Articles | Volume 28, issue 5
https://doi.org/10.5194/hess-28-1251-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-28-1251-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A systematic review of climate change science relevant to Australian design flood estimation
Department of Infrastructure Engineering, The University of Melbourne, Parkville, Victoria, Australia
Seth Westra
School of Architectural and Civil Engineering, University of Adelaide, Adelaide, Australia
Rory Nathan
Department of Infrastructure Engineering, The University of Melbourne, Parkville, Victoria, Australia
Acacia Pepler
Australian Bureau of Meteorology, Sydney, Australia
National Environmental Science Program Climate System Hub, Sydney, Australia
Timothy H. Raupach
National Environmental Science Program Climate System Hub, Sydney, Australia
Climate Change Research Centre, University of New South Wales, Sydney, New South Wales, Australia
ARC Centre of Excellence for Climate Extremes, University of New South Wales, Kensington, New South Wales, Australia
Andrew Dowdy
Australian Bureau of Meteorology, Sydney, Australia
National Environmental Science Program Climate System Hub, Sydney, Australia
School of Geography, Earth and Atmospheric Sciences, University of Melbourne, Parkville, Victoria, Australia
Fiona Johnson
Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Kensington, New South Wales, Australia
Australia Research Council Training Centre in Data Analytics for Resources and Environments, Kensington, New South Wales, Australia
Michelle Ho
Department of Infrastructure Engineering, The University of Melbourne, Parkville, Victoria, Australia
Kathleen L. McInnes
CSIRO Environment, Aspendale, Australia
Doerte Jakob
Australian Bureau of Meteorology, Melbourne, Australia
Jason Evans
National Environmental Science Program Climate System Hub, Sydney, Australia
Climate Change Research Centre, University of New South Wales, Sydney, New South Wales, Australia
ARC Centre of Excellence for Climate Extremes, University of New South Wales, Kensington, New South Wales, Australia
Gabriele Villarini
Department of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey, USA
High Meadows Environmental Institute, Princeton University, Princeton, New Jersey, USA
Hayley J. Fowler
School of Engineering, Newcastle University, Newcastle upon Tyne, UK
Related authors
Michelle Ho, Declan O'Shea, Conrad Wasko, Rory Nathan, and Ashish Sharma
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-403, https://doi.org/10.5194/hess-2024-403, 2025
Preprint under review for HESS
Short summary
Short summary
There is unequivocal evidence that climate change will impact the risk profile of dams, which are critical for water supply and flood mitigation. We project changes in the overtopping risk for 18 large dams in Australia in response to global warming. We consider the impacts of climate change on rainfall depth, rainfall temporal pattern, and rainfall losses. Under 4 °C of global warming, the risk of overtopping floods was 2.4–17 times that of historical conditions.
Keirnan Fowler, Murray Peel, Margarita Saft, Tim J. Peterson, Andrew Western, Lawrence Band, Cuan Petheram, Sandra Dharmadi, Kim Seong Tan, Lu Zhang, Patrick Lane, Anthony Kiem, Lucy Marshall, Anne Griebel, Belinda E. Medlyn, Dongryeol Ryu, Giancarlo Bonotto, Conrad Wasko, Anna Ukkola, Clare Stephens, Andrew Frost, Hansini Gardiya Weligamage, Patricia Saco, Hongxing Zheng, Francis Chiew, Edoardo Daly, Glen Walker, R. Willem Vervoort, Justin Hughes, Luca Trotter, Brad Neal, Ian Cartwright, and Rory Nathan
Hydrol. Earth Syst. Sci., 26, 6073–6120, https://doi.org/10.5194/hess-26-6073-2022, https://doi.org/10.5194/hess-26-6073-2022, 2022
Short summary
Short summary
Recently, we have seen multi-year droughts tending to cause shifts in the relationship between rainfall and streamflow. In shifted catchments that have not recovered, an average rainfall year produces less streamflow today than it did pre-drought. We take a multi-disciplinary approach to understand why these shifts occur, focusing on Australia's over-10-year Millennium Drought. We evaluate multiple hypotheses against evidence, with particular focus on the key role of groundwater processes.
Yinglin Mu, Jason Evans, Andrea Taschetto, and Chiara Holgate
EGUsphere, https://doi.org/10.5194/egusphere-2025-2833, https://doi.org/10.5194/egusphere-2025-2833, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
Lagrangian approaches have been increasingly employed due to their suitability for extreme events and climatological studies in finding moisture sources of precipitation. However, as these approaches track independent air parcels carrying moisture—rather than simulate processes based on governing physical equations—they rely on several underlying assumptions. This study tests these assumptions and refines the approaches to enhance their broader applicability.
Pravin Maduwantha, Thomas Wahl, Sara Santamaria-Aguilar, Robert Jane, Sönke Dangendorf, Hanbeen Kim, and Gabriele Villarini
EGUsphere, https://doi.org/10.5194/egusphere-2025-1557, https://doi.org/10.5194/egusphere-2025-1557, 2025
Short summary
Short summary
Compound flooding occurs when multiple drivers, such as heavy rain and storm surge, occur simultaneously. Comprehensive compound flood risk assessments require simulating a many storm events using flood models, but such historical data are limited. To address this, we developed a statistical framework to generate large numbers of synthetic yet realistic storm events for use in flood modeling.
Rajesh Kumar Sahu, Hamza Kunhu Bangalath, Suleiman Mostamandi, Jason Evans, Paul A. Kucera, and Hylke E. Beck
EGUsphere, https://doi.org/10.5194/egusphere-2025-912, https://doi.org/10.5194/egusphere-2025-912, 2025
Short summary
Short summary
This study evaluates 36 microphysics (MP) and boundary layer (BL) scheme combinations in the Weather Research and Forecasting (WRF) model for extreme rainfall over Saudi Arabia. Using Kling-Gupta Efficiency (KGE), results show YSU (BL1) and Thompson (MP8) perform best, while Morrison-MYNN (MP10_BL6) ranks lowest. The mean temporal KGE is 0.37, and the spatial KGE is 0.26, highlighting spatial prediction challenges. Findings aid model evaluation and forecasting in arid regions.
David Ronald Archer, Felipe de Mendonca Fileni, Samuel Archer Watkiss, and Hayley Jane Fowler
EGUsphere, https://doi.org/10.5194/egusphere-2025-456, https://doi.org/10.5194/egusphere-2025-456, 2025
Short summary
Short summary
Our intention is to highlight the unacknowledged and sometimes fatal hazard of rapid rate of rise in river level and flow. Using the full 15-minute records of 260 Scottish gauging stations we have extracted the maximum rates of 15-minute rise in events generated by intense convective rainfall and described their characteristics in terms of the severity of the hazard within and between catchments. Events have all the properties of kinematic shock whose mere existence has previously been doubted.
Giovanni Di Virgilio, Fei Ji, Eugene Tam, Jason P. Evans, Jatin Kala, Julia Andrys, Christopher Thomas, Dipayan Choudhury, Carlos Rocha, Yue Li, and Matthew L. Riley
Geosci. Model Dev., 18, 703–724, https://doi.org/10.5194/gmd-18-703-2025, https://doi.org/10.5194/gmd-18-703-2025, 2025
Short summary
Short summary
We evaluate the skill in simulating the Australian climate of some of the latest generation of regional climate models. We show when and where the models simulate this climate with high skill versus model limitations. We show how new models perform relative to the previous-generation models, assessing how model design features may underlie key performance improvements. This work is of national and international relevance as it can help guide the use and interpretation of climate projections.
Giovanni Di Virgilio, Jason P. Evans, Fei Ji, Eugene Tam, Jatin Kala, Julia Andrys, Christopher Thomas, Dipayan Choudhury, Carlos Rocha, Stephen White, Yue Li, Moutassem El Rafei, Rishav Goyal, Matthew L. Riley, and Jyothi Lingala
Geosci. Model Dev., 18, 671–702, https://doi.org/10.5194/gmd-18-671-2025, https://doi.org/10.5194/gmd-18-671-2025, 2025
Short summary
Short summary
We introduce new climate models that simulate Australia’s future climate at regional scales, including at an unprecedented resolution of 4 km for 1950–2100. We describe the model design process used to create these new climate models. We show how the new models perform relative to previous-generation models and compare their climate projections. This work is of national and international relevance as it can help guide climate model design and the use and interpretation of climate projections.
Thomas A. McMahon, Rory Nathan, and Richard George
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-320, https://doi.org/10.5194/hess-2024-320, 2025
Revised manuscript under review for HESS
Short summary
Short summary
Master Recession Curves have long been used to estimate the decline in streamflows following rainfall. Although the approach has wide practical application in water management, it can be overly simple and not match all observations. We propose an approach that represents the changes in streamflow behaviour due to variations in climate and geology. The approach matches observed behaviour well, is consistent with field observations, and is well suited to uncertainty analysis.
Michelle Ho, Declan O'Shea, Conrad Wasko, Rory Nathan, and Ashish Sharma
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-403, https://doi.org/10.5194/hess-2024-403, 2025
Preprint under review for HESS
Short summary
Short summary
There is unequivocal evidence that climate change will impact the risk profile of dams, which are critical for water supply and flood mitigation. We project changes in the overtopping risk for 18 large dams in Australia in response to global warming. We consider the impacts of climate change on rainfall depth, rainfall temporal pattern, and rainfall losses. Under 4 °C of global warming, the risk of overtopping floods was 2.4–17 times that of historical conditions.
Pravin Maduwantha, Thomas Wahl, Sara Santamaria-Aguilar, Robert Jane, James F. Booth, Hanbeen Kim, and Gabriele Villarini
Nat. Hazards Earth Syst. Sci., 24, 4091–4107, https://doi.org/10.5194/nhess-24-4091-2024, https://doi.org/10.5194/nhess-24-4091-2024, 2024
Short summary
Short summary
When assessing the likelihood of compound flooding, most studies ignore that it can arise from different storm types with distinct statistical characteristics. Here, we present a new statistical framework that accounts for these differences and shows how neglecting these can impact the likelihood of compound flood potential.
Anjana Devanand, Jason Evans, Andy Pitman, Sujan Pal, David Gochis, and Kevin Sampson
EGUsphere, https://doi.org/10.5194/egusphere-2024-3148, https://doi.org/10.5194/egusphere-2024-3148, 2024
Short summary
Short summary
Including lateral flow increases evapotranspiration near major river channels in high-resolution land surface simulations in southeast Australia, consistent with observations. The 1-km resolution model shows a widespread pattern of dry ridges that does not exist at coarser resolutions. Our results have implications for improved simulations of droughts and future water availability.
Andrew Brown, Andrew Dowdy, and Todd P. Lane
Nat. Hazards Earth Syst. Sci., 24, 3225–3243, https://doi.org/10.5194/nhess-24-3225-2024, https://doi.org/10.5194/nhess-24-3225-2024, 2024
Short summary
Short summary
A computer model that simulates the climate of southeastern Australia is shown here to represent extreme wind events associated with convective storms. This is useful as it allows us to investigate possible future changes in the occurrences of these events, and we find in the year 2050 that our model simulates a decrease in the number of occurrences. However, the model also simulates too many events in the historical climate compared with observations, so these future changes are uncertain.
Claire L. Vincent and Andrew J. Dowdy
Atmos. Chem. Phys., 24, 10209–10223, https://doi.org/10.5194/acp-24-10209-2024, https://doi.org/10.5194/acp-24-10209-2024, 2024
Short summary
Short summary
We investigate how wind speed at the height of a wind turbine changes during El Niño and La Niña years and with season and time of day in southeastern Australia. We found that El Niño and La Niña can cause average wind speed differences of around 1 m s-1 in some regions. The highest wind speeds occur in the afternoon or evening around mountains or the coast and during the night for inland areas. The results help show how placement of wind turbines can help balance electricity generation.
Justin Peter, Elisabeth Vogel, Wendy Sharples, Ulrike Bende-Michl, Louise Wilson, Pandora Hope, Andrew Dowdy, Greg Kociuba, Sri Srikanthan, Vi Co Duong, Jake Roussis, Vjekoslav Matic, Zaved Khan, Alison Oke, Margot Turner, Stuart Baron-Hay, Fiona Johnson, Raj Mehrotra, Ashish Sharma, Marcus Thatcher, Ali Azarvinand, Steven Thomas, Ghyslaine Boschat, Chantal Donnelly, and Robert Argent
Geosci. Model Dev., 17, 2755–2781, https://doi.org/10.5194/gmd-17-2755-2024, https://doi.org/10.5194/gmd-17-2755-2024, 2024
Short summary
Short summary
We detail the production of datasets and communication to end users of high-resolution projections of rainfall, runoff, and soil moisture for the entire Australian continent. This is important as previous projections for Australia were for small regions and used differing techniques for their projections, making comparisons difficult across Australia's varied climate zones. The data will be beneficial for research purposes and to aid adaptation to climate change.
Emma Howard, Chun-Hsu Su, Christian Stassen, Rajashree Naha, Harvey Ye, Acacia Pepler, Samuel S. Bell, Andrew J. Dowdy, Simon O. Tucker, and Charmaine Franklin
Geosci. Model Dev., 17, 731–757, https://doi.org/10.5194/gmd-17-731-2024, https://doi.org/10.5194/gmd-17-731-2024, 2024
Short summary
Short summary
The BARPA-R modelling configuration has been developed to produce high-resolution climate hazard projections within the Australian region. When using boundary driving data from quasi-observed historical conditions, BARPA-R shows good performance with errors generally on par with reanalysis products. BARPA-R also captures trends, known modes of climate variability, large-scale weather processes, and multivariate relationships.
Louise J. Slater, Louise Arnal, Marie-Amélie Boucher, Annie Y.-Y. Chang, Simon Moulds, Conor Murphy, Grey Nearing, Guy Shalev, Chaopeng Shen, Linda Speight, Gabriele Villarini, Robert L. Wilby, Andrew Wood, and Massimiliano Zappa
Hydrol. Earth Syst. Sci., 27, 1865–1889, https://doi.org/10.5194/hess-27-1865-2023, https://doi.org/10.5194/hess-27-1865-2023, 2023
Short summary
Short summary
Hybrid forecasting systems combine data-driven methods with physics-based weather and climate models to improve the accuracy of predictions for meteorological and hydroclimatic events such as rainfall, temperature, streamflow, floods, droughts, tropical cyclones, or atmospheric rivers. We review recent developments in hybrid forecasting and outline key challenges and opportunities in the field.
Acacia S. Pepler and Irina Rudeva
Weather Clim. Dynam., 4, 175–188, https://doi.org/10.5194/wcd-4-175-2023, https://doi.org/10.5194/wcd-4-175-2023, 2023
Short summary
Short summary
In recent decades, cold fronts have rained less often in southeast Australia, which contributes to decreasing cool season rainfall. The largest changes in front dynamics are found to the north of the area where rain changes. Wet fronts have strong westerly winds that reach much further north than dry fronts do, and these fronts are becoming less common, linked to weakening subtropical winds and changes in the Southern Hemisphere circulation.
Keirnan Fowler, Murray Peel, Margarita Saft, Tim J. Peterson, Andrew Western, Lawrence Band, Cuan Petheram, Sandra Dharmadi, Kim Seong Tan, Lu Zhang, Patrick Lane, Anthony Kiem, Lucy Marshall, Anne Griebel, Belinda E. Medlyn, Dongryeol Ryu, Giancarlo Bonotto, Conrad Wasko, Anna Ukkola, Clare Stephens, Andrew Frost, Hansini Gardiya Weligamage, Patricia Saco, Hongxing Zheng, Francis Chiew, Edoardo Daly, Glen Walker, R. Willem Vervoort, Justin Hughes, Luca Trotter, Brad Neal, Ian Cartwright, and Rory Nathan
Hydrol. Earth Syst. Sci., 26, 6073–6120, https://doi.org/10.5194/hess-26-6073-2022, https://doi.org/10.5194/hess-26-6073-2022, 2022
Short summary
Short summary
Recently, we have seen multi-year droughts tending to cause shifts in the relationship between rainfall and streamflow. In shifted catchments that have not recovered, an average rainfall year produces less streamflow today than it did pre-drought. We take a multi-disciplinary approach to understand why these shifts occur, focusing on Australia's over-10-year Millennium Drought. We evaluate multiple hypotheses against evidence, with particular focus on the key role of groundwater processes.
Philippa A. Higgins, Jonathan G. Palmer, Chris S. M. Turney, Martin S. Andersen, and Fiona Johnson
Clim. Past, 18, 1169–1188, https://doi.org/10.5194/cp-18-1169-2022, https://doi.org/10.5194/cp-18-1169-2022, 2022
Short summary
Short summary
We studied eight New Zealand tree species and identified differences in their responses to large volcanic eruptions. The response is dependent on the species and how well it can tolerate stress, but substantial within-species differences are also observed depending on site factors, including altitude and exposure. This has important implications for tree-ring temperature reconstructions because site selection and compositing methods can change the magnitude of observed volcanic cooling.
Timothy H. Raupach, Andrey Martynov, Luca Nisi, Alessandro Hering, Yannick Barton, and Olivia Martius
Geosci. Model Dev., 14, 6495–6514, https://doi.org/10.5194/gmd-14-6495-2021, https://doi.org/10.5194/gmd-14-6495-2021, 2021
Short summary
Short summary
When simulated thunderstorms are compared to observations or other simulations, a match between overall storm properties is often more important than exact matches to individual storms. We tested a comparison method that uses a thunderstorm tracking algorithm to characterise simulated storms. For May 2018 in Switzerland, the method produced reasonable matches to independent observations for most storm properties, showing its feasibility for summarising simulated storms over mountainous terrain.
Chun-Hsu Su, Nathan Eizenberg, Dörte Jakob, Paul Fox-Hughes, Peter Steinle, Christopher J. White, and Charmaine Franklin
Geosci. Model Dev., 14, 4357–4378, https://doi.org/10.5194/gmd-14-4357-2021, https://doi.org/10.5194/gmd-14-4357-2021, 2021
Short summary
Short summary
The Bureau of Meteorology Atmospheric Regional Reanalysis for Australia (BARRA) has produced a very high-resolution reconstruction of Australian historical weather from 1990 to 2018. This paper demonstrates the added weather and climate information to supplement coarse- or moderate-resolution regional and global reanalyses. The new climate data can allow greater understanding of past weather, including extreme events, at very local kilometre scales.
Sanaa Hobeichi, Gab Abramowitz, and Jason P. Evans
Hydrol. Earth Syst. Sci., 25, 3855–3874, https://doi.org/10.5194/hess-25-3855-2021, https://doi.org/10.5194/hess-25-3855-2021, 2021
Short summary
Short summary
Evapotranspiration (ET) links the water, energy and carbon cycle on land. Reliable ET estimates are key to understand droughts and flooding. We develop a new ET dataset, DOLCE V3, by merging multiple global ET datasets, and we show that it matches ET observations better and hence is more reliable than its parent datasets. Next, we use DOLCE V3 to examine recent changes in ET and find that ET has increased over most of the land, decreased in some regions, and has not changed in some other regions
Max Kulinich, Yanan Fan, Spiridon Penev, Jason P. Evans, and Roman Olson
Geosci. Model Dev., 14, 3539–3551, https://doi.org/10.5194/gmd-14-3539-2021, https://doi.org/10.5194/gmd-14-3539-2021, 2021
Short summary
Short summary
We present a novel stochastic approach based on Markov chains to estimate climate model weights of multi-model ensemble means. This approach showed improved performance (better correlation with observations) over existing alternatives during cross-validation and model-as-truth tests. The results of this comparative analysis should serve to motivate further studies in applications of Markov chain and other nonlinear methods to find optimal model weights for constructing ensemble means.
Wenyan Wu, Seth Westra, and Michael Leonard
Hydrol. Earth Syst. Sci., 25, 2821–2841, https://doi.org/10.5194/hess-25-2821-2021, https://doi.org/10.5194/hess-25-2821-2021, 2021
Short summary
Short summary
Flood probability estimation is important for applications such as land use planning, reservoir operation, infrastructure design and safety assessments. However, it is a challenging task, especially in estuarine areas where floods are caused by both intense rainfall and storm surge. This study provides a review of approaches to flood probability estimation in these areas. Based on analysis of a real-world river system, guidance on method selection is provided.
Viswanathan Bringi, Kumar Vijay Mishra, Merhala Thurai, Patrick C. Kennedy, and Timothy H. Raupach
Atmos. Meas. Tech., 13, 4727–4750, https://doi.org/10.5194/amt-13-4727-2020, https://doi.org/10.5194/amt-13-4727-2020, 2020
Short summary
Short summary
The raindrop size distribution and its moments are fundamental in many areas, such as radar measurement of rainfall using polarimetry and numerical modeling of the microphysical processes of rain formation and evolution. We develop a technique which uses advanced radar measurements and complete drop size distributions using two collocated instruments to retrieve the lower-order moments such as total drop concentration and rain water content. We demonstrate a proof-of-concept using a case study.
Cited articles
Afzali-Gorouh, Z., Faridhosseini, A., Bakhtiari, B., Mosaedi, A., and Salehnia, N.: Monitoring and projection of climate change impact on 24-h probable maximum precipitation in the Southeast of Caspian Sea, Nat. Hazards, 114, 77–99, https://doi.org/10.1007/s11069-022-05380-1, 2022.
Agilan, V. and Umamahesh, N. V.: Detection and attribution of non-stationarity in intensity and frequency of daily and 4-h extreme rainfall of Hyderabad, India, J. Hydrol., 530, 677–697, https://doi.org/10.1016/j.jhydrol.2015.10.028, 2015.
Agilan, V. and Umamahesh, N. V.: What are the best covariates for developing non-stationary rainfall Intensity–Duration–Frequency relationship?, Adv. Water Resour., 101, 11–22, https://doi.org/10.1016/j.advwatres.2016.12.016, 2017.
Ahmed, A., Yildirim, G., Haddad, K., and Rahman, A.: Regional Flood Frequency Analysis: A Bibliometric Overview, Water (Switzerland), 15, 658, https://doi.org/10.3390/w15091658, 2023.
Alexander, L. V. and Arblaster, J. M.: Historical and projected trends in temperature and precipitation extremes in Australia in observations and CMIP5, Weather Clim. Extrem., 15, 34–56, https://doi.org/10.1016/j.wace.2017.02.001, 2017.
Ali, H., Fowler, H. J., and Mishra, V.: Global Observational Evidence of Strong Linkage Between Dew Point Temperature and Precipitation Extremes, Geophys. Res. Lett., 45, 320–330, https://doi.org/10.1029/2018GL080557, 2018.
Ali, H., Fowler, H. J., Lenderink, G., Lewis, E., and Pritchard, D.: Consistent Large-Scale Response of Hourly Extreme Precipitation to Temperature Variation Over Land, Geophys. Res. Lett., 48, GRL61841, https://doi.org/10.1029/2020GL090317, 2021a.
Ali, H., Peleg, N., and Fowler, H. J.: Global Scaling of Rainfall With Dewpoint Temperature Reveals Considerable Ocean–Land Difference, Geophys. Res. Lett., 48, e2021GL093798, https://doi.org/10.1029/2021GL093798, 2021b.
Allen, J. T., Karoly, D. J., and Walsh, K. J.: Future Australian Severe Thunderstorm Environments. Part II: The Influence of a Strongly Warming Climate on Convective Environments, J. Climate, 27, 3848–3868, https://doi.org/10.1175/JCLI-D-13-00426.1, 2014.
Allen, M. R. and Ingram, W. J.: Constraints on future changes in climate and the hydrologic cycle, Nature, 419, 224–232, https://doi.org/10.1038/nature01092, 2002.
Ashcroft, L., Karoly, D. J., and Dowdy, A. J.: Historical extreme rainfall events in southeastern Australia, Weather Clim. Extrem. 25, 100210, https://doi.org/10.1016/j.wace.2019.100210, 2019.
Ayat, H., Evans, J. P., Sherwood, S. C., and Soderholm, J.: Intensification of subhourly heavy rainfall, Science (80–.), 378, 655–659, https://doi.org/10.1126/science.abn8657, 2022.
Bahramian, K., Nathan, R., Western, A. W., and Ryu, D.: Probabilistic Conditioning and Recalibration of an Event-Based Flood Forecasting Model Using Real-Time Streamflow Observations, J. Hydrol. Eng., 28, 04023003, https://doi.org/10.1061/(ASCE)HE.1943-5584.0002236, 2023.
Ball, J., Babister, M., Nathan, R., Weeks, W., Wienmann, R., Retallick, M., and Testoni, I. (Eds.): Australian Rainfall and Runoff: A Guide to Flood Estimation, Commonwealth of Australia, https://arr.ga.gov.au/arr-guideline (last access: 21 August 2023), 2019a.
Ball, J., Babister, M., Retallick, M., and Weinmann, E.: Chapter 1. Introduction, Book 1: Scope and philosophy, in: Australian Rainfall and Runoff – A Guide to Flood Estimation, edited by: Ball, J., Babister, M., Nathan, R., Weeks, W., Weinmann, E., Retallick, M., and Testoni, I., Commonwealth of Australia, https://arr.ga.gov.au/arr-guideline (last access: 21 August 2023), 2019b.
Ball, J. E.: The influence of storm temporal patterns on catchment response, J. Hydrol., 158, 285–303, https://doi.org/10.1016/0022-1694(94)90058-2, 1994.
Bao, J., Sherwood, S. C., Alexander, L. V., and Evans, J. P.: Future increases in extreme precipitation exceed observed scaling rates, Nat. Clim. Change, 7, 128–132, https://doi.org/10.1038/nclimate3201, 2017.
Barbero, R., Westra, S., Lenderink, G., and Fowler, H. J.: Temperature-extreme precipitation scaling: a two-way causality?, Int. J. Climatol., 38, e1274–e1279, https://doi.org/10.1002/joc.5370, 2017.
Bates, B., McLuckie, D., Westra, S., Johnson, F., Green, J., Mummery, J., and Abbs, D.: Chapter 6. Climate Change Considerations, Book 1: Scope and Philosophy, in: Australian Rainfall and Runoff – A Guide to Flood Estimation, edited by: Ball, J., Babister, M., Nathan, R., Weinmann, E., Retallick, M., and Testoni, I., Commonwealth of Australia, https://arr.ga.gov.au/arr-guideline (last access: 21 August 2023), 2019.
Bates, B. C., Chandler, R. E., and Dowdy, A. J.: Estimating trends and seasonality in Australian monthly lightning flash counts, J. Geophys. Res.-Atmos., 120, 3973–3983, https://doi.org/10.1002/2014JD023011, 2015.
Beauchamp, J., Leconte, R., Trudel, M., and Brissette, F.: Estimation of the summer–fall PMP and PMF of a northern watershed under a changed climate, Water Resour. Res., 49, 3852–3862, https://doi.org/10.1002/wrcr.20336, 2013.
Bell, S. S., Chand, S. S., Tory, K. J., Dowdy, A. J., Turville, C., and Ye, H.: Projections of Southern Hemisphere tropical cyclone track density using CMIP5 models, Clim. Dynam., 52, 6065–6079, https://doi.org/10.1007/s00382-018-4497-4, 2019.
Ben Alaya, M. A., Zwiers, F. W., and Zhang, X.: Probable maximum precipitation in a warming climate over North America in CanRCM4 and CRCM5, Climatic Change, 158, 611–629, https://doi.org/10.1007/s10584-019-02591-7, 2020.
Bennett, B., Leonard, M., Deng, Y., and Westra, S.: An empirical investigation into the effect of antecedent precipitation on flood volume, J. Hydrol., 567, 435–445, https://doi.org/10.1016/j.jhydrol.2018.10.025, 2018.
Berg, A., Sheffield, J., and Milly, P. C. D.: Divergent surface and total soil moisture projections under global warming, Geophys. Res. Lett., 44, 236–244, https://doi.org/10.1002/2016GL071921, 2017.
Bergemann, M., Lane, T. P., Wales, S., Narsey, S., and Louf, V.: High-resolution simulations of tropical island thunderstorms: Does an increase in resolution improve the representation of extreme rainfall?, Q. J. Roy. Meteor. Soc., 148, 3303–3318, https://doi.org/10.1002/qj.4360, 2022.
Berghuijs, W. R. and Slater, L. J.: Groundwater shapes North American river floods, Environ. Res. Lett., 18, 034043, https://doi.org/10.1088/1748-9326/acbecc, 2023.
Bevacqua, E., Maraun, D., Vousdoukas, M. I., Voukouvalas, E., Vrac, M., Mentaschi, L., and Widmann, M.: Higher probability of compound flooding from precipitation and storm surge in Europe under anthropogenic climate change, Sci. Adv., 5, eaaw5531, https://doi.org/10.1126/sciadv.aaw5531, 2019.
Bevacqua, E., Vousdoukas, M. I., Shepherd, T. G., and Vrac, M.: Brief communication: The role of using precipitation or river discharge data when assessing global coastal compound flooding, Nat. Hazards Earth Syst. Sci., 20, 1765–1782, https://doi.org/10.5194/nhess-20-1765-2020, 2020.
Bhatia, K., Vecchi, G., Murakami, H., Underwood, S., and Kossin, J.: Projected Response of Tropical Cyclone Intensity and Intensification in a Global Climate Model, J. Climate, 31, 8281–8303, https://doi.org/10.1175/JCLI-D-17-0898.1, 2018.
Bishop-Taylor, R., Sagar, S., Lymburner, L., and Beaman, R. J.: Between the tides: Modelling the elevation of Australia's exposed intertidal zone at continental scale, Estuar. Coast. Shelf S., 223, 115–128, https://doi.org/10.1016/j.ecss.2019.03.006, 2019.
Bishop-Taylor, R., Nanson, R., Sagar, S., and Lymburner, L.: Mapping Australia's dynamic coastline at mean sea level using three decades of Landsat imagery, Remote Sens. Environ., 267, 112734, https://doi.org/10.1016/j.rse.2021.112734, 2021.
Black, A. S., Risbey, J. S., Chapman, C. C., Monselesan, D. P., Moore II, T. S., Pook, M. J., Richardson, D., Sloyan, B. M., Squire, D. T., and Tozer, C. R.: Australian Northwest Cloudbands and Their Relationship to Atmospheric Rivers and Precipitation, Mon. Weather Rev., 149, 1125–1139, https://doi.org/10.1175/MWR-D-20-0308.1, 2021.
Boughton, W. and Droop, O.: Continuous simulation for design flood estimation—a review, Environ. Model. Softw., 18, 309–318, https://doi.org/10.1016/S1364-8152(03)00004-5, 2003.
Brocca, L., Melone, F., Moramarco, T., and Singh, V. P.: Assimilation of Observed Soil Moisture Data in Storm Rainfall-Runoff Modeling, J. Hydrol. Eng., 14, 153–165, https://doi.org/10.1061/(ASCE)1084-0699(2009)14:2(153), 2009.
Brown, A. and Dowdy, A.: Severe Convective Wind Environments and Future Projected Changes in Australia, J. Geophys. Res.-Atmos., 126, e2021JD034633, https://doi.org/10.1029/2021JD034633, 2021.
Brown, I. W., McDougall, K., Alam, M. J., Chowdhury, R., and Chadalavada, S.: Calibration of a continuous hydrologic simulation model in the urban Gowrie Creek catchment in Toowoomba, Australia, J. Hydrol. Reg. Stud., 40, 101021, https://doi.org/10.1016/j.ejrh.2022.101021, 2022.
Bruyère, C. L., Done, J. M., Jaye, A. B., Holland, G. J., Buckley, B., Henderson, D. J., Leplastrier, M., and Chan, P.: Physically-based landfalling tropical cyclone scenarios in support of risk assessment, Weather Clim. Extrem., 26, 100229, https://doi.org/10.1016/j.wace.2019.100229, 2019.
Bui, A., Johnson, F., and Wasko, C.: The relationship of atmospheric air temperature and dew point temperature to extreme rainfall, Environ. Res. Lett., 14, 074025, https://doi.org/10.1088/1748-9326/ab2a26, 2019.
Bureau of Meteorology: Assessment Reports, https://awo.bom.gov.au/about/overview/assessment-reports#regionsandreports (last access: 21 August 2023), 2022.
Callaghan, J. and Power, S. B.: Major coastal flooding in southeastern Australia 1860–2012, associated deaths and weather systems, Aust. Meteorol. Ocean., 64, 183–213, 2014.
Carey-Smith, T., Henderson, R., and Singh, S.: High Intensity Rainfall Design System Version 4, NIWA Client Rep. 2018022CH, National Institute of Water & Atmospheric Research Ltd., Wellington, https://niwa.co.nz/sites/niwa.co.nz/files/2018022CH_HIRDSv4_Final.pdf (last access: 24 March 2020), 2018.
Cavicchia, L., Pepler, A., Dowdy, A., Evans, J., Di Luca, A., and Walsh, K.: Future Changes in the Occurrence of Hybrid Cyclones: The Added Value of Cyclone Classification for the East Australian Low-Pressure Systems, Geophys. Res. Lett., 47, e2019GL085751, https://doi.org/10.1029/2019GL085751, 2020.
Chan, S. C., Kendon, E. J., Roberts, N. M., Fowler, H. J., and Blenkinsop, S.: The characteristics of summer sub-hourly rainfall over the southern UK in a high-resolution convective permitting model, Environ. Res. Lett., 11, 094024, https://doi.org/10.1088/1748-9326/11/9/094024, 2016.
Chan, S. C., Kendon, E. J., Berthou, S., Fosser, G., Lewis, E., and Fowler, H. J.: Europe-wide precipitation projections at convection permitting scale with the Unified Model, Clim. Dynam., 55, 409–428, https://doi.org/10.1007/s00382-020-05192-8, 2020.
Chan, S. C., Kendon, E. J., Fowler, H. J., Kahraman, A., Crook, J., Ban, N., and Prein, A. F.: Large-scale dynamics moderate impact-relevant changes to organised convective storms, Commun. Earth Environ., 4, 8, https://doi.org/10.1038/s43247-022-00669-2, 2023a.
Chan, S. C., Kendon, E. J., Fowler, H. J., Youngman, B. D., Dale, M., and Short, C.: New extreme rainfall projections for improved climate resilience of urban drainage systems, Clim. Serv., 30, 100375, https://doi.org/10.1016/j.cliser.2023.100375, 2023b.
Chand, S. S., Dowdy, A. J., Ramsay, H. A., Walsh, K. J. E., Tory, K. J., Power, S. B., Bell, S. S., Lavender, S. L., Ye, H., and Kuleshov, Y.: Review of tropical cyclones in the Australian region: Climatology, variability, predictability, and trends, WIREs Clim. Change, 10, e602, https://doi.org/10.1002/wcc.602, 2019.
Chand, S. S., Walsh, K. J. E., Camargo, S. J., Kossin, J. P., Tory, K. J., Wehner, M. F., Chan, J. C. L., Klotzbach, P. J., Dowdy, A. J., Bell, S. S., Ramsay, H. A., and Murakami, H.: Declining tropical cyclone frequency under global warming, Nat. Clim. Change, 12, 655–661, https://doi.org/10.1038/s41558-022-01388-4, 2022.
Chang, W., Stein, M. L., Wang, J., Kotamarthi, V. R., and Moyer, E. J.: Changes in spatiotemporal precipitation patterns in changing climate conditions, J. Climate, 29, 8355–8376, https://doi.org/10.1175/JCLI-D-15-0844.1, 2016.
Chegwidden, Oriana, S., Rupp, D. E., and Nijssen, B.: Climate change alters flood magnitudes and mechanisms in climatically-diverse headwaters across the northwestern United States, Environ. Res. Lett., 15, 094048, https://doi.org/10.1088/1748-9326/ab986f, 2020.
Chen, H., Sun, J., and Chen, X.: Projection and uncertainty analysis of global precipitation-related extremes using CMIP5 models, Int. J. Climatol., 34, 2730–2748, https://doi.org/10.1002/joc.3871, 2014.
Chen, X., Hossain, F., and Leung, L. R.: Probable Maximum Precipitation in the U. S. Pacific Northwest in a Changing Climate, Water Resour. Res., 53, 9600–9622, https://doi.org/10.1002/2017WR021094, 2017.
Chen, Y.-R., Yu, B., and Jenkins, G.: Secular variation in rainfall and intensity–frequency–duration curves in Eastern Australia, J. Water Clim. Change, 4, 244–251, https://doi.org/10.2166/wcc.2013.138, 2013.
Chevuturi, A., Klingaman, N. P., Turner, A. G., and Hannah, S.: Projected Changes in the Asian-Australian Monsoon Region in 1.5 °C and 2.0 °C Global-Warming Scenarios, Earths Future, 6, 339–358, https://doi.org/10.1002/2017EF000734, 2018.
Chow, V., Maidment, D., and Mays, L.: Applied Hydrology, McGraw-Hill, Singapore, 572 pp., ISBN 0-07-100174-3, 1988.
Clavet-Gaumont, J., Huard, D., Frigon, A., Koenig, K., Slota, P., Rousseau, A., Klein, I., Thiémonge, N., Houdré, F., Perdikaris, J., Turcotte, R., Lafleur, J., and Larouche, B.: Probable maximum flood in a changing climate: An overview for Canadian basins, J. Hydrol. Reg. Stud., 13, 11–25, https://doi.org/10.1016/j.ejrh.2017.07.003, 2017.
Clayton, A.: Revision of hydrological design loss rates for the central and eastern Kimberley region of western Australia, in: 34th Hydrology and Water Resources Symposium, Sydney, Australia, 19–22 November 2012, 947–953, ISBN 9781922107626, 2012.
Climate Change in Australia: https://www.climatechangeinaustralia.gov.au/en/communication-resources/reports/ (last access: 19 July 2023), 2020.
Colberg, F. and McInnes, K. L.: The impact of future changes in weather patterns on extreme sea levels over southern Australia, J. Geophys. Res.-Oceans, 117, C08001, https://doi.org/10.1029/2012JC007919, 2012.
Colberg, F., McInnes, K. L., O'Grady, J., and Hoeke, R.: Atmospheric circulation changes and their impact on extreme sea levels around Australia, Nat. Hazards Earth Syst. Sci., 19, 1067–1086, https://doi.org/10.5194/nhess-19-1067-2019, 2019.
Collins, M., Sutherland, M., Bouwer, L., Cheong, S.-M., Frölicher, T., Jacot Des Combes, H., Koll Roxy, M., Losada, I., McInnes, K., Ratter, B., Rivera-Arriaga, E., Susanto, R. D., Swingedouw, D., and Tibig, L.: Extremes, Abrupt Changes and Managing Risk, in: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate, edited by: Pörtner, H.-O., Roberts, D. C., Masson-Delmotte, V., Zhai, P., Tignor, M., Poloczanska, E., Mintenbeck, K., Alegría, A., Nicolai, M., Okem, A., Petzold, J., Rama, B., and Weyer, N. M., Cambridge University Press, Cambridge, UK and New York, NY, USA, 589–655, https://doi.org/10.1017/9781009157964.008, 2019.
Condon, L. E., Gangopadhyay, S., and Pruitt, T.: Climate change and non-stationary flood risk for the upper Truckee River basin, Hydrol. Earth Syst. Sci., 19, 159–175, https://doi.org/10.5194/hess-19-159-2015, 2015.
Contractor, S., Donat, M. G., and Alexander, L. V.: Intensification of the Daily Wet Day Rainfall Distribution Across Australia, Geophys. Res. Lett., 45, 8568–8576, https://doi.org/10.1029/2018GL078875, 2018.
Cordery, I.: Antecedent wetness for design flood estimation, Civ. Eng. Trans. Inst. Eng. Aust., 12, 181–185, 1970.
CSIRO and Bureau of Meteorology: Climate Change in Australia Projections for Australia's Natural Resource Management Regions: Technical Report, CSIRO and Bureau of Meteorology, Australia, ISBN 9781921232947, 2015.
Cyphers, L., Sutton, A., Hopkinson, L. C., and Quaranta, J. D.: Probable Maximum Precipitation Evaluation for a West Virginia Watershed, United States, J. Hydrol. Eng., 27, 04022014, https://doi.org/10.1061/(ASCE)HE.1943-5584.0002191, 2022.
Dale, M.: Managing the effects of extreme sub-daily rainfall and flash floods – A practitioner's perspective, Philos. T. R. Soc. A, 379, 20190550, https://doi.org/10.1098/rsta.2019.0550, 2021.
Dare, R. A., Davidson, N. E., and McBride, J. L.: Tropical Cyclone Contribution to Rainfall over Australia, Mon. Weather Rev., 140, 3606–3619, https://doi.org/10.1175/MWR-D-11-00340.1, 2012.
de Bruijn, K. M., Lips, N., Gersonius, B., and Middelkoop, H.: The storyline approach: a new way to analyse and improve flood event management, Nat. Hazards, 81, 99–121, https://doi.org/10.1007/s11069-015-2074-2, 2016.
DeConto, R. M. and Pollard, D.: Contribution of Antarctica to past and future sea-level rise, Nature, 531, 591–597, https://doi.org/10.1038/nature17145, 2016.
Dey, R., Lewis, S. C., Arblaster, J. M., and Abram, N. J.: A review of past and projected changes in Australia's rainfall, WIREs Clim. Change, 10, e577, https://doi.org/10.1002/wcc.577, 2019.
Dowdy, A. J.: Long-term changes in Australian tropical cyclone numbers, Atmos. Sci. Lett., 15, 292–298, https://doi.org/10.1002/asl2.502, 2014.
Dowdy, A. J.: Climatology of thunderstorms, convective rainfall and dry lightning environments in Australia, Clim. Dynam., 54, 3041–3052, https://doi.org/10.1007/s00382-020-05167-9, 2020.
Dowdy, A. J. and Catto, J. L.: Extreme weather caused by concurrent cyclone, front and thunderstorm occurrences, Sci. Rep.-UK, 7, 40359, https://doi.org/10.1038/srep40359, 2017.
Dowdy, A. J., Pepler, A., Di Luca, A., Cavicchia, L., Mills, G., Evans, J. P., Louis, S., McInnes, K. L., and Walsh, K.: Review of Australian east coast low pressure systems and associated extremes, Clim. Dynam., 53, 4887–4910, https://doi.org/10.1007/s00382-019-04836-8, 2019.
Du, H., Alexander, L. V., Donat, M. G., Lippmann, T., Srivastava, A., Salinger, J., Kruger, A., Choi, G., He, H. S., Fujibe, F., Rusticucci, M., Nandintsetseg, B., Manzanas, R., Rehman, S., Abbas, F., Zhai, P., Yabi, I., Stambaugh, M. C., Wang, S., Batbold, A., Oliveira, P. T., Adrees, M., Hou, W., Zong, S., Santos e Silva, C. M., Lucio, P. S., and Wu, Z.: Precipitation From Persistent Extremes is Increasing in Most Regions and Globally, Geophys. Res. Lett., 46, 6041–6049, https://doi.org/10.1029/2019GL081898, 2019.
Earl, N., Remenyi, T. A., King, A., Love, P. T., Rollins, D., and Harris, R. M. B.: Changing compound rainfall events in Tasmania, Int. J. Climatol., 43, 538–557, https://doi.org/10.1002/joc.7791, 2023.
Eliot, M. and Pattiaratchi, C.: Remote forcing of water levels by tropical cyclones in southwest Australia, Cont. Shelf Res., 30, 1549–1561, https://doi.org/10.1016/j.csr.2010.06.002, 2010.
Emanuel, K.: A fast intensity simulator for tropical cyclone risk analysis, Nat. Hazards, 88, 779–796, https://doi.org/10.1007/s11069-017-2890-7, 2017.
Emori, S. and Brown, S. J.: Dynamic and thermodynamic changes in mean and extreme precipitation under changed climate, Geophys. Res. Lett. 32, L17706, https://doi.org/10.1029/2005GL023272, 2005.
England Jr., J. F., Cohn, T. A., Faber, B. A., Stedinger, J. R., Thomas Jr., W. O., Veilleux, A. G., Kiang, J. E., and Mason Jr., R. R.: Guidelines for determining flood flow frequency—Bulletin 17C, U.S. Geological Survey Techniques and Methods, book 4, Chap. B5, 148 pp., https://doi.org/10.3133/tm4B5, 2018.
England, J. F., Sankovich, V. L., and Caldwell, R. J.: Review of probable maximum precipitation procedures and databases used to develop hydrometeorological reports, U.S. Nuclear Regulatory Commission Washington D.C., https://www.nrc.gov/docs/ML2004/ML20043E110.pdf (last access: 12 March 2024), 2020.
Faulkner, D., Warren, S., Spencer, P., and Sharkey, P.: Can we still predict the future from the past? Implementing non-stationary flood frequency analysis in the UK, J. Flood Risk Manag., 13, e12582, https://doi.org/10.1111/jfr3.12582, 2020.
Field, A. P. and Gillett, R.: How to do a meta-analysis, Brit. J. Math. Stat. Psy., 63, 665–694, https://doi.org/10.1348/000711010X502733, 2010.
Fowler, H. J., Blenkinsop, S., and Tebaldi, C.: Linking climate change modelling to impacts studies: recent advances in downscaling techniques for hydrological modelling, Int. J. Climatol., 27, 1547–1578, https://doi.org/10.1002/joc.1556, 2007.
Fowler, H. J., Lenderink, G., Prein, A. F., Westra, S., Allan, R. P., Ban, N., Barbero, R., Berg, P., Blenkinsop, S., Do, H. X., Guerreiro, S., Haerter, J. O., Kendon, E. J., Lewis, E., Schaer, C., Sharma, A., Villarini, G., Wasko, C., and Zhang, X.: Anthropogenic intensification of short-duration rainfall extremes, Nat. Rev. Earth Environ., 2, 107–122, https://doi.org/10.1038/s43017-020-00128-6, 2021.
Fox-Kemper, B., Hewitt, H. T., Xiao, C., Aðalgeirsdóttir, G., Drijfhout, S. S., Edwards, T. L., Golledge, N. R., Hemer, M., Kopp, R. E., Krinner, G., Mix, A., Notz, D., Nowicki, S., Nurhati, I. S., Ruiz, L., Sallée, J.-B., Slangen, A. B. A., and Yu, Y.: Ocean, Cryosphere and Sea Level Change, in: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yelekçi, O., Yu, R., and Zhou, B., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1211–1362, https://doi.org/10.1017/9781009157896.011, 2021.
François, B., Schlef, K. E., Wi, S., and Brown, C. M.: Design considerations for riverine floods in a changing climate – A review, J. Hydrol., 574, 557–573, https://doi.org/10.1016/j.jhydrol.2019.04.068, 2019.
Franks, S. and Kuczera, G.: Flood frequency analysis: Evidence and implications of secular climate variability, New South Wales, Water Resour. Res., 38, 20–1-20–7, https://doi.org/10.1029/2001WR000232, 2002.
Frost, A. J., Ramchurn, A., and Smith, A.: The Australian landscape water balance model (AWRA-L v6). Technical Description of the Australian Water Resources Assessment Landscape model version 6, Bureau of Meteorology, Melbourne, Australia, 50 pp., https://awo.bom.gov.au/assets/notes/publications/AWRALv6_Model_Description_Report.pdf (last access: 17 January 2020), 2018.
Fu, G., Chiew, F. H. S., and Post, D. A.: Trends and variability of rainfall characteristics influencing annual streamflow: A case study of southeast Australia, Int. J. Climatol., 43, 1407–1430, https://doi.org/10.1002/joc.7923, 2023.
Gamage, S. H. P. W., Hewa, G. A., and Beecham, S.: Probability distributions for explaining hydrological losses in South Australian catchments, Hydrol. Earth Syst. Sci., 17, 4541–4553, https://doi.org/10.5194/hess-17-4541-2013, 2013.
Gamage, S. H. P. W., Hewa, G. A., and Beecham, S.: Modelling hydrological losses for varying rainfall and moisture conditions in South Australian catchments, J. Hydrol. Reg. Stud., 4, 1–21, https://doi.org/10.1016/j.ejrh.2015.04.005, 2015.
Gangrade, S., Kao, S., Naz, B. S., Rastogi, D., Ashfaq, M., Singh, N., and Preston, B. L.: Sensitivity of Probable Maximum Flood in a Changing Environment, Water Resour. Res., 54, 3913–3936, https://doi.org/10.1029/2017WR021987, 2018.
Geng, T., Jia, F., Cai, W., Wu, L., Gan, B., Jing, Z., Li, S., and McPhaden, M. J.: Increased occurrences of consecutive La Niña events under global warming, Nature, 619, 774–781, https://doi.org/10.1038/s41586-023-06236-9, 2023.
Ghanghas, A., Sharma, A., Dey, S., and Merwade, V.: How Is Spatial Homogeneity in Precipitation Extremes Changing Globally?, Geophys. Res. Lett., 50, e2023GL103233, https://doi.org/10.1029/2023GL103233, 2023.
Grose, M. R., Narsey, S., Delage, F. P., Dowdy, A. J., Bador, M., Boschat, G., Chung, C., Kajtar, J. B., Rauniyar, S., Freund, M. B., Lyu, K., Rashid, H., Zhang, X., Wales, S., Trenham, C., Holbrook, N. J., Cowan, T., Alexander, L., Arblaster, J. M., and Power, S.: Insights From CMIP6 for Australia's Future Climate, Earths Future, 8, e2019EF001469, https://doi.org/10.1029/2019EF001469, 2020.
Gründemann, G. J., van de Giesen, N., Brunner, L., and van der Ent, R.: Rarest rainfall events will see the greatest relative increase in magnitude under future climate change, Commun. Earth Environ., 3, https://doi.org/10.1038/s43247-022-00558-8, 2022.
Gu, X., Zhang, Q., Li, J., Liu, J., Xu, C. Y., and Sun, P.: The changing nature and projection of floods across Australia, J. Hydrol., 584, 124703, https://doi.org/10.1016/j.jhydrol.2020.124703, 2020.
Gu, X., Ye, L., Xin, Q., Zhang, C., Zeng, F., Nerantzaki, S. D., and Papalexiou, S. M.: Extreme Precipitation in China: A Review on Statistical Methods and Applications, Adv. Water Resour., 163, 104144, https://doi.org/10.1016/j.advwatres.2022.104144, 2022.
Guerreiro, S. B., Fowler, H. J., Barbero, R., Westra, S., Lenderink, G., Blenkinsop, S., Lewis, E., and Li, X.-F.: Detection of continental-scale intensification of hourly rainfall extremes, Nat. Clim. Change, 8, 803–807, https://doi.org/10.1038/s41558-018-0245-3, 2018.
Guo, S., Xiong, L., Chen, J., Guo, S., Xia, J., Zeng, L., and Xu, C. Y.: Nonstationary Regional Flood Frequency Analysis Based on the Bayesian Method, Water Resour. Manag., 37, 659–681, https://doi.org/10.1007/s11269-022-03394-9, 2023.
Gutiérrez, J. M., Jones, R. G., Narisma, G. T., Alves, L. M., Amjad, M., Gorodetskaya, I. ., Grose, M., Klutse, N. A. B., Krakovska, S., Li, J., Martínez-Castro, D., Mearns, L. O., Mernild, S. H., Ngo-Duc, T., Hurk, B. van den, and Yoon, J.-H.: Atlas, in: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yelekçi, O., Yu, R., and Zhou, B., Cambridge University Press, http://interactive-atlas.ipcc.ch/ (last access: 1 October 2023), 2021.
Hague, B. S., Jones, D. A., Jakob, D., McGregor, S., and Reef, R.: Australian Coastal Flooding Trends and Forcing Factors, Earths Future, 10, e2021EF002483, https://doi.org/10.1029/2021EF002483, 2022.
Hague, B. S., Grayson, R. B., Talke, S. A., Black, M. T., and Jakob, D.: The effect of tidal range and mean sea-level changes on coastal flood hazards at Lakes Entrance, south-east Australia, J. South. Hemisph. Earth Syst. Sci., 73, 116–130, https://doi.org/10.1071/ES22036, 2023.
Hajani, E. and Rahman, A.: Characterizing changes in rainfall: a case study for New South Wales, Australia, Int. J. Climatol., 38, 1452–1462, https://doi.org/10.1002/joc.5258, 2018.
Hakala, K., Addor, N., Teutschbein, C., Vis, M., Dakhlaoui, H., and Seibert, J.: Hydrological Modeling of Climate Change Impacts, in: Encyclopedia of water: Science, technology, and society, John Wiley & Sons, Inc, https://doi.org/10.1002/9781119300762.wsts0062, 2019.
Hall, J., Arheimer, B., Borga, M., Brázdil, R., Claps, P., Kiss, A., Kjeldsen, T. R., Kriaučiūnienė, J., Kundzewicz, Z. W., Lang, M., Llasat, M. C., Macdonald, N., McIntyre, N., Mediero, L., Merz, B., Merz, R., Molnar, P., Montanari, A., Neuhold, C., Parajka, J., Perdigão, R. A. P., Plavcová, L., Rogger, M., Salinas, J. L., Sauquet, E., Schär, C., Szolgay, J., Viglione, A., and Blöschl, G.: Understanding flood regime changes in Europe: a state-of-the-art assessment, Hydrol. Earth Syst. Sci., 18, 2735–2772, https://doi.org/10.5194/hess-18-2735-2014, 2014.
Han, X., Mehrotra, R., and Sharma, A.: Measuring the spatial connectivity of extreme rainfall, J. Hydrol., 590, 125510, https://doi.org/10.1016/j.jhydrol.2020.125510, 2020.
Han, X., Mehrotra, R., Sharma, A., and Rahman, A.: Incorporating nonstationarity in regional flood frequency analysis procedures to account for climate change impact, J. Hydrol., 612, 128235, https://doi.org/10.1016/j.jhydrol.2022.128235, 2022.
Hannaford, J., Mackay, J. D., Ascott, M., Bell, V. A., Chitson, T., Cole, S., Counsell, C., Durant, M., Jackson, C. R., Kay, A. L., Lane, R. A., Mansour, M., Moore, R., Parry, S., Rudd, A. C., Simpson, M., Facer-Childs, K., Turner, S., Wallbank, J. R., Wells, S., and Wilcox, A.: The enhanced future Flows and Groundwater dataset: development and evaluation of nationally consistent hydrological projections based on UKCP18, Earth Syst. Sci. Data, 15, 2391–2415, https://doi.org/10.5194/essd-15-2391-2023, 2023.
Hazeleger, W., Van Den Hurk, B. J. J. M., Min, E., Van Oldenborgh, G. J., Petersen, A. C., Stainforth, D. A., Vasileiadou, E., and Smith, L. A.: Tales of future weather, Nat. Clim. Change, 5, 107–113, https://doi.org/10.1038/nclimate2450, 2015.
Hempel, S., Frieler, K., Warszawski, L., Schewe, J., and Piontek, F.: A trend-preserving bias correction – the ISI-MIP approach, Earth Syst. Dynam., 4, 219–236, https://doi.org/10.5194/esd-4-219-2013, 2013.
Heneker, T. M., Lambert, M. F., and Kuczera, G.: Overcoming the joint probability problem associated with initial loss estimation in desgn flood estimation, Australas. J. Water Resour., 7, 101–109, https://doi.org/10.1080/13241583.2003.11465233, 2003.
Herath, S. M., Sarukkalige, P. R., and Nguyen, V. T. V.: A spatial temporal downscaling approach to development of IDF relations for Perth airport region in the context of climate change, Hydrolog. Sci. J., 61, 2061–2070, https://doi.org/10.1080/02626667.2015.1083103, 2016.
Herold, N., Downes, S. M., Gross, M. H., Ji, F., Nishant, N., Macadam, I., Ridder, N. N., and Beyer, K.: Projected changes in the frequency of climate extremes over southeast Australia, Environ. Res. Commun., 3, 011001, https://doi.org/10.1088/2515-7620/abe6b1, 2021.
Herrera, R. V., Blenkinsop, S., Guerreiro, S. B., and Fowler, H. J.: The creation and climatology of a large independent rainfall event database for Great Britain, Int. J. Climatol., 43, 6020–6037, https://doi.org/10.1002/joc.8187, 2023.
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.: The ERA5 global reanalysis, Q. J. Roy. Meteor. Soc., 146, 1999–2049, https://doi.org/10.1002/qj.3803, 2020.
Hershfield, D. M.: Method for Estimating Probable Maximum Rainfall, J. Am. Water Works Ass., 57, 965–972, https://doi.org/10.1002/j.1551-8833.1965.tb01486.x, 1965.
Hill, P. and Thomson, R.: Chapter 3. Losses, Book 5: Flood Hydrograph Estimation, in: Australian Rainfall and Runoff – A Guide to Flood Estimation, edited by: Ball, J., Babister, M., Nathan, R., Weinmann, E., Retallick, M., and Testoni, I., Commonwealth of Australia, https://arr.ga.gov.au/arr-guideline (last access: 21 August 2023), 2019.
Hill, P., Nathan, R., and Zhang, J.: Application of AWRA-L gridded soil moisture data for flood estimation, in: 37th Hydrology and Water Resources Symposium 2016: Water, Infrastructure and the Environment, Queenstown, New Zealand, 28 November–2 December 2016, 179–186, ISBN 978-1-5108-7764-1, 2016.
Hitchcock, S. M., Lane, T. P., Warren, R. A., and Soderholm, J. S.: Linear Rainfall Features and Their Association with Rainfall Extremes near Melbourne, Australia, Mon. Weather Rev., 149, 3401–3417, https://doi.org/10.1175/MWR-D-21-0007.1, 2021.
Ho, M., Nathan, R., Wasko, C., Vogel, E., and Sharma, A.: Projecting changes in flood event runoff coefficients under climate change, J. Hydrol., 615, 128689, https://doi.org/10.1016/j.jhydrol.2022.128689, 2022.
Ho, M., Wasko, C., O'Shea, D., Nathan, R., Vogel, E., and Sharma, A.: Changes in flood-associated rainfall losses under climate change, J. Hydrol., 625, 129950, https://doi.org/10.1016/j.jhydrol.2023.129950, 2023.
Holland, G. and Bruyère, C. L.: Recent intense hurricane response to global climate change, Clim. Dynam., 42, 617–627, https://doi.org/10.1007/s00382-013-1713-0, 2014.
Holland, G. J., Lynch, A. H., and Leslie, L. M.: Australian East-Coast Cyclones. Part I: Synoptic Overview and Case Study, Mon. Weather Rev., 115, 3024–3036, https://doi.org/10.1175/1520-0493(1987)115<3024:AECCPI>2.0.CO;2, 1987.
Hosking, J. R. M. and Wallis, J. R.: Regional Frequency Analysis, Cambridge University Press, https://doi.org/10.1017/CBO9780511529443, 1997.
Institute of Hydrology: Flood Estimation Handbook (five volumes), Centre for Ecology & Hydrology, Centre for Ecology & Hydrology Wallingford, Oxfordshire, UK, ISBN 978-1-906698-00-3, 1999.
Ishak, E. and Rahman, A.: Investigation into probabilistic nature of continuing loss in four catchments in Victoria, in: 30th Hydrology & Water Resources Symposium: Past, Present & Future, Sandy Bay, Tasmania, 4–7 December 2006, 432–437, ISBN 0858257904, 2006.
Ishak, E. H., Rahman, A., Westra, S., Sharma, A., and Kuczera, G.: Trend analysis of Australian annual maximum flood data: exploring relationship with climate and catchment characteristics, in: 35th Hydrology And Water Resources Symposium, Perth, Western Australia, 24–27 February 2014, 445–452, ISBN 9781634399357, 2014.
Ishak, E. H., Rahman, A., Westra, S., Sharma, A., and Kuczera, G.: Evaluating the non-stationarity of Australian annual maximum flood, J. Hydrol., 494, 134–145, https://doi.org/10.1016/j.jhydrol.2013.04.021, 2013.
Ishida, K., Ohara, N., Kavvas, M. L., Chen, Z. Q., and Anderson, M. L.: Impact of air temperature on physically-based maximum precipitation estimation through change in moisture holding capacity of air, J. Hydrol., 556, 1050–1063, https://doi.org/10.1016/j.jhydrol.2016.10.008, 2018.
Ivancic, T. J. and Shaw, S. B.: Examining why trends in very heavy precipitation should not be mistaken for trends in very high river discharge, Climatic Change, 133, 681–693, https://doi.org/10.1007/s10584-015-1476-1, 2015.
Jakob, D., Smalley, R., Meighen, J., Xuereb, K., and Taylor, B.: Climate change and probable maximum precipitation, Bureau of Meteorology, Melbourne, 179 pp., HRS Report No. 12, 2009.
Jayaweera, L., Wasko, C., Nathan, R., and Johnson, F.: Non-stationarity in extreme rainfalls across Australia, J. Hydrol., 624, 129872, https://doi.org/10.1016/j.jhydrol.2023.129872, 2023.
Ju, J., Wu, C., Yeh, P. J.-F., Dai, H., and Hu, B. X.: Global precipitation-related extremes at 1.5 °C and 2 °C of global warming targets: Projection and uncertainty assessment based on the CESM-LWR experiment, Atmos. Res., 264, 105868, https://doi.org/10.1016/j.atmosres.2021.105868, 2021.
Kahraman, A., Kendon, E. J., Chan, S. C., and Fowler, H. J.: Quasi-Stationary Intense Rainstorms Spread Across Europe Under Climate Change, Geophys. Res. Lett., 48, e2020GL092361, https://doi.org/10.1029/2020GL092361, 2021.
Kawagoe, S. and Sarukkalige, R.: Estimation of probable maximum precipitation at three provinces in Northeast Vietnam using historical data and future climate change scenarios, J. Hydrol. Reg. Stud., 23, 100599, https://doi.org/10.1016/j.ejrh.2019.100599, 2019.
Kemp, D. and Daniell, T.: Stuck in the 1960s – the need for fundamental change in flood hydrology in Australia, in: 37th Hydrology & Water Resources Symposium 2016: Water, Infrastructure and the Environment, Queenstown, New Zealand, 28 November–2 December 2016, 220–227, ISBN 978-1-5108-7764-1, 2016.
Kemp, D., Loffler, T., and Daniell, T.: The strange case of first creek – If the flood doesn't fit the curve should the curve fit the flood?, 30th Hydrol. Water Resour. Symp. HWRS 2006, 30th Hydrology & Water Resources Symposium: Past, Present & Future, Sandy Bay, Tasmania, 4–7 December 2006, ISBN 0858257904, 2020.
Kendon, E. J., Ban, N., Roberts, N. M., Fowler, H. J., Roberts, M. J., Chan, S. C., Evans, J. P., Fosser, G., and Wilkinson, J. M.: Do convection-permitting regional climate models improve projections of future precipitation change?, B. Am. Meteorol. Soc., 98, 79–93, https://doi.org/10.1175/BAMS-D-15-0004.1, 2017.
Kiem, A. S. and Verdon-Kidd, D. C.: The importance of understanding drivers of hydroclimatic variability for robust flood risk planning in the coastal zone, Australas. J. Water Resour., 17, 126–134, https://doi.org/10.7158/W13-015.2013.17.2, 2013.
Kim, H. and Villarini, G.: On the attribution of annual maximum discharge across the conterminous United States, Adv. Water Resour., 171, 104360, https://doi.org/10.1016/j.advwatres.2022.104360, 2023.
Knutson, T., Camargo, S. J., Chan, J. C. L., Emanuel, K., Ho, C.-H., Kossin, J., Mohapatra, M., Satoh, M., Sugi, M., Walsh, K., and Wu, L.: Tropical Cyclones and Climate Change Assessment: Part I: Detection and Attribution, B. Am. Meteorol. Soc., 100, 1987–2007, https://doi.org/10.1175/BAMS-D-18-0189.1, 2019.
Knutson, T., Camargo, S. J., Chan, J. C. L., Emanuel, K., Ho, C.-H., Kossin, J., Mohapatra, M., Satoh, M., Sugi, M., Walsh, K., and Wu, L.: Tropical Cyclones and Climate Change Assessment: Part II: Projected Response to Anthropogenic Warming, B. Am. Meteorol. Soc., 101, E303–E322, https://doi.org/10.1175/BAMS-D-18-0194.1, 2020.
Kossin, J. P.: A global slowdown of tropical-cyclone translation speed, Nature, 558, 104–107, https://doi.org/10.1038/s41586-018-0158-3, 2018.
Kossin, J. P., Emanuel, K. A., and Vecchi, G. A.: The poleward migration of the location of tropical cyclone maximum intensity, Nature, 509, 349–352, https://doi.org/10.1038/nature13278, 2014.
Kossin, J. P., Knapp, K. R., Olander, T. L., and Velden, C. S.: Global increase in major tropical cyclone exceedance probability over the past four decades, P. Natl. Acad. Sci. USA, 117, 11975–11980, https://doi.org/10.1073/pnas.1920849117, 2020.
Krysanova, V., Donnelly, C., Gelfan, A., Gerten, D., Arheimer, B., Hattermann, F., and Kundzewicz, Z. W.: How the performance of hydrological models relates to credibility of projections under climate change, Hydrolog. Sci. J., 63, 696–720, https://doi.org/10.1080/02626667.2018.1446214, 2018.
Kundzewicz, Z. W. and Stakhiv, E. Z.: Are climate models “ready for prime time” in water resources management applications, or is more research needed?, Hydrolog. Sci. J., 55, 1085–1089, https://doi.org/10.1080/02626667.2010.513211, 2010.
Kunkel, K. E., Karl, T. R., Easterling, D. R., Redmond, K., Young, J., Yin, X., and Hennon, P.: Probable maximum precipitation and climate change, Geophys. Res. Lett., 40, 1402–1408, https://doi.org/10.1002/grl.50334, 2013.
Labonté-Raymond, P.-L., Pabst, T., Bussière, B., and Bresson, É.: Impact of climate change on extreme rainfall events and surface water management at mine waste storage facilities, J. Hydrol., 590, 125383, https://doi.org/10.1016/j.jhydrol.2020.125383, 2020.
Lagos-Zúñiga, M. A. and Vargas M., X.: PMP and PMF estimations in sparsely-gauged Andean basins and climate change projections, Hydrolog. Sci. J., 59, 2027–2042, https://doi.org/10.1080/02626667.2013.877588, 2014.
Lanzante, J. R.: Uncertainties in tropical-cyclone translation speed, Nature, 570, E6–E15, https://doi.org/10.1038/s41586-019-1223-2, 2019.
Lavender, S. L. and Abbs, D. J.: Trends in Australian rainfall: contribution of tropical cyclones and closed lows, Clim. Dynam., 40, 317–326, https://doi.org/10.1007/s00382-012-1566-y, 2013.
Lawrence, D. and Hisdal, H.: Hydrological projections for floods in Norway under a future climate, NVE Report, Norwegian Water Resources and Energy Directorate, Middelthunsgate 29, Oslo, Report no. 5 – 2011 Hydrological, 47 pp., ISBN 9788241007538, 2011.
Laz, O. U., Rahman, A., Yilmaz, A., and Haddad, K.: Trends in sub-hourly, sub-daily and daily extreme rainfall events in eastern Australia, J. Water Clim. Change, 5, 667–675, https://doi.org/10.2166/wcc.2014.035, 2014.
Le, P. D., Leonard, M., and Westra, S.: Spatially dependent flood probabilities to support the design of civil infrastructure systems, Hydrol. Earth Syst. Sci., 23, 4851–4867, https://doi.org/10.5194/hess-23-4851-2019, 2019.
Lee, K. and Singh, V. P.: Analysis of uncertainty and non-stationarity in probable maximum precipitation in Brazos River basin, J. Hydrol., 590, 125526, https://doi.org/10.1016/j.jhydrol.2020.125526, 2020.
Lee, O., Park, Y., Kim, E. S., and Kim, S.: Projection of Korean Probable Maximum Precipitation under Future Climate Change Scenarios, Adv. Meteorol., 2016, 3818236, https://doi.org/10.1155/2016/3818236, 2016.
Lee, O., Sim, I., and Kim, S.: Application of the non-stationary peak-over-threshold methods for deriving rainfall extremes from temperature projections, J. Hydrol., 585, 124318, https://doi.org/10.1016/j.jhydrol.2019.124318, 2020.
Lenderink, G., Belušiæ, D., Fowler, H. J., Kjellström, E., Lind, P., van Meijgaard, E., van Ulft, B., and de Vries, H.: Systematic increases in the thermodynamic response of hourly precipitation extremes in an idealized warming experiment with a convection-permitting climate model, Environ. Res. Lett., 14, 074012, https://doi.org/10.1088/1748-9326/ab214a, 2019.
Li, J., Thyer, M., Lambert, M., Kuczera, G., and Metcalfe, A.: An efficient causative event-based approach for deriving the annual flood frequency distribution, J. Hydrol., 510, 412–423, https://doi.org/10.1016/j.jhydrol.2013.12.035, 2014.
Li, J., Sharma, A., Johnson, F., and Evans, J.: Evaluating the effect of climate change on areal reduction factors using regional climate model projections, J. Hydrol., 528, 419–434, https://doi.org/10.1016/j.jhydrol.2015.06.067, 2015.
Li, J., Wasko, C., Johnson, F., Evans, J. P., and Sharma, A.: Can Regional Climate Modeling Capture the Observed Changes in Spatial Organization of Extreme Storms at Higher Temperatures?, Geophys. Res. Lett., 45, 4475–4484, https://doi.org/10.1029/2018GL077716, 2018.
Liang, S., Wang, D., Ziegler, A. D., Li, L. Z. X., and Zeng, Z.: Madden–Julian Oscillation-induced extreme rainfalls constrained by global warming mitigation, npj Clim. Atmos. Sci., 5, 67, https://doi.org/10.1038/s41612-022-00291-1, 2022.
Lighthill, J., Zheng, Z., Holland, G. J., and Emanuel, K. (Eds.): Tropical Cyclone Disasters, in: Proceedings of the ICSU/WMO International Symposium, Beijing, China, 12–16 October 1992, ISBN 9787301020869, 1993.
Linacre, E. and Geerts, B.: Climates & Weather Explained, Routledge, London, New York, ISBN 0415125197, 432 pp., 1997.
Liu, H., Lei, T. W., Zhao, J., Yuan, C. P., Fan, Y. T., and Qu, L. Q.: Effects of rainfall intensity and antecedent soil water content on soil infiltrability under rainfall conditions using the run off-on-out method, J. Hydrol., 396, 24–32, https://doi.org/10.1016/j.jhydrol.2010.10.028, 2011.
Liu, J., Wu, D., Li, Y., Ren, H., Zhao, Y., Sun, X., Zhang, H., and Ji, M.: Spatiotemporal variation of precipitation on a global scale from 1960 to 2016 in a new normalized daily precipitation dataset, Int. J. Climatol., 42, 3648–3665, https://doi.org/10.1002/joc.7437, 2022a.
Liu, T., Li, B., Jin, L., Wang, S., Wen, J., and Wang, H.: Estimation of probable maximum precipitation of a high-mountain basin in a changing climate, Hydrol. Res., 53, 221–240, https://doi.org/10.2166/nh.2021.084, 2022b.
Loveridge, M. and Rahman, A.: Trend analysis of rainfall losses using an event-based hydrological model in eastern NSW, in: 20th International Congress on Modelling and Simulation. Modelling and Simulation Society of Australia and New Zealand (MSSANZ), edited by: Piantadosi, J., Anderssen, R. S., and Boland, J., MODSIM2013, Inc., Adelaide, Australia, 1–6 December 2013, 2569–2575, https://doi.org/10.36334/modsim.2013.L7.loveridge, 2017.
Loveridge, M. and Rahman, A.: Effects of Probability-Distributed Losses on Flood Estimates Using Event-Based Rainfall-Runoff Models, Water, 13, 2049, https://doi.org/10.3390/w13152049, 2021.
Magan, B., Kim, S., Wasko, C., Barbero, R., Moron, V., Nathan, R., and Sharma, A.: Impact of atmospheric circulation on the rainfall–temperature relationship in Australia, Environ. Res. Lett., 15, 094098, https://doi.org/10.1088/1748-9326/abab35, 2020.
Mantegna, G. A., White, C. J., Remenyi, T. A., Corney, S. P., and Fox-Hughes, P.: Simulating sub-daily Intensity-Frequency-Duration curves in Australia using a dynamical high-resolution regional climate model, J. Hydrol., 554, 277–291, https://doi.org/10.1016/j.jhydrol.2017.09.025, 2017.
McInnes, K. L., White, C. J., Haigh, I. D., Hemer, M. A., Hoeke, R. K., Holbrook, N. J., Kiem, A. S., Oliver, E. C. J., Ranasinghe, R., Walsh, K. J. E., Westra, S., and Cox, R.: Natural hazards in Australia: sea level and coastal extremes, Climatic Change, 139, 69–83, https://doi.org/10.1007/s10584-016-1647-8, 2016.
McMahon, G. M. and Kiem, A. S.: Large floods in South East Queensland, Australia: Is it valid to assume they occur randomly?, Aust. J. Water Resour., 22, 4–14, https://doi.org/10.1080/13241583.2018.1446677, 2018.
Meucci, A., Young, I. R., Hemer, M., Kirezci, E., and Ranasinghe, R.: Projected 21st century changes in extreme wind-wave events, Sci. Adv., 6, eaaz7295, https://doi.org/10.1126/sciadv.aaz7295, 2020.
Mills, G., Webb, R., Davidson, N. E., Kepert, J., Seed, A., and Abbs, D.: The Pasha Bulker east coast low of 8 June 2007, The Centre for Australian Weather and Climate Research, CAWCR Technical Report No. 023, ISBN 978-1-921605-77-2, 2010.
Milly, P. C. D., Betancourt, J., Falkenmark, M., Hirsch, R. M., Kundzewicz, Z. W., Lettenmaier, D. P., and Stouffer, R. J.: CLIMATE CHANGE: Stationarity Is Dead: Whither Water Management?, Science (80–.), 319, 573–574, https://doi.org/10.1126/science.1151915, 2008.
Moon, I.-J., Kim, S.-H., and Chan, J. C. L.: Climate change and tropical cyclone trend, Nature, 570, E3–E5, https://doi.org/10.1038/s41586-019-1222-3, 2019.
Musselman, K. N., Lehner, F., Ikeda, K., Clark, M. P., Prein, A. F., Liu, C., Barlage, M., and Rasmussen, R.: Projected increases and shifts in rain-on-snow flood risk over western North America, Nat. Clim. Change, 8, 808–812, https://doi.org/10.1038/s41558-018-0236-4, 2018.
Nathan, R., Weinmann, E., and Hill, P.: Use of Monte Carlo Simulation to Estimate the Expected Probability of Large to Extreme Floods, in: 28th International Hydrology and Water Resources Symposium: About Water, Wollongong, Australia, 10–13 November 2003, 105–112, ISBN 0858240602, 2003.
Nathan, R. J. and Bowles, D. S.: A Probability-Neutral Approach to the Estimation of Design Snowmelt Floods, in: 24th Hydrology and Water Resources Symposium, 24th Hydrology and Water Resources Symposium, Auckland, New Zealand, 24–27 November 1997, 125–130, 1997.
Neri, A., Villarini, G., Slater, L. J., and Napolitano, F.: On the statistical attribution of the frequency of flood events across the U. S. Midwest, Adv. Water Resour., 127, 225–236, https://doi.org/10.1016/j.advwatres.2019.03.019, 2019.
O'Grady, J. G., McInnes, K. L., Hemer, M. A., Hoeke, R. K., Stephenson, A. G., and Colberg, F.: Extreme Water Levels for Australian Beaches Using Empirical Equations for Shoreline Wave Setup, J. Geophys. Res.-Oceans, 124, 5468–5484, https://doi.org/10.1029/2018JC014871, 2019.
O'Shea, D., Nathan, R., Wasko, C., and Hill, P.: Implications of event-based loss model structure on simulating large floods, J. Hydrol., 595, 126008, https://doi.org/10.1016/j.jhydrol.2021.126008, 2021.
Osburn, L., Hope, P., and Dowdy, A.: Changes in hourly extreme precipitation in victoria, Australia, from the observational record, Weather Clim. Extrem., 31, 100294, https://doi.org/10.1016/j.wace.2020.100294, 2021.
Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-Wilson, E., McDonald, S., McGuinness, L. A., Stewart, L. A., Thomas, J., Tricco, A. C., Welch, V. A., Whiting, P., and Moher, D.: The PRISMA 2020 statement: an updated guideline for reporting systematic reviews, BMJ, 372, n71, https://doi.org/10.1136/bmj.n71, 2021.
Paquet, E., Garavaglia, F., Garçon, R., and Gailhard, J.: The SCHADEX method: A semi-continuous rainfall–runoff simulation for extreme flood estimation, J. Hydrol., 495, 23–37, https://doi.org/10.1016/j.jhydrol.2013.04.045, 2013.
Parker, C. L., Bruyère, C. L., Mooney, P. A., and Lynch, A. H.: The response of land-falling tropical cyclone characteristics to projected climate change in northeast Australia, Clim. Dynam., 51, 3467–3485, https://doi.org/10.1007/s00382-018-4091-9, 2018.
Pathiraja, S., Westra, S., and Sharma, A.: Why continuous simulation? The role of antecedent moisture in design flood estimation, Water Resour. Res., 48, W06534, https://doi.org/10.1029/2011WR010997, 2012.
Patricola, C. M. and Wehner, M. F.: Anthropogenic influences on major tropical cyclone events, Nature, 563, 339–346, https://doi.org/10.1038/s41586-018-0673-2, 2018.
Pendergrass, A. G.: What precipitation is extreme?, Science (80–.), 360, 1072–1073, https://doi.org/10.1126/science.aat1871, 2018.
Pendergrass, A. G. and Hartmann, D. L.: Changes in the distribution of rain frequency and intensity in response to global warming, J. Climate, 27, 8372–8383, https://doi.org/10.1175/JCLI-D-14-00183.1, 2014.
Pepler, A. S. and Dowdy, A. J.: Australia's Future Extratropical Cyclones, J. Climate, 35, 7795–7810, https://doi.org/10.1175/JCLI-D-22-0312.1, 2022.
Pepler, A. S., Dowdy, A. J., van Rensch, P., Rudeva, I., Catto, J. L., and Hope, P.: The contributions of fronts, lows and thunderstorms to southern Australian rainfall, Clim. Dynam., 55, 1489–1505, https://doi.org/10.1007/s00382-020-05338-8, 2020.
Pepler, A. S., Dowdy, A. J., and Hope, P.: The differing role of weather systems in southern Australian rainfall between 1979–1996 and 1997–2015, Clim. Dynam., 56, 2289–2302, https://doi.org/10.1007/s00382-020-05588-6, 2021.
Peter, J., Vogel, E., Sharples, W., Bende-Michl, U., Wilson, L., Hope, P., Dowdy, A., Kociuba, G., Srikanthan, S., Duong, V. C., Roussis, J., Matic, V., Khan, Z., Oke, A., Turner, M., Baron-Hay, S., Johnson, F., Mehrotra, R., Sharma, A., Thatcher, M., Azarvinand, A., Thomas, S., Boschat, G., Donnelly, C., and Argent, R.: Continental-scale bias-corrected climate and hydrological projections for Australia, Geosci. Model Dev. Discuss. [preprint], https://doi.org/10.5194/gmd-2023-7, in review, 2023.
Pfahl, S., O’Gorman, P. A., and Fischer, E. M.: Understanding the regional pattern of projected future changes in extreme precipitation, Nat. Clim. Change, 7, 423–427, https://doi.org/10.1038/nclimate3287, 2017.
Pilgrim, D. and Cordery, I.: Flood runoff, in: Handbook of Hydrology, edited by: Maidment, D., McGraw-Hill, ISBN 978-0070397323, 1993.
Power, S. B. and Callaghan, J.: The frequency of major flooding in coastal southeast Australia has significantly increased since the late 19th century, J. South. Hemisph. Earth Syst. Sci., 66, 2–11, https://doi.org/10.1071/es16002, 2016.
Prosdocimi, I. and Kjeldsen, T.: Parametrisation of change-permitting extreme value models and its impact on the description of change, Stoch. Env. Res. Risk A., 35, 307–324, https://doi.org/10.1007/s00477-020-01940-8, 2021.
Quintero, F., Villarini, G., Prein, A. F., Zhang, W., and Krajewski, W. F.: Discharge and floods projected to increase more than precipitation extremes, Hydrol. Process., 36, e14738, https://doi.org/10.1002/hyp.14738, 2022.
Rahman, A., Weinmann, E., and Mein, R. G.: The Use of Probability-Distributed Initial Losses in Design Flood Estimation, Australas. J. Water Resour., 6, 17–29, https://doi.org/10.1080/13241583.2002.11465207, 2002.
Rakhecha, P. R. and Kennedy, M. R.: A generalised technique for the estimation of probable maximum precipitation in India, J. Hydrol., 78, 345–359, https://doi.org/10.1016/0022-1694(85)90112-X, 1985.
Rastogi, D., Kao, S., Ashfaq, M., Mei, R., Kabela, E. D., Gangrade, S., Naz, B. S., Preston, B. L., Singh, N., and Anantharaj, V. G.: Effects of climate change on probable maximum precipitation: A sensitivity study over the Alabama–Coosa–Tallapoosa River Basin, J. Geophys. Res.-Atmos., 122, 4808–4828, https://doi.org/10.1002/2016JD026001, 2017.
Raupach, T. H.: Code to calculate warming levels from CMIP6 and CMIP5, Zenodo [code], https://doi.org/10.5281/zenodo.10785698, 2024.
Reid, K. J., O'Brien, T. A., King, A. D., and Lane, T. P.: Extreme Water Vapor Transport During the March 2021 Sydney Floods in the Context of Climate Projections, Geophys. Res. Lett., 48, e2021GL095335, https://doi.org/10.1029/2021GL095335, 2021.
Reid, K. J., King, A. D., Lane, T. P., and Hudson, D.: Tropical, Subtropical, and Extratropical Atmospheric Rivers in the Australian Region, J. Climate, 35, 2697–2708, https://doi.org/10.1175/JCLI-D-21-0606.1, 2022.
Robertson, D. E., Chiew, F. H. S., and Potter, N.: Adapting rainfall bias-corrections to improve hydrological simulations generated from climate model forcings, J. Hydrol., 619, 129322, https://doi.org/10.1016/j.jhydrol.2023.129322, 2023.
Roderick, T. P., Wasko, C., and Sharma, A.: An Improved Covariate for Projecting Future Rainfall Extremes?, Water Resour. Res., 56, e2019WR026924, https://doi.org/10.1029/2019WR026924, 2020.
Rohde, R. A. and Hausfather, Z.: The Berkeley Earth Land/Ocean Temperature Record, Earth Syst. Sci. Data, 12, 3469–3479, https://doi.org/10.5194/essd-12-3469-2020, 2020.
Rossman, L.: Storm Water Management Model – User's Manual Version 5.0, U.S. Environmental Protection Agency, Cincinnati, OH, 285 pp., https://cfpub.epa.gov/si/si_public_record_report.cfm?Lab=NRMRL&dirEntryId=114231 (last access: 7 March 2024), 2010.
Rouhani, H. and Leconte, R.: Uncertainties of Precipitable Water Calculations for PMP Estimates in Current and Future Climates, J. Hydrol. Eng., 25, 04019066, https://doi.org/10.1061/(ASCE)HE.1943-5584.0001877, 2020.
Rousseau, A. N., Klein, I. M., Freudiger, D., Gagnon, P., Frigon, A., and Ratté-Fortin, C.: Development of a methodology to evaluate probable maximum precipitation (PMP) under changing climate conditions: Application to southern Quebec, Canada, J. Hydrol., 519, 3094–3109, https://doi.org/10.1016/j.jhydrol.2014.10.053, 2014.
Salas, J. D. and Obeysekera, J.: Revisiting the Concepts of Return Period and Risk for Nonstationary Hydrologic Extreme Events, J. Hydrol. Eng., 19, 554–568, https://doi.org/10.1061/(ASCE)HE.1943-5584.0000820, 2014.
Salas, J. D., Obeysekera, J., and Vogel, R. M.: Techniques for assessing water infrastructure for nonstationary extreme events: a review, Hydrolog. Sci. J., 63, 325–352, https://doi.org/10.1080/02626667.2018.1426858, 2018.
Salas, J. D., Anderson, M. L., Papalexiou, S. M., and Frances, F.: PMP and Climate Variability and Change: A Review, J. Hydrol. Eng., 25, 1–16, https://doi.org/10.1061/(asce)he.1943-5584.0002003, 2020.
Sarkar, S. and Maity, R.: Increase in probable maximum precipitation in a changing climate over India, J. Hydrol., 585, 124806, https://doi.org/10.1016/j.jhydrol.2020.124806, 2020.
Sauter, C., White, C. J., Fowler, H. J., and Westra, S.: Temporally compounding heatwave–heavy rainfall events in Australia, Int. J. Climatol., 43, 1050–1061, https://doi.org/10.1002/joc.7872, 2023.
Schaefer, M.: PMP and Other Extreme Storms: Concepts and Probabilities, in: Proceedings, Association of State Dam Safety Officials National Conference, Baltimore, MD, 11–14 September, 61–73, 1994.
Schlef, K. E., François, B., Robertson, A. W., and Brown, C.: A General Methodology for Climate-Informed Approaches to Long-Term Flood Projection—Illustrated With the Ohio River Basin, Water Resour. Res., 54, 9321–9341, https://doi.org/10.1029/2018WR023209, 2018.
Schlef, K. E., Kunkel, K. E., Brown, C., Demissie, Y., Lettenmaier, D. P., Wagner, A., Wigmosta, M. S., Karl, T. R., Easterling, D. R., Wang, K. J., François, B., and Yan, E.: Incorporating non-stationarity from climate change into rainfall frequency and intensity–duration–frequency (IDF) curves, J. Hydrol., 616, 128757, https://doi.org/10.1016/j.jhydrol.2022.128757, 2023.
Schleiss, M.: How intermittency affects the rate at which rainfall extremes respond to changes in temperature, Earth Syst. Dynam., 9, 955–968, https://doi.org/10.5194/esd-9-955-2018, 2018.
Seneviratne, S. I., Corti, T., Davin, E. L., Hirschi, M., Jaeger, E. B., Lehner, I., Orlowsky, B., and Teuling, A. J.: Investigating soil moisture-climate interactions in a changing climate: A review, Earth-Sci. Rev., 99, 125–161, https://doi.org/10.1016/j.earscirev.2010.02.004, 2010.
Seneviratne, S. I., Zhang, X., Adnan, M., Badi, W., Dereczynski, C., Luca, A. Di, Ghosh, S., Iskandar, I., Kossin, J., Lewis, S., Otto, F., Pinto, I., Satoh, M., Vicente-Serrano, S. M., Wehner, M., and Zhou, B.: Weather and Climate Extreme Events in a Changing Climate, in: Climate Change 2021 – The Physical Science Basis, edited by: Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yelekçi, O., Yu, R., and Zhou, B., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1513–1766, https://doi.org/10.1017/9781009157896.013, 2023.
Sharma, A., Hettiarachchi, S., and Wasko, C.: Estimating design hydrologic extremes in a warming climate: alternatives, uncertainties and the way forward, Philos. T. R. Soc. A, 379, 20190623, https://doi.org/10.1098/rsta.2019.0623, 2021.
Sheikh, V., Visser, S., and Stroosnijder, L.: A simple model to predict soil moisture: Bridging Event and Continuous Hydrological (BEACH) modelling, Environ. Model. Softw., 24, 542–556, https://doi.org/10.1016/j.envsoft.2008.10.005, 2009.
Shepherd, T. G., Boyd, E., Calel, R. A., Chapman, S. C., Dessai, S., Dima-West, I. M., Fowler, H. J., James, R., Maraun, D., Martius, O., Senior, C. A., Sobel, A. H., Stainforth, D. A., Tett, S. F. B., Trenberth, K. E., van den Hurk, B. J. J. M., Watkins, N. W., Wilby, R. L., and Zenghelis, D. A.: Storylines: an alternative approach to representing uncertainty in physical aspects of climate change, Climatic Change, 151, 555–571, https://doi.org/10.1007/s10584-018-2317-9, 2018.
Shields, C. A., Kiehl, J. T., and Meehl, G. A.: Future changes in regional precipitation simulated by a half-degree coupled climate model: Sensitivity to horizontal resolution, J. Adv. Model. Earth Sy., 8, 863–884, https://doi.org/10.1002/2015MS000584, 2016.
Sillmann, J., Kharin, V. V., Zwiers, F. W., Zhang, X., and Bronaugh, D.: Climate extremes indices in the CMIP5 multimodel ensemble: Part 2. Future climate projections, J. Geophys. Res.-Atmos., 118, 2473–2493, https://doi.org/10.1002/jgrd.50188, 2013.
Sobel, A. H., Camargo, S. J., Hall, T. M., Lee, C.-Y., Tippett, M. K., and Wing, A. A.: Human influence on tropical cyclone intensity, Science (80–.), 353, 242–246, https://doi.org/10.1126/science.aaf6574, 2016.
Srikanthan, S., Azarnivand, A., Bende-Michl, U., Carrara, E., Donnelly, C., Dowdy, A., Duong, V., Hope, P., Khan, Z., Kociuba, G., Loh, S., Matic, V., Oke, A., Peter, J. R., Roussis, J., Sharples, W., Thomas, S., Turner, M., and Wilson, L.: National Hydrological Projections – Design and Methodology, Bureau Research Report No. 061, Bureau of Meteorology, 63 pp., ISBN 978-1-925738-37-7, 2022.
Stedinger, J., Vogel, R., and Foufoula-Georgiou, E.: Frequency analysis of extreme events, in: Handbook of Hydrology, edited by: Maidment, D., McGraw-Hill, ISBN 978-0070397323, 1993.
Stedinger, J. R. and Griffis, V. W.: Getting from here to where? Flood frequency analysis and climate, J. Am. Water Resour. As., 47, 506–513, https://doi.org/10.1111/j.1752-1688.2011.00545.x, 2011.
Stephens, C. M., Johnson, F. M., and Marshall, L. A.: Implications of future climate change for event-based hydrologic models, Adv. Water Resour., 119, 95–110, https://doi.org/10.1016/j.advwatres.2018.07.004, 2018a.
Stephens, C. M., McVicar, T. R., Johnson, F. M., and Marshall, L. A.: Revisiting Pan Evaporation Trends in Australia a Decade on, Geophys. Res. Lett., 45, 11,164-11,172, https://doi.org/10.1029/2018GL079332, 2018b.
Stephens, D., Nathan, R., Hill, P., and Scorah, M.: Incorporation of snowmelt into joint probability event based rainfall-runoff modelling, in: 37th Hydrology and Water Resources Symposium 2016: Water, Infrastructure and the Environment, Queenstown, New Zealand, 28 November–2 December 2016, 532–540, ISBN 9781922107954, 2016.
Sun, Q., Zhang, X., Zwiers, F., Westra, S., and Alexander, L. V.: A Global, Continental, and Regional Analysis of Changes in Extreme Precipitation, J. Climate, 34, 243–258, https://doi.org/10.1175/JCLI-D-19-0892.1, 2021.
Sunwoo, W. and Choi, M.: Robust Initial Wetness Condition Framework of an Event-Based Rainfall–Runoff Model Using Remotely Sensed Soil Moisture, Water, 9, 77, https://doi.org/10.3390/w9020077, 2017.
Tan, X. and Shao, D.: Precipitation trends and teleconnections identified using quantile regressions over Xinjiang, China, Int. J. Climatol., 37, 1510–1525, https://doi.org/10.1002/joc.4794, 2017.
Tauvale, L. and Tsuboki, K.: Characteristics of Tropical Cyclones in the Southwest Pacific, J. Meteorol. Soc. Jpn. Ser. II, 97, 711–731, https://doi.org/10.2151/jmsj.2019-042, 2019.
Teutschbein, C. and Seibert, J.: Bias correction of regional climate model simulations for hydrological climate-change impact studies: Review and evaluation of different methods, J. Hydrol., 456–457, 12–29, https://doi.org/10.1016/j.jhydrol.2012.05.052, 2012.
Thompson, C. S. and Tomlinson, A. I.: A guide to probable maximum precipitation in New Zealand, NIWA Science and Technology Series No. 19, NIWA, Wellington, New Zealand, 1995.
Tolhurst, G., Hope, P., Osburn, L., and Rauniyar, S.: Approaches to Understanding Decadal and Long-Term Shifts in Observed Precipitation Distributions in Victoria, Australia, J. Appl. Meteorol. Clim., 62, 13–29, https://doi.org/10.1175/JAMC-D-22-0031.1, 2023.
Towler, E., Rajagopalan, B., Gilleland, E., Summers, R. S., Yates, D., and Katz, R. W.: Modeling hydrologic and water quality extremes in a changing climate: A statistical approach based on extreme value theory, Water Resour. Res., 46, W11504, https://doi.org/10.1029/2009WR008876, 2010.
Tramblay, Y., Bouvier, C., Martin, C., Didon-Lescot, J. F., Todorovik, D., and Domergue, J. M.: Assessment of initial soil moisture conditions for event-based rainfall-runoff modelling, J. Hydrol., 387, 176–187, https://doi.org/10.1016/j.jhydrol.2010.04.006, 2010.
Tramblay, Y., Amoussou, E., Dorigo, W., and Mahé, G.: Flood risk under future climate in data sparse regions: Linking extreme value models and flood generating processes, J. Hydrol., 519, 549–558, https://doi.org/10.1016/j.jhydrol.2014.07.052, 2014.
Trenberth, K. E., Dai, A., Rasmussen, R. M., and Parsons, D. B.: The changing character of precipitation, B. Am. Meteorol. Soc., 84, 1205–1217, https://doi.org/10.1175/BAMS-84-9-1205, 2003.
Ukkola, A. M., De Kauwe, M. G., Roderick, M. L., Abramowitz, G., and Pitman, A. J.: Robust Future Changes in Meteorological Drought in CMIP6 Projections Despite Uncertainty in Precipitation, Geophys. Res. Lett., 47, e2020GL087820, https://doi.org/10.1029/2020GL087820, 2020.
US Army Cops of Engineers: HEC-HMS: Hydrologic Modeling System–Technical reference manual, US Army Corps of Engineers, Davis, CA, https://www.hec.usace.army.mil/software/hec-hms/documentation/HEC-HMS_Technical%20Reference%20Manual_(CPD-74B).pdf (last access: 12 March 2024), 2000.
Vecchi, G. A., Delworth, T. L., Murakami, H., Underwood, S. D., Wittenberg, A. T., Zeng, F., Zhang, W., Baldwin, J. W., Bhatia, K. T., Cooke, W., He, J., Kapnick, S. B., Knutson, T. R., Villarini, G., van der Wiel, K., Anderson, W., Balaji, V., Chen, J., Dixon, K. W., Gudgel, R., Harris, L. M., Jia, L., Johnson, N. C., Lin, S.-J., Liu, M., Ng, C. H. J., Rosati, A., Smith, J. A., and Yang, X.: Tropical cyclone sensitivities to CO2 doubling: roles of atmospheric resolution, synoptic variability and background climate changes, Clim. Dynam., 53, 5999–6033, https://doi.org/10.1007/s00382-019-04913-y, 2019.
Villarini, G. and Denniston, R. F.: Contribution of tropical cyclones to extreme rainfall in Australia, Int. J. Climatol., 36, 1019–1025, https://doi.org/10.1002/joc.4393, 2016.
Villarini, G. and Wasko, C.: Humans, climate and streamflow, Nat. Clim. Change, 11, 725–726, https://doi.org/10.1038/s41558-021-01137-z, 2021.
Visser, J. B., Wasko, C., Sharma, A., and Nathan, R.: Resolving Inconsistencies in Extreme Precipitation-Temperature Sensitivities, Geophys. Res. Lett., 47, e2020GL089723, https://doi.org/10.1029/2020GL089723, 2020.
Visser, J. B., Wasko, C., Sharma, A., and Nathan, R.: Eliminating the “hook” in Precipitation-Temperature Scaling, J. Climate, 34, 9535–9549, https://doi.org/10.1175/JCLI-D-21-0292.1, 2021.
Visser, J. B., Kim, S., Wasko, C., Nathan, R., and Sharma, A.: The Impact of Climate Change on Operational Probable Maximum Precipitation Estimates, Water Resour. Res., 58, e2022WR032247, https://doi.org/10.1029/2022WR032247, 2022.
Visser, J. B., Wasko, C., Sharma, A., and Nathan, R.: Changing Storm Temporal Patterns with Increasing Temperatures across Australia, J. Climate, 36, 6247–6259, https://doi.org/10.1175/JCLI-D-22-0694.1, 2023.
Vogel, E., Johnson, F., Marshall, L., Bende-Michl, U., Wilson, L., Peter, J. R., Wasko, C., Srikanthan, S., Sharples, W., Dowdy, A., Hope, P., Khan, Z., Mehrotra, R., Sharma, A., Matic, V., Oke, A., Turner, M., Thomas, S., Donnelly, C., and Duong, V. C.: An evaluation framework for downscaling and bias correction in climate change impact studies, J. Hydrol., 622, 129693, https://doi.org/10.1016/j.jhydrol.2023.129693, 2023.
Vousdoukas, M. I., Mentaschi, L., Voukouvalas, E., Verlaan, M., Jevrejeva, S., Jackson, L. P., and Feyen, L.: Global probabilistic projections of extreme sea levels show intensification of coastal flood hazard, Nat. Commun., 9, 2360, https://doi.org/10.1038/s41467-018-04692-w, 2018.
Walland, D. J., Meighen, J., Xuereb, K. C., Beesley, C. A., and Hoang, T. M. T.: Revision of the Generalised Tropical Storm Method for Estimating Probable Maximum Precipitation, HRS Report No. 8, Hydrology Report Series, Bureau of Meteorology Melbourne, Australia, August 2003, 78 pp., http://www.bom.gov.au/water/designRainfalls/document/HRS8.pdf (last access: 12 March 2024), 2003.
Walsh, K., White, C. J., McInnes, K., Holmes, J., Schuster, S., Richter, H., Evans, J. P., Di Luca, A., and Warren, R. A.: Natural hazards in Australia: storms, wind and hail, Climatic Change, 139, 55–67, https://doi.org/10.1007/s10584-016-1737-7, 2016.
Wang, J., Church, J. A., Zhang, X., and Chen, X.: Reconciling global mean and regional sea level change in projections and observations, Nat. Commun., 12, 990, https://doi.org/10.1038/s41467-021-21265-6, 2021.
Wang, S., Ma, X., Zhou, S., Wu, L., Wang, H., Tang, Z., Xu, G., Jing, Z., Chen, Z., and Gan, B.: Extreme atmospheric rivers in a warming climate, Nat. Commun., 14, 3219, https://doi.org/10.1038/s41467-023-38980-x, 2023.
Warren, R. A., Jakob, C., Hitchcock, S. M., and White, B. A.: Heavy versus extreme rainfall events in southeast Australia, Q. J. Roy. Meteor. Soc., 147, 3201–3226, https://doi.org/10.1002/qj.4124, 2021.
Wasko, C.: Review: Can temperature be used to inform changes to flood extremes with global warming?, Philos. T. R. Soc. A, 379, 20190551, https://doi.org/10.1098/rsta.2019.0551, 2021.
Wasko, C.: Floods differ in a warmer future, Nat. Clim. Change, 12, 1090–1091, https://doi.org/10.1038/s41558-022-01541-z, 2022.
Wasko, C. and Guo, D.: Understanding event runoff coefficient variability across Australia using the hydroEvents R package, Hydrol. Process., 36, e14563, https://doi.org/10.1002/hyp.14563, 2022.
Wasko, C. and Nathan, R.: Influence of changes in rainfall and soil moisture on trends in flooding, J. Hydrol., 575, 432–441, https://doi.org/10.1016/j.jhydrol.2019.05.054, 2019.
Wasko, C. and Sharma, A.: Quantile regression for investigating scaling of extreme precipitation with temperature, Water Resour. Res., 50, 3608–3614, https://doi.org/10.1002/2013WR015194, 2014.
Wasko, C. and Sharma, A.: Steeper temporal distribution of rain intensity at higher temperatures within Australian storms, Nat. Geosci., 8, 527–529, https://doi.org/10.1038/ngeo2456, 2015a.
Wasko, C. and Sharma, A.: Changed Design Temporal Patterns with Higher Temperatures, in: 36th Hydrology and Water Resources Symposium: The art and science of water, Hobart, Tasmania, 7–10 December 2015, 1237–1244, ISBN 9781922107497, 2015b.
Wasko, C. and Sharma, A.: Continuous rainfall generation for a warmer climate using observed temperature sensitivities, J. Hydrol., 544, 575–590, https://doi.org/10.1016/j.jhydrol.2016.12.002, 2017a.
Wasko, C. and Sharma, A.: Global assessment of flood and storm extremes with increased temperatures, Sci. Rep.-UK, 7, 7945, https://doi.org/10.1038/s41598-017-08481-1, 2017b.
Wasko, C., Sharma, A., and Westra, S.: Reduced spatial extent of extreme storms at higher temperatures, Geophys. Res. Lett., 43, 4026–4032, https://doi.org/10.1002/2016GL068509, 2016.
Wasko, C., Lu, W. T., and Mehrotra, R.: Relationship of extreme precipitation, dry-bulb temperature, and dew point temperature across Australia, Environ. Res. Lett., 13, 074031, https://doi.org/10.1088/1748-9326/aad135, 2018.
Wasko, C., Nathan, R., and Peel, M. C.: Changes in Antecedent Soil Moisture Modulate Flood Seasonality in a Changing Climate, Water Resour. Res., 56, e2019WR026300, https://doi.org/10.1029/2019WR026300, 2020.
Wasko, C., Nathan, R., Stein, L., and O'Shea, D.: Evidence of shorter more extreme rainfalls and increased flood variability under climate change, J. Hydrol., 603, 126994, https://doi.org/10.1016/j.jhydrol.2021.126994, 2021a.
Wasko, C., Westra, S., Nathan, R., Orr, H. G., Villarini, G., Villalobos Herrera, R., and Fowler, H. J.: Incorporating climate change in flood estimation guidance, Philos. T. R. Soc. A, 379, 20190548, https://doi.org/10.1098/rsta.2019.0548, 2021b.
Wasko, C., Shao, Y., Vogel, E., Wilson, L., Wang, Q. J., Frost, A., and Donnelly, C.: Understanding trends in hydrologic extremes across Australia, J. Hydrol., 593, 125877, https://doi.org/10.1016/j.jhydrol.2020.125877, 2021c.
Wasko, C., Guo, D., Ho, M., Nathan, R., and Vogel, E.: Diverging projections for flood and rainfall frequency curves, J. Hydrol., 620, 129403, https://doi.org/10.1016/j.jhydrol.2023.129403, 2023.
Wehner, M. F., Reed, K. A., Loring, B., Stone, D., and Krishnan, H.: Changes in tropical cyclones under stabilized 1.5 and 2.0 °C global warming scenarios as simulated by the Community Atmospheric Model under the HAPPI protocols, Earth Syst. Dynam., 9, 187–195, https://doi.org/10.5194/esd-9-187-2018, 2018.
Westra, S. and Sisson, S. A.: Detection of non-stationarity in precipitation extremes using a max-stable process model, J. Hydrol., 406, 119–128, https://doi.org/10.1016/j.jhydrol.2011.06.014, 2011.
Westra, S., Alexander, L., and Zwiers, F.: Global increasing trends in annual maximum daily precipitation, J. Climate, 26, 3904–3918, https://doi.org/10.1175/JCLI-D-12-00502.1, 2013.
Westra, S., Leonard, M., and Zheng, F.: Chapter 5. Interaction of Coastal and Catchment Flooding, Book 6: Flood Hydraulics, in: Australian Rainfall and Runoff – A Guide to Flood Estimation, edited by: Ball, J., Babister, M., Nathan, R., Weinmann, E., Retallick, M., and Testoni, I., Commonwealth of Australia, https://arr.ga.gov.au/arr-guideline (last access: 21 August 2023), 2019.
White, N. J., Haigh, I. D., Church, J. A., Koen, T., Watson, C. S., Pritchard, T. R., Watson, P. J., Burgette, R. J., McInnes, K. L., You, Z.-J., Zhang, X., and Tregoning, P.: Australian sea levels—Trends, regional variability and influencing factors, Earth-Sci. Rev., 136, 155–174, https://doi.org/10.1016/j.earscirev.2014.05.011, 2014.
Wilks, D. S.: Multisite generalization of a daily stochastic precipitation generation model, J. Hydrol., 210, 178–191, https://doi.org/10.1016/S0022-1694(98)00186-3, 1998.
Wilson, L., Bende-Michl, U., Sharples, W., Vogel, E., Peter, J., Srikanthan, S., Khan, Z., Matic, V., Oke, A., Turner, M., Co Duong, V., Loh, S., Baron-Hay, S., Roussis, J., Kociuba, G., Hope, P., Dowdy, A., Donnelly, C., Argent, R., Thomas, S., Kitsios, A., and Bellhouse, J.: A national hydrological projections service for Australia, Clim. Serv., 28, 100331, https://doi.org/10.1016/j.cliser.2022.100331, 2022.
WMO: Manual on Estimation of Probable Maximum Precipitation (PMP), World Meteorological Organization (WMO), Geneva, Switzerland, ISBN 978-92-63-11045-9, 2009.
Woldemeskel, F. and Sharma, A.: Should flood regimes change in a warming climate? The role of antecedent moisture conditions, Geophys. Res. Lett., 43, 7556–7563, https://doi.org/10.1002/2016GL069448, 2016.
Woldemeskel, F. M., Sharma, A., Mehrotra, R., and Westra, S.: Constraining continuous rainfall simulations for derived design flood estimation, J. Hydrol., 542, 581–588, https://doi.org/10.1016/j.jhydrol.2016.09.028, 2016.
Woodham, R., Brassington, G. B., Robertson, R., and Alves, O.: Propagation characteristics of coastally trapped waves on the Australian Continental Shelf, J. Geophys. Res.-Oceans, 118, 4461–4473, https://doi.org/10.1002/jgrc.20317, 2013.
Wu, W., McInnes, K., O'Grady, J., Hoeke, R., Leonard, M., and Westra, S.: Mapping Dependence Between Extreme Rainfall and Storm Surge, J. Geophys. Res.-Oceans, 123, 2461–2474, https://doi.org/10.1002/2017JC013472, 2018.
Wu, X.-Y., Ye, C., He, W., Chen, J., Xu, L., and Zhang, H.: Atmospheric rivers impacting mainland China and Australia: climatology and interannual variations, J. South. Hemisph. Earth Syst. Sci., 70, 70–87, https://doi.org/10.1071/ES19029, 2020.
Yamaguchi, M., Chan, J. C. L., Moon, I.-J., Yoshida, K., and Mizuta, R.: Global warming changes tropical cyclone translation speed, Nat. Commun., 11, 47, https://doi.org/10.1038/s41467-019-13902-y, 2020.
Yilmaz, A. G. and Perera, B. J. C.: Extreme Rainfall Nonstationarity Investigation and Intensity – Frequency – Duration Relationship, J. Hydrol. Eng., 19, 1160–1172, https://doi.org/10.1061/(ASCE)HE.1943-5584.0000878, 2014.
Yu, G., Wright, D. B., Zhu, Z., Smith, C., and Holman, K. D.: Process-based flood frequency analysis in an agricultural watershed exhibiting nonstationary flood seasonality, Hydrol. Earth Syst. Sci., 23, 2225–2243, https://doi.org/10.5194/hess-23-2225-2019, 2019.
Zalnezhad, A., Rahman, A., Nasiri, N., Haddad, K., Rahman, M. M., Vafakhah, M., Samali, B., and Ahamed, F.: Artificial Intelligence-Based Regional Flood Frequency Analysis Methods: A Scoping Review, Water (Switzerland), 14, 2677, https://doi.org/10.3390/w14172677, 2022.
Zhan, W., Buckley, S., Genova, P., Grobler, J., Redenbach, M., and Eskola, K.: Selecting and Processing High Resolution Climate Projections in Queensland Mine Water Planning and Hydrologic Assessment, in: Hydrology and Water Resources Symposium, HWRS 2022, online, 30 November–1 December 2022, 518–533, ISBN 978-1-925627-64-0, 2022.
Zhang, J., Gao, S., and Fang, Z.: Investigation of Infiltration Loss in North Central Texas by Retrieving Initial Abstraction and Constant Loss from Observed Rainfall and Runoff Events, J. Hydrol. Eng., 28, 04023013, https://doi.org/10.1061/jhyeff.heeng-5883, 2023.
Zhang, S., Zhou, L., Zhang, L., Yang, Y., Wei, Z., Zhou, S., Yang, D., Yang, X., Wu, X., Zhang, Y., Li, X., and Dai, Y.: Reconciling disagreement on global river flood changes in a warming climate, Nat. Clim. Change, 12, 1160–1167, https://doi.org/10.1038/s41558-022-01539-7, 2022.
Zhang, W., Villarini, G., and Wehner, M.: Contrasting the responses of extreme precipitation to changes in surface air and dew point temperatures, Climatic Change, 154, 257–271, https://doi.org/10.1007/s10584-019-02415-8, 2019.
Zhang, X., Alexander, L., Hegerl, G. C., Jones, P., Tank, A. K., Peterson, T. C., Trewin, B., and Zwiers, F. W.: Indices for monitoring changes in extremes based on daily temperature and precipitation data, WIREs Clim. Change, 2, 851–870, https://doi.org/10.1002/wcc.147, 2011.
Zhang, X. S., Amirthanathan, G. E., Bari, M. A., Laugesen, R. M., Shin, D., Kent, D. M., MacDonald, A. M., Turner, M. E., and Tuteja, N. K.: How streamflow has changed across Australia since the 1950s: evidence from the network of hydrologic reference stations, Hydrol. Earth Syst. Sci., 20, 3947–3965, https://doi.org/10.5194/hess-20-3947-2016, 2016.
Zheng, F., Westra, S., and Sisson, S. A.: Quantifying the dependence between extreme rainfall and storm surge in the coastal zone, J. Hydrol., 505, 172–187, https://doi.org/10.1016/j.jhydrol.2013.09.054, 2013.
Zheng, F., Westra, S., and Leonard, M.: Opposing local precipitation extremes, Nat. Clim. Change, 5, 389–390, https://doi.org/10.1038/nclimate2579, 2015.
Zommers, Z., Marbaix, P., Fischlin, A., Ibrahim, Z. Z., Grant, S., Magnan, A. K., Pörtner, H.-O., Howden, M., Calvin, K., Warner, K., Thiery, W., Sebesvari, Z., Davin, E. L., Evans, J. P., Rosenzweig, C., O'Neill, B. C., Patwardhan, A., Warren, R., van Aalst, M. K., and Hulbert, M.: Burning embers: towards more transparent and robust climate-change risk assessments, Nat. Rev. Earth Environ., 1, 516–529, https://doi.org/10.1038/s43017-020-0088-0, 2020.
Short summary
In response to flood risk, design flood estimation is a cornerstone of infrastructure design and emergency response planning, but design flood estimation guidance under climate change is still in its infancy. We perform the first published systematic review of the impact of climate change on design flood estimation and conduct a meta-analysis to provide quantitative estimates of possible future changes in extreme rainfall.
In response to flood risk, design flood estimation is a cornerstone of infrastructure design and...