose as a bench-
mark a lumped one-size-fits-all model (i.e. the same model
whatever the catchment), which is the hydrological mod-
elling approach usually used.

3 Results

Results are presented from lumped (L) single models (SMs),
i.e. run individually, to more complex semi-distributed (SD)
multi-model (MM) approaches (see Fig. 3). The mixed
(M) multi-model approach allows for a variable spatial
framework combining both lumped and semi-distributed ap-
proaches. The aim of this section is to present the results ob-
tained with each modelling framework and their intercom-
parison.

3.1 Lumped single models (LSMs)

In this part, each model was run individually in a lumped
mode (see Fig. 3). Parameters of the 13 structures were cali-
brated successively with the three objective functions, result-
ing in 39 lumped models.

Figure 4 shows the distribution of the performance of
lumped single models over the 121 downstream outlets and
over the evaluation periods. As a reminder, the KGEcomp
used for the evaluation is a composite criterion which con-
siders different transformations in order to provide an overall
picture of model performance for a wide range of stream-
flow (Eq. 6). Overall, lumped single models give median

KGEcomp values between 0.70 and 0.88. This upper value is
reached with the GR5H structure calibrated with a generalist
objective function (KGE applied to Q+0.1) and will be used
in the paper as a benchmark. Since efficiency criteria values
depend on the variety of errors found in the evaluation pe-
riod (see, for example, Berthet et al., 2010), this may impact
the significance of performance differences between models
and ultimately their comparison. Therefore, we tried to quan-
tify the sampling uncertainty in KGE scores. The bootstrap–
jackknife methodology proposed by Clark et al. (2021) was
applied over our sample of 121 catchments for the 39 lumped
models. It showed a median sampling uncertainty in KGE
scores of 0.02 (Appendix C). The objective function applied
during the calibration phase seems to have a variable impact
on performance depending on the structure. For example,
GR5H shows a similar performance regardless of the trans-
formation applied, whereas TAN0 shows a large variation.
The strong decrease in the 25 % quantile of the latter is linked
to the great difficulty for this structure to represent the low-
flow component of KGEcomp when it is calibrated with more
weight on high flows (KGE applied to Q+0.5). The reverse
is also true since a structure optimized with more weight on
low flows (KGE applied to Q−0.5) will have more difficul-
ties to represent the high-flow component of KGEcomp (e.g.
NAM0 or GARD). Although the differences remain limited,
the highest KGEcomp scores are achieved with a more gen-
eralist objective function (KGE applied to Q+0.1). These re-
sults confirm the conclusions reached by Thirel et al. (2023).

The left part of Fig. 5 highlights the results obtained by
selecting the best lumped single model in each catchment
(LSM). In this modelling framework, the median KGEcomp
is 0.91 (0.03 higher than the one-size-fits-all model used as
a benchmark) with low variation (between 0.88 and 0.93 for
the 25 % and 75 % quantiles). The right part of Fig. 5 indi-
cates the number of catchments where each lumped single
model is defined as the best. As expected, the models with
high performance over the whole sample are selected more
often than the others. However, two-thirds of the lumped sin-
gle models have been selected at least once as the best in a
catchment. Similar results can be found in Perrin et al. (2001)
or Knoben et al. (2020).

3.2 Semi-distributed single models (SDSMs)

Remember that the semi-distribution with a single model (see
Fig. 3) is done sequentially, i.e. from upstream to down-
stream. Thus, each upstream sub-catchment is first modelled
in a lumped mode with a single structure–objective function
pair. Then, the streamflow simulated upstream is propagated
and the same model is calibrated and applied to the down-
stream catchment. This procedure is repeated for all 39 (13
structures and three objective functions) available models.

Figure 6 shows the difference between KGEcomp values
obtained with lumped single models and semi-distributed
single models. The semi-distributed approach seems to have
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Figure 3. Summary of the different approaches tested. Q is the target streamflow at the main catchment outlet; black dots show gauging sta-
tions used. The different colours represent different model structures. The variations of the same colour indicate different parameterizations.
Red links represent the combination of streamflow.

Figure 4. Distribution of the performance (KGEcomp score) of the 39 lumped single models over the 121 catchments and over the evaluation
periods. The box plots represent the 10 %, 25 %, 50 %, 75 % and 90 % quantiles. The dashed red line represents the optimal KGE value.
Each colour represents a structure, and each geometric pattern represents the power transformation applied to the streamflow during the
calibration.

a positive overall impact on the performance, although some
deterioration can also be observed. Overall, the differences
are limited (median of 0.02). However, the semi-distributed
approach seems to have a variable impact on performance
depending on the structure. For example, CRE0 shows a sim-
ilar performance regardless of the spatial framework applied,
whereas the performance of GARD improved with a spa-
tial division. Although there is no clear trend in the impact
of the semi-distribution in relation to the transformation ap-
plied during calibration, it seems that models calibrated on

Q+0.1 (i.e. giving “equal” weight on all flow ranges) show
lower differences. The lumped models with the highest per-
formance seem to benefit less (if any) from semi-distribution.
On the other hand, lumped models with lower performance
seem to benefit from the spatial discretization.

Nevertheless, Fig. 7 highlights that overall, if the focus is
set on the best model in each catchment, the difference be-
tween the semi-distributed and lumped single model remains
small (no deviation for the quartiles and only 0.005 for the
median). Once again, two-thirds of the semi-distributed sin-
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Figure 5. Distribution of the performance (KGEcomp score) of the best lumped single models (LSMs) over the 121 catchments (a) and model
occurrence within this selection (b). The box plots represent the 10 %, 25 %, 50 %, 75 %, and 90 % quantiles. The dashed red line represents
the optimal KGE value. The benchmark corresponds to a one-size-fits-all approach, with the GR5H structure calibrated with a generalist
objective function Q+0.1 over the whole catchment set.

gle models have been selected at least once as the best in a
catchment.

3.3 Lumped multi-model (LMM) approach

Here, each model was run in a lumped mode, and model out-
puts were combined (see Fig. 3). The multi-model approach
used in this work is a deterministic combination with sim-
ple average (SAC) and will be limited to a combination of a
maximum of four models among the available lumped mod-
els, i.e. approximately 92 000 different combinations.

The left part of Fig. 8 shows the comparison between per-
formance obtained with the benchmark and when the best
lumped multi-model approach is selected in each catchment.
The combination of lumped models enables an increase of
0.06 in the median KGEcomp value compared with the bench-
mark and of 0.03 compared with the LSM approach. While
this gain may seem small at first glance, it is quite substan-
tial since the performance obtained with the benchmark was
already very high (median of 0.88), which makes improve-
ments increasingly difficult. The right part of Fig. 8 shows
the number of times each model is selected within the best-
performing multi-model approach. As expected, it highlights
the benefits of a wide choice of models (similar results were
found by Winter and Nychka, 2010). Indeed, even if some of
the models had never been used for the benchmark simula-
tion (in a lumped single-model framework), the multi-model
approach shows that each of them can become a contribut-
ing factor to improve streamflow simulation in at least one
catchment. Moreover, the models that are most often selected
in the model combinations are not always the best models

on their own. For example, TOPM, calibrated to favour high
flows (Q+0.5), was only used in the benchmark on 1.5 % of
the catchments but it is selected in the multi-model approach
on 24 % of the catchments. However, the converse does not
seem to be true since a model with good individual perfor-
mance always seems to be a key element of the multi-model
approach (e.g. GR5H, PDM0, MORD).

3.4 Semi-distributed multi-model (SDMM) approach

For this study, the semi-distributed multi-model approach
(see Fig. 3) of the target catchment is performed in two steps.
First, the best multi-model combination (i.e. the combina-
tion of two to four models among the 39 available giving the
highest performance over the evaluation periods) in each up-
stream sub-catchment is identified. In the second step, the
simulated mean upstream streamflow is propagated down-
stream, and the different models are applied and then com-
bined (by two, three, or four) on the downstream catchment.
Thus, approximately 92 000 different possible combinations
of simulated streamflow are obtained at the outlet of the total
catchment.

Figure 9 shows very similar results to the LMM (Sect. 3.3).
Indeed, we find again an improvement in the median of 0.06
compared to the benchmark, and all the models are used on at
least one downstream catchment. Moreover, the distribution
of the model count on the downstream catchment seems to
be more homogeneous between the different members.
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Figure 6. Comparison of the performance (KGEcomp score) between lumped and semi-distributed single models over the 121 catchments
and over the evaluation periods. The box plots represent the 10 %, 25 %, 50 %, 75 %, and 90 % quantiles. Each colour represents a structure,
and each geometric pattern represents the power transformation applied to the streamflow during the calibration. The black line indicates
an equal performance between the lumped and semi-distributed approaches; the upper part indicates an increase of performance with the
semi-distributed approach (and the lower part a decrease).

3.5 Mixed multi-model (MMM) approach

Here, the mixed multi-model approach represents a combina-
tion of all the approaches tested above. This method allows a
combination of models for a variable spatial framework (see
Fig. 3) for each catchment. In this context, the 39 models
applied to a lumped and a semi-distributed framework are
used, resulting in 78 modelling options, each giving a differ-
ent streamflow at the outlet (Fig. 10). These simulations can
then be combined (by two, three, or four) downstream in or-
der to define the best mixed multi-model approach in each
catchment among more than 1 500 000 possibilities.

The left part of Fig. 11 shows the performance obtained
with the best mixed multi-model approach. The combina-
tion of lumped and semi-distributed models outperforms the
benchmark, but results are still close to those obtained using
the LMM or SDMM approaches. The right part of Fig. 11
highlights the benefits gained from the wide choice of mod-
els and a variable spatial framework. Indeed, almost every
lumped and semi-distributed model is used in order to im-

prove the representation of streamflow with a multi-model
approach in at least one catchment.

3.6 Modelling framework comparison

Figure 12 compares the performance obtained when the best
(multi-)model is selected in each catchment depending on the
modelling approach used. First, all approaches tested outper-
form the benchmark. Then, the best LSM and SDSM dis-
tributions are almost identical, and the same results are ob-
tained with LMM and SDMM. This shows a limited gain of
the semi-distribution approach compared to a lumped frame-
work. However, the LMM and SDMM outperformed the
LSM and SDSM. Therefore, the increase in performance is
mainly due to the multi-model aspect. Finally, the highest
performance is obtained with the MMM, but it remains close
to the performance achieved by the LMM and SDMM.

Figure 13 shows the best-performing modelling frame-
work for each catchment. Multi-model approaches are con-
sidered to be better than single models for the vast majority
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Figure 7. Distribution of the performance (KGEcomp score) of the best semi-distributed single models (SDSMs) over the 121 catchments (a)
and model occurrence within this selection (b). The box plots represent the 10 %, 25 %, 50 %, 75 %, and 90 % quantiles. The dashed red line
represents the optimal KGE value. The benchmark corresponds to a one-size-fits-all approach, with the GR5H structure calibrated with a
generalist objective function Q+0.1 over the whole catchment set.

Figure 8. Distribution of the performance (KGEcomp score) of the best lumped multi-model (LMM) approach over the 121 catchments (a)
and model occurrence within this selection (b). The box plots represent the 10 %, 25 %, 50 %, 75 %, and 90 % quantiles. The dashed red line
represents the optimal KGE value. The benchmark corresponds to a one-size-fits-all approach, with the GR5H structure calibrated with a
generalist objective function Q+0.1 over the whole catchment set.

of catchments. In general, the MMM approach seems to be
the most suitable for most of the catchments. However, if we
accept to deviate by 0.005 (epsilon value arbitrarily set) from
the optimal value, we notice that the lumped multi-model ap-
proach is sufficient on a large part (about 60 %) of the catch-
ments. There are no clear regional trends on which catch-
ments require a more complex modelling framework.

Figure 14 shows the evaluation of the different modelling
frameworks at the event scale. As a reminder, only the best
(multi) model in each catchment is analysed for each ap-
proach tested. Typical ranges of values of flood and low-flow
characteristics over the catchment set are provided Table 3.

The flood peak is late by about 1 h for the single-model ap-
proaches, whereas with a multi-model framework, it comes
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Figure 9. Distribution of the performance (KGEcomp score) of the best semi-distributed multi-model (SDMM) approach over the 121
catchments (a) and model counts on the downstream catchment within this selection (b). The box plots represent the 10 %, 25 %, 50 %, 75 %,
and 90 % quantiles. The dashed red line represents the optimal KGE value. The benchmark corresponds to a one-size-fits-all approach, with
the GR5H structure calibrated with a generalist objective function Q+0.1 over the whole catchment set.

Figure 10. Hydrograph of November–December 2003 of the Dore River at Saint-Gervais-sous-Meymont (K287191001). The grey shading
shows the interval between the 10 % and 90 % quantiles generated by the 78 modelling options. The red line highlights the best MMM
combination. The dashed black line refers to the observed streamflow.

1 h too early. The most extreme values correspond to large
catchments with slow responses and a strong base flow im-
pact. In addition, multi-model approaches seem to have a
lower variability for this criterion. The peak flow is slightly
underestimated with a median of −0.05 mm h−1, like the
flood flow, which shows a median deficit of 0.02 mm h−1.
There does not seem to be a clear trend in the contribution
of a complex mixed multi-model approach compared to a
lumped single model (benchmark).

4 Discussion

Here, the first objective is to discuss the results and answer
the initial question: what is the possible contribution of a
multi-model approach within a variable spatial framework
for the simulation of streamflow over a large set of catch-
ments? The second objective is to discuss the methodologi-
cal choices by analysing them independently to determine to
what extent they impact the results.
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Figure 11. Distribution of the performance (KGEcomp score) of the best mixed multi-model approach over the 121 catchments (a) and model
counts within this selection (b). The box plots represent the 10 %, 25 %, 50 %, 75 %, and 90 % quantiles. The dashed red line represents the
optimal KGE value. The benchmark corresponds to a one-size-fits-all approach, with the GR5H structure calibrated with a generalist objective
function Q+0.1 over the whole catchment set.

Figure 12. Distribution of the performance (KGEcomp score) of the best (multi-)models over the 121 catchments according to their modelling
framework (LSM – lumped single-model, SDSM – semi-distributed single-model, LMM – lumped multi-model, SDMM – semi-distributed
multi-model, MMM – mixed multi-model). The dashed red line represents the optimal KGE value. The benchmark corresponds to a one-
size-fits-all approach, with the GR5H structure calibrated with a generalist objective function Q+0.1 over the whole catchment set.

4.1 What is the possible contribution of a multi-model
approach within a variable spatial framework?

First, our results confirmed the findings previously reported
in the literature. Indeed, the multi-model approach outper-
formed the single models for a large sample of catchments
(Shamseldin et al., 1997; Georgakakos et al., 2004; Ajami
et al., 2006; Winter and Nychka, 2010; Velázquez et al.,
2011; Fenicia et al., 2011; Santos, 2018; Wan et al., 2021).
Moreover, there is no clear benefit (on average) of using a
semi-distributed framework because it degrades the stream-
flow simulation in some catchments and improves it in others

(Khakbaz et al., 2012; Lobligeois et al., 2014; de Lavenne et
al., 2016).

The originality of our study is to combine these two ap-
proaches while providing a variable spatial framework. The
mixed multi-model approach thus seems to benefit from the
strengths of both methods. Most of the improvements com-
pared to our benchmark come from the multi-model ap-
proach. On the other hand, although for a large part of the
sample the differences are negligible, the variable spatial
framework seems to generate an increase in the mean KGE
values of up to 0.03 compared to a lumped multi-model ap-
proach (Fig. 15). It should be noted that a similar difference
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Figure 13. Maps of the best modelling framework in each catchment (a–b) and the simplest modelling framework among the best frame-
works (c–d). The epsilon value corresponds to the performance deviation allowed from the best performance. If the drop between the
evaluation performances is lower than or equal to epsilon, then the simplest modelling framework is selected.

is observed for the single models. By design, the MMM does
not deteriorate the performance when compared to what can
be initially obtained with the LMM and SDMM approaches.

Generally, this study has shown that a large number
of models enables a better performance regardless of the
streamflow range over a large sample of catchments. How-
ever, this methodology can be computationally expensive
(due to the exponential number of combinations).

Winter and Nychka (2010) showed that in a multi-model
framework, a key point is not only the number of models
but also their differences. However, it is difficult to quan-
tify explicitly this difference a priori. Various configurations
of small pools of four models (i.e. structure–objective func-
tion pairs) were tested before selecting only the best of them

(called “simplified MMM”; see Table 4 for more details). A
mixed multi-model test was performed over this sample in
order to reduce the complexity brought about by a large num-
ber of models.

As a reminder, the procedure is the following:

– In a semi-distributed framework, each of the four
lumped models was applied and then combined for each
upstream sub-catchment of the sample. Then, the best
combination (i.e. giving the highest KGE value over the
evaluation periods) at each upstream outlet was propa-
gated through the downstream catchment where the sub-
sample of models was also used.
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Figure 14. Comparison of various criteria between simulated and observed flood (A1, A2, and A3) or low-flow (B1 and B2) events, according
to the modelling approach used. The box plots represent the 10 %, 25 %, 50 %, 75 %, and 90 % quantiles. The black line indicates the
equivalence between the observed and simulated criteria. A positive value indicates an overestimation of the criterion by the simulation
compared to observed streamflow.

Figure 15. Ranked performance difference curve obtained for the evaluation periods between the best lumped and mixed multi-model
approach in each catchment. The black line indicates the equivalence between the two modelling frameworks. The higher the value, the
greater the benefit of a variable spatial framework.

– In a lumped framework, the modelling of each total
catchment was performed with the different members
of the simplified MMM.

– Downstream simulations (four from the lumped ap-
proach and four from the semi-distributed approach)
were then combined (resulting in 162 combinations),
and the best multi-model combination at the outlet was
selected.

Figure 16 shows that with the simplified MMM, the multi-
model approach in a variable framework gives better KGE
values than the LSM approach (which uses each lumped
model independently and then selects the best one in each
catchment). However, the performance obtained with the
MMM approach is not reached, which again shows the added
value of a wide choice of models.
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Figure 16. Distribution of the best simplified mixed multi-model approach, defined with a subset of four models, over the entire sample of
catchments and over the evaluation periods. The box plots represent the 10 %, 25 %, 50 %, 75 %, and 90 % quantiles. The dashed red line
represents the optimal KGE value. The benchmark corresponds to a one-size-fits-all approach, with the GR5H structure calibrated with a
generalist objective function Q+0.1 over the whole catchment set.

Table 4. Composition of the simplified MMM.

Structure Parametrization

GR5H KGE (Q+0.5)
SMA0 KGE (Q+0.5)
GARD KGE (Q+0.5)
NAM0 KGE (Q+0.1)

4.2 What is the optimal number of models to combine
in a multi-model framework?

The optimal number of models to combine in a multi-model
framework varies between past studies. For example, Wan et
al. (2021) found that a limited improvement is achieved when
more than nine models are combined, Arsenault et al. (2015)
concluded that seven models were sufficient, and Kumar et
al. (2015) highlighted a combination of five members. This
optimal number therefore seems to vary with the catchment
sample but also according to the number of models used and
their qualities. Figure 17 shows the results obtained by the
best lumped (multi-)model in each catchment according to
the number of members combined. The largest improvement
comes from a simple combination of two models, and the
performance gain becomes limited from a combination of
four different models (at least in our study).

4.3 Is a weighted average combination always better
than a simple average approach?

The weighted average combination (WAC) consists of as-
signing a weight that can be different for each model (Eq. 4),
as opposed to the simple average combination (SAC), which
considers each model in an identical manner (Eq. 3).

QWAC =

∑n
i=1αi .Qi∑n
i=1αi

, (7)

with QWAC the streamflow from a weighted average combi-
nation, Qi the simulated streamflow with a model i selected
among the n models, and αi its attributed weight (between 0
and 1).

The complexity of the weighted average procedure lies in
the estimation of the weights. Here, the weights have been
optimized according to the capacity of the combination to
represent the observed streamflow by maximizing the KGE
on the transformations chosen during the calibration of the
models. Thus, we obtain a set of weights for each calibration
criterion used by testing all possible values in steps of 0.1
between 0 and 1. The average of these different weight sets
for the three objective functions will then be taken as the final
weighting.

This method becomes very expensive in terms of calcula-
tion time when the number of models increases. Thus, to an-
swer this question, a subsample of 13 models (corresponding
to the 13 structures calculated on the square root of stream-
flow in a lumped framework) was selected, and the tests were
limited to a combination of three models (representing 364
distinct combinations in total).

Figure 18 shows the comparison of the SAC and WAC
methods. Each point represents the mean KGE obtained over
the evaluation periods by each combination of models over
the whole sample of catchments and over all the transforma-
tions evaluated. It highlights that the WAC and SAC methods
provide similar mean results when dealing with a wide range
of streamflow.

Another limit of the WAC procedure lies in the variability
of the coefficients according to the calibration period. More-
over, this instability seems to increase with the number of
models used in the combinations.

Is the a priori choice to use the best upstream multi-model
approach always justified?

As a reminder, semi-distribution consists in dividing a
catchment into several sub-catchments which can then be
modelled individually with their own climate forcing and pa-
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Figure 17. Distribution of the performance obtained with the best lumped multi-model approach in each catchment according to the number
of models combined. The box plots represent the 10 %, 25 %, 50 %, 75 %, and 90 % quantiles. The dashed red line represents the optimal KGE
value. The benchmark corresponds to a one-size-fits-all approach, with the GR5H structure calibrated with a generalist objective function
Q+0.1 over the whole catchment set.

Figure 18. Comparison of the performance obtained over the evaluation periods by each multi-model approach for the whole catchment
sample according to the combination method used. The box plots represent the 10 %, 25 %, 50 %, 75 %, and 90 % quantiles. The dashed red
line represents the optimal KGE value. The black line indicates the equivalence between the two combination methods.

rameters and then linked together by a propagation function.
Generally, the number of possible streamflow simulations in
a catchment is set as

n= nsim+ nc(nsim), (8)

with nsim the number of simulations available and nc the
number of combinations from nsim.

However, the number of simulations in a semi-distributed
framework depends on the number of models available in this
catchment and increases rapidly with the streamflow simula-

tions injected from upstream catchments.

nsim = nmod×
x∏
i=1
nupi if x > 0

nsims = nmod if x = 0,
(9)

with nmod the number of available models on the sub-
catchment considered, x the number of direct upstream sub-
catchments, and nupi the number of possible streamflow
available at the outlet of the upstream sub-catchment i.

It is therefore necessary to make an a priori choice on
the different upstream sub-catchments in order to reduce the
number of possibilities downstream. The assumption made in
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Figure 19. Ranked performance difference curve obtained for the evaluation periods in each catchment by the best downstream model with
an a priori choice on upstream simulation or not. The black line indicates the equivalence between the modelling frameworks. A negative
value indicates a decline in performance due to the a priori choice of upstream simulations injected.

this study is to propagate a single simulation, resulting from
the best combination of models, for each sub-catchment.
Equation (8) then becomes

n= nmod+ nc(nmod). (10)

This hypothesis ensures the same number of downstream
streamflow simulations in a lumped or semi-distributed mod-
elling framework (as complex as it can be).

Simplified tests (semi-distributed configurations with one
upstream catchment – i.e. 70 catchments – and only four dis-
tinct models – see Table 4 – used without combination) were
conducted in order to check the impact of this simplifica-
tion on downstream performance. Figure 19 shows that for
approximately 85 % of the catchments, the use of an a pri-
ori choice on the injected upstream simulations has a limited
impact (< 0.02 difference in KGE values) on the downstream
performance. However, a decrease of up to 0.05 can be ob-
served.

Although the assumption made here (i.e. to propagate the
best upstream simulations) may occasionally lead to signifi-
cant performance losses, we remain convinced that an a pri-
ori choice is necessary for a large gain in computation time,
even in simple semi-distributed configurations.

5 Conclusion

The main conclusions of this work are detailed in the follow-
ing.

The mixed multi-model approach outperforms the bench-
mark (one-size-fits-all model) and provides higher KGE
values than approaches based on single models (LSMs or
SDSMs). The gain is mainly due to the multi-model aspect,
while the spatial framework brings a more limited added
value.

At the event scale, the mixed multi-model approach does
not show a large improvement on average but seems to re-
duce the variability (i.e. inter-quantile deviation).

Although some models are more often selected in multi-
model combinations, almost all models have proven useful in
at least one catchment. Moreover, the models that are most
often selected in the model combinations are not always the
best models on their own. However, the converse does not
seem to be true since a model with good individual perfor-
mance always seems to be a key element of the multi-model
approach.

The largest improvement of a multi-model approach over
the single models comes from the simple average combi-
nation of two models among a large ensemble. The perfor-
mance gain when increasing the number of models in the
multi-model combination becomes limited when more than
four different models are combined.

The simplified mixed multi-model approach (based on a
subsample of only four models applied to a lumped and
a semi-distributed framework) outperforms the benchmark
(one-size-fits all model) but does not reach the performances
obtained with a full mixed multi-model approach (based on
the 39 available models applied to a lumped and a semi-
distributed framework).

These conclusions are valid in the modelling framework
used. As a reminder, in this work we aimed to obtain sim-
ulations that represent a wide range of streamflow and that
can be applied to a large number of French catchments with
limited human influence.

It would be interesting to test other deterministic meth-
ods to combine models such as random forest, artificial neu-
ral network, or long short-term memory network algorithms,
which are increasingly being applied in hydrology (Kratzert
et al., 2018; Li et al., 2022). These machine learning meth-
ods could also be used as hydrological models in their own
right. By also including physically based models, it would be
possible to extend the range of models even further. Another
perspective of this work would be to test the semi-distributed
multi-model approach in a probabilistic framework by con-
sidering the different models as a hydrological ensemble in
order to quantify the uncertainties related to the models. It
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would also be relevant to conduct this study in a forecast-
ing framework by combining a hydrological ensemble with a
meteorological ensemble.

Although we have worked in the context of a large hy-
drological sample, the catchments are exclusively located in
continental France. Testing the semi-distributed multi-model
approach in catchments under other hydroclimatic conditions
may therefore be useful. For example, applying the multi-
model approach to different snow modules for considering
snowmelt is food for thought regarding high mountain catch-
ments. It should be noted that the Matryoshka doll approach
developed in this study allows for only a simple division of
the catchments. A more complex semi-distribution may be
more relevant, especially in places where the spatial variabil-
ity of rainfall is high. The catchments with human influence
were removed from our sample because they do not show
natural hydrological behaviour. However, semi-distribution
often enables a better representation of streamflow in these
areas which are difficult to model.

Appendix A: Event selection methodology: flood events

The selection procedure of flood events was based on the
methodology developed/used by Astagneau et al. (2022). It
is an automated procedure, selecting peak flows exceeding
the 95 % quantile and setting the beginning and the end of
the flood event to 20 % and 25 %, respectively, of the flood
peak. The starting window has been slightly extended by a
few hours in the case of flash floods, characterized by a rapid
rise in water levels (Fig. A1).

Each selected event was visually inspected to mitigate the
errors associated with automatic selection. This step is partic-
ularly important for large catchments with inter-annual pro-
cesses. In order to obtain consistent statistics between the
catchments, a maximum of 50 events (25 in calibration and
25 in evaluation) was set. In the end, 5447 events were se-
lected. Figure A2 shows the distribution of the number of
flood events in each catchment.
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Figure A1. Flood event from 24 to 26 August 2009 on the Dore River at Saint-Gervais-sous-Meymont (K287191001). The yellow time
window corresponds to the automatically selected event. The dashed red line represents the detection threshold set to the 95 % quantile. The
dashed black lines refer to the initial entry and end dates of the events (respectively below 20 % and 25 % of the flood peak). The arrow here
shows an extension of the event start due to the rapid rise in water level.

Figure A2. Distribution of the number of flood events in each catchment over the whole catchment set. The red line shows the maximum
number allowed.
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Appendix B: Event selection methodology: low-flow
events

The selection procedure of low-flow events was based on the
methodology developed and used by Caillouet et al. (2017).
It is an automated procedure selecting periods under a thresh-
old (fixed here to the 10 % quantile) and aggregating the in-
tervals corresponding to the same event thanks to the severity
index (Fig. B1).

Each selected event was visually inspected to mitigate the
errors associated with automatic selection. This step is rather
difficult because the quality of the low-flow data is quite het-
erogeneous (e.g. influenced by noise) from one catchment
to another. In the end, 1332 events were selected. Figure B2
shows the distribution of the number of low-flow events in
each catchment.

Figure B1. Low-flow event from summer 2015 on the Dore River at Saint-Gervais-sous-Meymont (K287191001). The yellow time window
corresponds to the automatically selected event. The dashed red line represents the detection threshold set to the 10 % quantile for streamflow.
The severity corresponds to the cumulated deficit under the threshold.
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Figure B2. Distribution of the number of low-flow events in each catchment over the whole catchment set.

Appendix C: Uncertainty in KGE scores

Since efficiency criteria values depend on the variety of er-
rors found in the evaluation period (see, for example, Berthet
et al., 2010), this may impact the significance of performance
differences between models and ultimately their compari-
son. Therefore, we tried to quantify the sampling uncertainty
in KGE scores. The bootstrap–jackknife methodology pro-
posed by Clark et al. (2021) was applied over our set of 121
catchments for the 39 lumped models (Fig. C1). The results
show that for 90 % of the cases, the KGEs have uncertainties
lower than 0.06 with a median of 0.02. However, differences
can be noted according to the catchments; the structures; the
calibration period; the period used to apply the bootstrap–
jackknife; and, especially, the transformations used during
the model calibration. Indeed, KGE values from simulations
optimized for low flows are more uncertain than those opti-
mized for medium or high flows.

Figure C2 compares the KGE uncertainty between the
benchmark (all catchments are modelled with GR5H cali-
brated with the KGE calculated onQ+0.1 in a lumped spatial
framework) and the mixed multi-model approach (a combi-
nation of model with a variable spatial framework is chosen
for each catchment). It shows that the MMM approach re-
duces uncertainty about the value of the performance score.
We therefore consider an improvement to be significant as
soon as a gain greater than 0.02 is achieved.
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Figure C1. Distribution of standard error of the KGE obtained with the bootstrap–jackknife methodology over the 121 catchments. The box
plots represent the 10 %, 25 %, 50 %, 75 %, and 90 % quantiles.

Figure C2. Comparison of the standard error of the KGE obtained with the bootstrap–jackknife methodology over the 121 catchments for
the benchmark (one-size-fits-all model) and the mixed multi-model (MMM) approach. The box plots represent the 10 %, 25 %, 50 %, 75 %,
and 90 % quantiles.

Code availability. Summary sheets containing the structural
scheme of the different models, the pseudo-code, and the table of
free parameters are available on request or can be found in the PhD
paper of the first author (Thébault, 2023).

Data availability. Streamflow data are freely available on the Hy-
droportail website (https://hydro.eaufrance.fr/) (Dufeu et al., 2022).
Climatic data are freely available for academic research purposes
in France but cannot be deposited publicly because of commer-
cial constraints. To access COMEPHORE data (Tabary et al.,
2012), please refer to https://doi.org/10.25326/360 (Caillaud, 2019).
SAFRAN data (Vidal et al., 2010) can be found in the spatialized
data rubric, in the product catalogue, at https://publitheque.meteo.
fr/ (Météo-France, 2023). Data were processed by INRAE, and
summary sheets of the outputs are available (https://webgr.inrae.fr/
webgr-eng/tools/database, Brigode et al., 2020).

Hydrol. Earth Syst. Sci., 28, 1539–1566, 2024 https://doi.org/10.5194/hess-28-1539-2024

https://hydro.eaufrance.fr/
https://doi.org/10.25326/360
https://publitheque.meteo.fr/
https://publitheque.meteo.fr/
https://webgr.inrae.fr/webgr-eng/tools/database
https://webgr.inrae.fr/webgr-eng/tools/database


C. Thébault et al.: Multi-model approach in a variable spatial framework for streamflow simulation 1563

Author contributions. CP, CT, GT, SL, and VA conceptualized the
study. CP and CT developed the methodology. CT and OD devel-
oped the model code. CT performed the simulations and analyses.
CT prepared the manuscript with contributions from all co-authors.

Competing interests. The contact author has declared that none of
the authors has any competing interests.

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims made in the text, pub-
lished maps, institutional affiliations, or any other geographical rep-
resentation in this paper. While Copernicus Publications makes ev-
ery effort to include appropriate place names, the final responsibility
lies with the authors.

Acknowledgements. The authors wish to thank Météo-France and
SCHAPI for making the climate and hydrological data used
in this study available. CNR and INRAE are thanked for co-
funding the PhD grant of the first author. Paul Astagneau and
Laurent Strohmenger are also thanked for their advice on the
manuscript. The authors thank Isabella Athanassiou for copy-
editing an earlier draft of this paper. The editor, Hilary McMillan,
and the two reviewers, Trine Jahr Hegdahl and Wouter Knoben, are
also thanked for their feedback and comments on the manuscript,
which helped to improve its overall quality.

Review statement. This paper was edited by Hilary McMillan and
reviewed by Trine Jahr Hegdahl and Wouter Knoben.

References

Ajami, N. K., Duan, Q., Gao, X., and Sorooshian, S.: Mul-
timodel Combination Techniques for Analysis of Hydrolog-
ical Simulations: Application to Distributed Model Inter-
comparison Project Results, J. Hydrometeorol., 7, 755–768,
https://doi.org/10.1175/JHM519.1, 2006.

Ajami, N. K., Duan, Q., and Sorooshian, S.: An integrated hy-
drologic Bayesian multimodel combination framework: Con-
fronting input, parameter, and model structural uncertainty
in hydrologic prediction, Water Resour. Res., 43, W01403,
https://doi.org/10.1029/2005WR004745, 2007.

Andréassian, V., Hall, A., Chahinian, N., and Schaake, J.: In-
troduction and synthesis: Why should hydrologists work on
a large number of basin data sets?, in: Large sample basin
experiments for hydrological parametrization: results of the
models parameter experiment-MOPEX, IAHS Red Books Se-
ries no. 307, AISH, 1–5, https://iahs.info/uploads/dms/13599.
02-1-6-INTRODUCTION.pdf (last access: 23 March 2023),
2006.

Arsenault, R., Gatien, P., Renaud, B., Brissette, F., and Martel, J.-L.:
A comparative analysis of 9 multi-model averaging approaches
in hydrological continuous streamflow simulation, J. Hydrol.,

529, 754–767, https://doi.org/10.1016/j.jhydrol.2015.09.001,
2015.

Artigue, G., Johannet, A., Borrell, V., and Pistre, S.: Flash
flood forecasting in poorly gauged basins using neural net-
works: case study of the Gardon de Mialet basin (south-
ern France), Nat. Hazards Earth Syst. Sci., 12, 3307–3324,
https://doi.org/10.5194/nhess-12-3307-2012, 2012.

Astagneau, P. C., Bourgin, F., Andréassian, V., and Per-
rin, C.: Catchment response to intense rainfall: Evaluat-
ing modelling hypotheses, Hydrol. Process., 36, e14676,
https://doi.org/10.1002/hyp.14676, 2022.

Atkinson, S. E., Woods, R. A., and Sivapalan, M.: Climate
and landscape controls on water balance model complexity
over changing timescales, Water Resour. Res., 38, 50-1–50-17,
https://doi.org/10.1029/2002WR001487, 2002.

Bergström, S. and Forsman, A.: Development of a conceptual de-
terministic rainfall-runoff model, Nord. Hydrol, 4, 147–170,
https://doi.org/10.2166/nh.1973.0012, 1973.

Berthet, L., Andréassian, V., Perrin, C., and Loumagne, C.:
How significant are quadratic criteria? Part 2. On the rel-
ative contribution of large flood events to the value of
a quadratic criterion, Hydrolog. Sci. J., 55, 1063–1073,
https://doi.org/10.1080/02626667.2010.505891, 2010.

Beven, K.: Prophecy, reality and uncertainty in distributed
hydrological modelling, Adv. Water Resour., 16, 41–51,
https://doi.org/10.1016/0309-1708(93)90028-E, 1993.

Beven, K. and Kirkby, M. J.: A physically based, variable contribut-
ing area model of basin hydrology/Un modèle à base physique de
zone d’appel variable de l’hydrologie du bassin versant, Hydrol.
Sci. B., 24, 43–69, https://doi.org/10.1080/02626667909491834,
1979.

Block, P. J., Souza Filho, F. A., Sun, L., and Kwon, H.-H.: A
Streamflow Forecasting Framework using Multiple Climate and
Hydrological Models1, J. Am. Water Resour. As., 45, 828–843,
https://doi.org/10.1111/j.1752-1688.2009.00327.x, 2009.

Bogner, K., Liechti, K., and Zappa, M.: Technical note:
Combining quantile forecasts and predictive distributions
of streamflows, Hydrol. Earth Syst. Sci., 21, 5493–5502,
https://doi.org/10.5194/hess-21-5493-2017, 2017.

Bourgin, F., Ramos, M. H., Thirel, G., and Andréassian, V.: In-
vestigating the interactions between data assimilation and post-
processing in hydrological ensemble forecasting, J. Hydrol., 519,
2775–2784, https://doi.org/10.1016/j.jhydrol.2014.07.054, 2014.

Brigode, P., Génot, B., Lobligeois, F., and Delaigue, O.: Sum-
mary sheets of watershed-scale hydroclimatic observed
data for France, Recherche Data Gouv. [data set], V1,
https://doi.org/10.15454/UV01P1, 2020 (data available at:
https://webgr.inrae.fr/webgr-eng/tools/database, last access:
23 March 2023).

Caillaud, C.: Météo-France radar COMEPHORE Hourly
Precipitation Amount Composite, Aeris [data set],
https://doi.org/10.25326/360, 2019.

Caillouet, L., Vidal, J.-P., Sauquet, E., Devers, A., and Graff, B.:
Ensemble reconstruction of spatio-temporal extreme low-flow
events in France since 1871, Hydrol. Earth Syst. Sci., 21, 2923–
2951, https://doi.org/10.5194/hess-21-2923-2017, 2017.

Clark, M. P., Vogel, R. M., Lamontagne, J. R., Mizukami,
N., Knoben, W. J. M., Tang, G., Gharari, S., Freer, J.
E., Whitfield, P. H., Shook, K. R., and Papalexiou, S.

https://doi.org/10.5194/hess-28-1539-2024 Hydrol. Earth Syst. Sci., 28, 1539–1566, 2024

https://doi.org/10.1175/JHM519.1
https://doi.org/10.1029/2005WR004745
https://iahs.info/uploads/dms/13599.02-1-6-INTRODUCTION.pdf
https://iahs.info/uploads/dms/13599.02-1-6-INTRODUCTION.pdf
https://doi.org/10.1016/j.jhydrol.2015.09.001
https://doi.org/10.5194/nhess-12-3307-2012
https://doi.org/10.1002/hyp.14676
https://doi.org/10.1029/2002WR001487
https://doi.org/10.2166/nh.1973.0012
https://doi.org/10.1080/02626667.2010.505891
https://doi.org/10.1016/0309-1708(93)90028-E
https://doi.org/10.1080/02626667909491834
https://doi.org/10.1111/j.1752-1688.2009.00327.x
https://doi.org/10.5194/hess-21-5493-2017
https://doi.org/10.1016/j.jhydrol.2014.07.054
https://doi.org/10.15454/UV01P1
https://webgr.inrae.fr/webgr-eng/tools/database
https://doi.org/10.25326/360
https://doi.org/10.5194/hess-21-2923-2017


1564 C. Thébault et al.: Multi-model approach in a variable spatial framework for streamflow simulation

M.: The Abuse of Popular Performance Metrics in Hydro-
logic Modeling, Water Resour. Res., 57, e2020WR029001,
https://doi.org/10.1029/2020WR029001, 2021.

Cormary, Y. and Guilbot, A.: Etude des relations pluie-débit sur
trois bassins versants d’investigation. IAHS Madrid Sympo-
sium, IAHS Publication no. 108, 265–279, https://iahs.info/
uploads/dms/4246.265-279-108-Cormary-opt.pdf (last access:
23 March 2023), 1973.

Coron, L., Thirel, G., Delaigue, O., Perrin, C., and An-
dréassian, V.: The suite of lumped GR hydrological mod-
els in an R package, Environ. Model. Softw., 94, 166–171,
https://doi.org/10.1016/j.envsoft.2017.05.002, 2017.

Coron, L., Delaigue, O., Thirel, G., Dorchies, D., Perrin,
C., and Michel, C.: airGR: Suite of GR Hydrological
Models for Precipitation-Runoff Modelling, R pack-
age version 1.6.12, Recherche Data Gouv [code], V1,
https://doi.org/10.15454/EX11NA, 2021.

Coron, L., Perrin, C., Delaigue, O., and Thirel, G.: airGRplus: Ad-
ditional Hydrological Models to the “airGR” Package, R package
version 0.9.14.7.9001, INRAE, Antony, 2022.

Delaigue, O., Génot, B., Lebecherel, L., Brigode, P., and Bourgin,
P.-Y.: Database of watershed-scale hydroclimatic observations in
France, INRAE, HYCAR Research Unit, Hydrology group des
bassins versants, Antony, https://webgr.inrae.fr/webgr-eng/tools/
database (last access: 23 March 2023), 2020.

de Lavenne, A., Thirel, G., Andréassian, V., Perrin, C., and
Ramos, M.-H.: Spatial variability of the parameters of a
semi-distributed hydrological model, Proc. IAHS, 373, 87–94,
https://doi.org/10.5194/piahs-373-87-2016, 2016.

Duan, Q., Ajami, N. K., Gao, X., and Sorooshian, S.: Multi-
model ensemble hydrologic prediction using Bayesian
model averaging, Adv. Water Resour., 30, 1371–1386,
https://doi.org/10.1016/j.advwatres.2006.11.014, 2007.

Dufeu, E., Mougin, F., Foray, A., Baillon, M., Lamblin, R.,
Hebrard, F., Chaleon, C., Romon, S., Cobos, L., Gouin,
P., Audouy, J.-N., Martin, R., and Poligot-Pitsch, S.: Final-
isation of the French national hydrometric data information
system modernisation operation (Hydro3), Houille Blanche,
108, 2099317, https://doi.org/10.1080/27678490.2022.2099317,
2022 (data available at: https://hydro.eaufrance.fr/, last access:
23 March 2023).

Fenicia, F., Kavetski, D., and Savenije, H. H. G.: Elements of a
flexible approach for conceptual hydrological modeling: 1. Mo-
tivation and theoretical development, Water Resour. Res., 47,
W11510, https://doi.org/10.1029/2010WR010174, 2011.

Ficchì, A., Perrin, C., and Andréassian, V.: Hydrological
modelling at multiple sub-daily time steps: Model im-
provement via flux-matching, J. Hydrol., 575, 1308–1327,
https://doi.org/10.1016/j.jhydrol.2019.05.084, 2019.

Garçon, R.: Modèle global pluie-débit pour la prévision et
la prédétermination des crues, Houille Blanche, 7/8, 88–95,
https://doi.org/10.1051/lhb/1999088, 1999.

Georgakakos, K. P., Seo, D. J., Gupta, H., Schaake, J., and Butts, M.
B.: Towards the characterization of streamflow simulation uncer-
tainty through multimodel ensembles, J. Hydrol., 298, 222–241,
https://doi.org/10.1016/j.jhydrol.2004.03.037, 2004.

Gupta, H. V., Kling, H., Yilmaz, K. K., and Martinez, G. F.: Decom-
position of the mean squared error and NSE performance criteria:

Implications for improving hydrological modelling, J. Hydrol.,
377, 80–91, https://doi.org/10.1016/j.jhydrol.2009.08.003, 2009.

Gupta, H. V., Perrin, C., Blöschl, G., Montanari, A., Kumar, R.,
Clark, M., and Andréassian, V.: Large-sample hydrology: a need
to balance depth with breadth, Hydrol. Earth Syst. Sci., 18, 463–
477, https://doi.org/10.5194/hess-18-463-2014, 2014.

Her, Y. and Chaubey, I.: Impact of the numbers of observations and
calibration parameters on equifinality, model performance, and
output and parameter uncertainty, Hydrol. Process., 29, 4220–
4237, https://doi.org/10.1002/hyp.10487, 2015.

Jakeman, A. J., Littlewood, I. G., and Whitehead, P. G.: Com-
putation of the instantaneous unit hydrograph and identifiable
component flows with application to two small upland catch-
ments, J. Hydrol., 117, 275–300, https://doi.org/10.1016/0022-
1694(90)90097-H, 1990.

Khakbaz, B., Imam, B., Hsu, K., and Sorooshian, S.: From lumped
to distributed via semi-distributed: Calibration strategies for
semi-distributed hydrologic models, J. Hydrol., 418–419, 61–77,
https://doi.org/10.1016/j.jhydrol.2009.02.021, 2012.

Klemeš, V.: Operational testing of hydrological sim-
ulation models, Hydrolog. Sci. J., 31, 13–24,
https://doi.org/10.1080/02626668609491024, 1986.

Knoben, W. J. M., Freer, J. E., Peel, M. C., Fowler, K.
J. A., and Woods, R. A.: A Brief Analysis of Concep-
tual Model Structure Uncertainty Using 36 Models and
559 Catchments, Water Resour. Res., 56, e2019WR025975,
https://doi.org/10.1029/2019WR025975, 2020.

Kratzert, F., Klotz, D., Brenner, C., Schulz, K., and Herrnegger,
M.: Rainfall–runoff modelling using Long Short-Term Mem-
ory (LSTM) networks, Hydrol. Earth Syst. Sci., 22, 6005–6022,
https://doi.org/10.5194/hess-22-6005-2018, 2018.

Kumar, A., Singh, R., Jena, P. P., Chatterjee, C., and Mishra,
A.: Identification of the best multi-model combination
for simulating river discharge, J. Hydrol., 525, 313–325,
https://doi.org/10.1016/j.jhydrol.2015.03.060, 2015.

Li, D., Marshall, L., Liang, Z., and Sharma, A.: Hydro-
logic multi-model ensemble predictions using varia-
tional Bayesian deep learning, J. Hydrol., 604, 127221,
https://doi.org/10.1016/j.jhydrol.2021.127221, 2022.

Liu, Y. and Gupta, H. V.: Uncertainty in hydrologic modeling: To-
ward an integrated data assimilation framework, Water Resour.
Res., 43, W07401, https://doi.org/10.1029/2006WR005756,
2007.

Lobligeois, F.: Mieux connaître la distribution spatiale des pluies
améliore-t-il la modélisation des crues? Diagnostic sur 181
bassins versants français, PhD thesis, AgroParisTech, https://hal.
inrae.fr/tel-02600722v1 (last access: 23 March 2023), 2014.

Lobligeois, F., Andréassian, V., Perrin, C., Tabary, P., and Lou-
magne, C.: When does higher spatial resolution rainfall in-
formation improve streamflow simulation? An evaluation us-
ing 3620 flood events, Hydrol. Earth Syst. Sci., 18, 575–594,
https://doi.org/10.5194/hess-18-575-2014, 2014.

Loumagne, C., Vidal, J., Feliu, C., Torterotot, J., and Roche,
P.: Procédures de décision multimodèle pour une prévision
des crues en temps réel: Application au bassin supérieur
de la Garonne, Rev. Sci. Eau J. Water Sci., 8, 539–561,
https://doi.org/10.7202/705237ar, 1995.

Mathevet, T.: Quels modèles pluie-débit globaux au pas de temps
horaire? Développements empiriques et comparaison de modèles

Hydrol. Earth Syst. Sci., 28, 1539–1566, 2024 https://doi.org/10.5194/hess-28-1539-2024

https://doi.org/10.1029/2020WR029001
https://iahs.info/uploads/dms/4246.265-279-108-Cormary-opt.pdf
https://iahs.info/uploads/dms/4246.265-279-108-Cormary-opt.pdf
https://doi.org/10.1016/j.envsoft.2017.05.002
https://doi.org/10.15454/EX11NA
https://webgr.inrae.fr/webgr-eng/tools/database
https://webgr.inrae.fr/webgr-eng/tools/database
https://doi.org/10.5194/piahs-373-87-2016
https://doi.org/10.1016/j.advwatres.2006.11.014
https://doi.org/10.1080/27678490.2022.2099317
https://hydro.eaufrance.fr/
https://doi.org/10.1029/2010WR010174
https://doi.org/10.1016/j.jhydrol.2019.05.084
https://doi.org/10.1051/lhb/1999088
https://doi.org/10.1016/j.jhydrol.2004.03.037
https://doi.org/10.1016/j.jhydrol.2009.08.003
https://doi.org/10.5194/hess-18-463-2014
https://doi.org/10.1002/hyp.10487
https://doi.org/10.1016/0022-1694(90)90097-H
https://doi.org/10.1016/0022-1694(90)90097-H
https://doi.org/10.1016/j.jhydrol.2009.02.021
https://doi.org/10.1080/02626668609491024
https://doi.org/10.1029/2019WR025975
https://doi.org/10.5194/hess-22-6005-2018
https://doi.org/10.1016/j.jhydrol.2015.03.060
https://doi.org/10.1016/j.jhydrol.2021.127221
https://doi.org/10.1029/2006WR005756
https://hal.inrae.fr/tel-02600722v1
https://hal.inrae.fr/tel-02600722v1
https://doi.org/10.5194/hess-18-575-2014
https://doi.org/10.7202/705237ar


C. Thébault et al.: Multi-model approach in a variable spatial framework for streamflow simulation 1565

sur un large échantillon de bassins versants, PhD thesis, Doctorat
spécialité Sciences de l’eau, ENGREF Paris, https://hal.inrae.fr/
tel-02587642v1 (last access: 23 March 2023), 2005.

McMillan, H., Krueger, T., and Freer, J.: Benchmarking ob-
servational uncertainties for hydrology: rainfall, river dis-
charge and water quality, Hydrol. Process., 26, 4078–4111,
https://doi.org/10.1002/hyp.9384, 2012.

Météo-France: Publithèque, espace de commande de don-
nées publiques, https://publitheque.meteo.fr/ (last access:
23 March 2023), 2023.

Michel, C.: Hydrologie appliquée aux petits bassins ruraux,
Cemagref, Antony, France, https://belinra.inrae.fr/index.php?
lvl=notice_display&id=225112 (last access: 23 March 2023),
1991.

Moore, R. J. and Clarke, R. T.: A distribution function approach
to rainfall runoff modeling, Water Resour. Res., 17, 1367–1382,
https://doi.org/10.1029/WR017i005p01367, 1981.

Moradkhani, H. and Sorooshian, S.: General Review of Rainfall-
Runoff Modeling: Model Calibration, Data Assimilation, and
Uncertainty Analysis, in: Hydrological Modelling and the Wa-
ter Cycle: Coupling the Atmospheric and Hydrological Models,
edited by: Sorooshian, S., Hsu, K.-L., Coppola, E., Tomassetti,
B., Verdecchia, M., and Visconti, G., Springer, Berlin, Heidel-
berg, 1–24, https://doi.org/10.1007/978-3-540-77843-1_1, 2008.

Nielsen, S. A. and Hansen, E.: Numerical simulation of the rainfall-
runoff process on a daily basis, Nord. Hydrol., 4, 171–190,
https://doi.org/10.2166/NH.1973.0013, 1973.

O’Connell, P. E., Nash, J. E., and Farrell, J. P.: River flow forecast-
ing through conceptual models part II – The Brosna catchment at
Ferbane, J. Hydrol., 10, 317–329, https://doi.org/10.1016/0022-
1694(70)90221-0, 1970.

Oudin, L., Hervieu, F., Michel, C., Perrin, C., Andréassian, V.,
Anctil, F., and Loumagne, C.: Which potential evapotranspi-
ration input for a lumped rainfall–runoff model?: Part 2 –
Towards a simple and efficient potential evapotranspiration
model for rainfall–runoff modelling, J. Hydrol., 303, 290–306,
https://doi.org/10.1016/j.jhydrol.2004.08.026, 2005.

Oudin, L., Andréassian, V., Mathevet, T., Perrin, C., and Michel, C.:
Dynamic Averaging of Rainfall-Runoff Model Simulations from
Complementary Model Parameterizations, Water Resour. Res.,
42, W07410, https://doi.org/10.1029/2005WR004636, 2006.

Pechlivanidis, I., Jackson, B., Mcintyre, N., and Wheater, H.: Catch-
ment scale hydrological modelling: A review of model types,
calibration approaches and uncertainty analysis methods in the
context of recent developments in technology and applications,
Glob. Int. J., 13, 193–214, 2011.

Perrin, C.: Vers une amélioration d’un modèle global pluie-débit,
PhD thesis, Institut National Polytechnique de Grenoble – INPG,
https://hal.inrae.fr/tel-00006216v1 (last access: 23 March 2023),
2000.

Perrin, C., Michel, C., and Andréassian, V.: Does a large num-
ber of parameters enhance model performance? Comparative as-
sessment of common catchment model structures on 429 catch-
ments, J. Hydrol., 242, 275–301, https://doi.org/10.1016/S0022-
1694(00)00393-0, 2001.

R Core Team: R: A language and environment for statistical com-
puting, https://www.r-project.org/ (last access: 23 March 2023),
2020.

Saadi, M., Oudin, L., and Ribstein, P.: Physically consistent concep-
tual rainfall–runoff model for urbanized catchments, J. Hydrol.,
599, 126394, https://doi.org/10.1016/j.jhydrol.2021.126394,
2021.

Santos, L.: Que peut-on attendre des Super Modèles en hydrolo-
gie? Évaluation d’une approche de combinaison dynamique
de modèles pluie-débit, PhD thesis, Doctorat en Hydrologie,
AgroParisTech, https://hal.inrae.fr/tel-02609262v1 (last access:
23 March 2023), 2018.

Schaake, J. C., Hamill, T. M., Buizza, R., and Clark, M.: HEPEX:
The Hydrological Ensemble Prediction Experiment, B. Am. Me-
teorol. Soc., 88, 1541–1548, https://doi.org/10.1175/BAMS-88-
10-1541, 2007.

Shamseldin, A. Y., O’Connor, K. M., and Liang, G. C.: Meth-
ods for combining the outputs of different rainfall runoff mod-
els, J. Hydrol., 197, 203–229, https://doi.org/10.1016/S0022-
1694(96)03259-3, 1997.

Smith, M. B., Seo, D.-J., Koren, V. I., Reed, S. M., Zhang, Z., Duan,
Q., Moreda, F., and Cong, S.: The distributed model intercompar-
ison project (DMIP): motivation and experiment design, J. Hy-
drol., 298, 4–26, https://doi.org/10.1016/j.jhydrol.2004.03.040,
2004.

Squalli, E. M.: Quelle plus-value de l’approche multi-modèle dans
le cas d’un modèle hydrologique semi-distribué?, Master thesis,
internal report, 2020.

Sugawara, M.: Automatic calibration of the tank
model/L’étalonnage automatique d’un modèle
à cisterne, Hydrolog. Sci. Bull., 24, 375–388,
https://doi.org/10.1080/02626667909491876, 1979.

Tabary, P., Dupuy, P., L’Henaff, G., Gueguen, C., Moulin, L., Lau-
rantin, O., Merlier, C., and Soubeyroux, J.-M.: A 10-year (1997–
2006) reanalysis of quantitative precipitation estimation over
France: Methodology and first results, IAHS-AISH Publ., 351,
255–260, 2012.

Thébault, C.: Quels apports d’une approche multi-modèle semi-
distribuée pour la prévision des débits?, PhD thesis, Sorbonne
université, https://theses.hal.science/tel-04519745 (last access:
23 March 2023), 2023.

Thiéry, D.: Utilisation d’un modèle global pour identifier sur
un niveau piézométrique des influences multiples dues à di-
verses activités humaines, Hydrolog. Sci. J., 27, 216–229,
https://doi.org/10.1080/02626668209491102, 1982.

Thirel, G., Santos, L., Delaigue, O., and Perrin, C.: On the use of
streamflow transformations for hydrological model calibration,
EGUsphere [preprint], https://doi.org/10.5194/egusphere-2023-
775, 2023.

Turcotte, R., Fortier Filion, T.-C., Lacombe, P., Fortin, V.,
Roy, A., and Royer, A.: Simulation hydrologique des
derniers jours de la crue de printemps: le problème
de la neige manquante, Hydrolog. Sci. J., 55, 872–882,
https://doi.org/10.1080/02626667.2010.503933, 2010.

van Esse, W. R., Perrin, C., Booij, M. J., Augustijn, D. C. M., Feni-
cia, F., Kavetski, D., and Lobligeois, F.: The influence of concep-
tual model structure on model performance: a comparative study
for 237 French catchments, Hydrol. Earth Syst. Sci., 17, 4227–
4239, https://doi.org/10.5194/hess-17-4227-2013, 2013.

Vaze, J., Chiew, F. H. S., Perraud, J. M., Viney, N., Post, D.,
Teng, J., Wang, B., Lerat, J., and Goswami, M.: Rainfall-
Runoff Modelling Across Southeast Australia: Datasets, Mod-

https://doi.org/10.5194/hess-28-1539-2024 Hydrol. Earth Syst. Sci., 28, 1539–1566, 2024

https://hal.inrae.fr/tel-02587642v1
https://hal.inrae.fr/tel-02587642v1
https://doi.org/10.1002/hyp.9384
https://publitheque.meteo.fr/
https://belinra.inrae.fr/index.php?lvl=notice_display&id=225112
https://belinra.inrae.fr/index.php?lvl=notice_display&id=225112
https://doi.org/10.1029/WR017i005p01367
https://doi.org/10.1007/978-3-540-77843-1_1
https://doi.org/10.2166/NH.1973.0013
https://doi.org/10.1016/0022-1694(70)90221-0
https://doi.org/10.1016/0022-1694(70)90221-0
https://doi.org/10.1016/j.jhydrol.2004.08.026
https://doi.org/10.1029/2005WR004636
https://hal.inrae.fr/tel-00006216v1
https://doi.org/10.1016/S0022-1694(00)00393-0
https://doi.org/10.1016/S0022-1694(00)00393-0
https://www.r-project.org/
https://doi.org/10.1016/j.jhydrol.2021.126394
https://hal.inrae.fr/tel-02609262v1
https://doi.org/10.1175/BAMS-88-10-1541
https://doi.org/10.1175/BAMS-88-10-1541
https://doi.org/10.1016/S0022-1694(96)03259-3
https://doi.org/10.1016/S0022-1694(96)03259-3
https://doi.org/10.1016/j.jhydrol.2004.03.040
https://doi.org/10.1080/02626667909491876
https://theses.hal.science/tel-04519745
https://doi.org/10.1080/02626668209491102
https://doi.org/10.5194/egusphere-2023-775
https://doi.org/10.5194/egusphere-2023-775
https://doi.org/10.1080/02626667.2010.503933
https://doi.org/10.5194/hess-17-4227-2013


1566 C. Thébault et al.: Multi-model approach in a variable spatial framework for streamflow simulation

els and Results, Australas. J. Water Resour., 14, 101–116,
https://doi.org/10.1080/13241583.2011.11465379, 2011.

Velázquez, J. A., Anctil, F., Ramos, M. H., and Perrin, C.:
Can a multi-model approach improve hydrological ensem-
ble forecasting? A study on 29 French catchments using
16 hydrological model structures, Adv. Geosci., 29, 33–42,
https://doi.org/10.5194/adgeo-29-33-2011, 2011.

Vidal, J.-P., Martin, E., Franchistéguy, L., Baillon, M., and Soubey-
roux, J.-M.: A 50-year high-resolution atmospheric reanalysis
over France with the Safran system, Int. J. Climatol., 30, 1627–
1644, https://doi.org/10.1002/joc.2003, 2010.

Wan, Y., Chen, J., Xu, C.-Y., Xie, P., Qi, W., Li, D., and
Zhang, S.: Performance dependence of multi-model
combination methods on hydrological model calibra-
tion strategy and ensemble size, J. Hydrol., 603, 127065,
https://doi.org/10.1016/j.jhydrol.2021.127065, 2021.

Winter, C. L. and Nychka, D.: Forecasting skill of model
averages, Stoch. Env. Res. Risk A., 24, 633–638,
https://doi.org/10.1007/s00477-009-0350-y, 2010.

Zounemat-Kermani, M., Batelaan, O., Fadaee, M., and
Hinkelmann, R.: Ensemble machine learning paradigms
in hydrology: A review, J. Hydrol., 598, 126266,
https://doi.org/10.1016/j.jhydrol.2021.126266, 2021.

Hydrol. Earth Syst. Sci., 28, 1539–1566, 2024 https://doi.org/10.5194/hess-28-1539-2024

https://doi.org/10.1080/13241583.2011.11465379
https://doi.org/10.5194/adgeo-29-33-2011
https://doi.org/10.1002/joc.2003
https://doi.org/10.1016/j.jhydrol.2021.127065
https://doi.org/10.1007/s00477-009-0350-y
https://doi.org/10.1016/j.jhydrol.2021.126266

	Abstract
	Introduction
	Uncertainty in rainfall–runoff modelling
	Multi-model approach
	Scope of the paper

	Material and methods
	Catchments and hydroclimatic data
	Principle of catchment spatial discretization
	Models
	Multi-model methodology
	Testing methodology

	Results
	Lumped single models (LSMs)
	Semi-distributed single models (SDSMs)
	Lumped multi-model (LMM) approach
	Semi-distributed multi-model (SDMM) approach
	Mixed multi-model (MMM) approach
	Modelling framework comparison

	Discussion
	What is the possible contribution of a multi-model approach within a variable spatial framework?
	What is the optimal number of models to combine in a multi-model framework?
	Is a weighted average combination always better than a simple average approach?

	Conclusion
	Appendix A: Event selection methodology: flood events
	Appendix B: Event selection methodology: low-flow events
	Appendix C: Uncertainty in KGE scores
	Code availability
	Data availability
	Author contributions
	Competing interests
	Disclaimer
	Acknowledgements
	Review statement
	References

