Articles | Volume 27, issue 1
https://doi.org/10.5194/hess-27-97-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-27-97-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Contribution of cryosphere to runoff in the transition zone between the Tibetan Plateau and arid region based on environmental isotopes
Juan Gui
Key Laboratory of Ecohydrology of Inland River Basin/Gansu Qilian
Mountains Eco-Environment Research Center, Northwest Institute of
Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000,
China
University of Chinese Academy of Sciences, Beijing 100049, China
Zongxing Li
CORRESPONDING AUTHOR
Key Laboratory of Ecohydrology of Inland River Basin/Gansu Qilian
Mountains Eco-Environment Research Center, Northwest Institute of
Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000,
China
Qi Feng
Key Laboratory of Ecohydrology of Inland River Basin/Gansu Qilian
Mountains Eco-Environment Research Center, Northwest Institute of
Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000,
China
Qiao Cui
Key Laboratory of Ecohydrology of Inland River Basin/Gansu Qilian
Mountains Eco-Environment Research Center, Northwest Institute of
Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000,
China
Jian Xue
Key Laboratory of Ecohydrology of Inland River Basin/Gansu Qilian
Mountains Eco-Environment Research Center, Northwest Institute of
Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000,
China
Related authors
Zongxing Li, Juan Gui, Qiao Cui, Jian Xue, Fa Du, and Lanping Si
Hydrol. Earth Syst. Sci., 28, 719–734, https://doi.org/10.5194/hess-28-719-2024, https://doi.org/10.5194/hess-28-719-2024, 2024
Short summary
Short summary
Precipitation, ground ice, and snow meltwater accounted for approximately 72 %, 20 %, and 8 % of soil water during the early ablation period. Snow is completely melted in the heavy ablation period and the end of the ablation period, and precipitation contributed about 90 % and 94 % of soil water, respectively. These recharges also vary markedly with altitude and vegetation type.
Li Zongxing, Gui Juan, Zhang Baijuan, and Feng Qi
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-558, https://doi.org/10.5194/hess-2021-558, 2021
Manuscript not accepted for further review
Short summary
Short summary
Building spatial patterns of stable isotope of soil water; Finding influencing factors of stable isotope in soil water; Precipitation contributes to about 88 % of soil water; Ground ice accounts for about 12 % of soil water; Ecological conservation would be urgent under permafrost degradation.
Zongxing Li, Juan Gui, Qiao Cui, Jian Xue, Fa Du, and Lanping Si
Hydrol. Earth Syst. Sci., 28, 719–734, https://doi.org/10.5194/hess-28-719-2024, https://doi.org/10.5194/hess-28-719-2024, 2024
Short summary
Short summary
Precipitation, ground ice, and snow meltwater accounted for approximately 72 %, 20 %, and 8 % of soil water during the early ablation period. Snow is completely melted in the heavy ablation period and the end of the ablation period, and precipitation contributed about 90 % and 94 % of soil water, respectively. These recharges also vary markedly with altitude and vegetation type.
Li Zongxing, Gui Juan, Zhang Baijuan, and Feng Qi
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-558, https://doi.org/10.5194/hess-2021-558, 2021
Manuscript not accepted for further review
Short summary
Short summary
Building spatial patterns of stable isotope of soil water; Finding influencing factors of stable isotope in soil water; Precipitation contributes to about 88 % of soil water; Ground ice accounts for about 12 % of soil water; Ecological conservation would be urgent under permafrost degradation.
Tingting Ning, Zhi Li, Qi Feng, Zongxing Li, and Yanyan Qin
Hydrol. Earth Syst. Sci., 25, 3455–3469, https://doi.org/10.5194/hess-25-3455-2021, https://doi.org/10.5194/hess-25-3455-2021, 2021
Short summary
Short summary
Previous studies decomposed ET variance in precipitation, potential ET, and total water storage changes based on Budyko equations. However, the effects of snowmelt and vegetation changes have not been incorporated in snow-dependent basins. We thus extended this method in arid alpine basins of northwest China and found that ET variance is primarily controlled by rainfall, followed by coupled rainfall and vegetation. The out-of-phase seasonality between rainfall and snowmelt weaken ET variance.
Zong-Jie Li, Zong-Xing Li, Ling-Ling Song, Juan Gui, Jian Xue, Bai Juan Zhang, and Wen De Gao
Hydrol. Earth Syst. Sci., 24, 4169–4187, https://doi.org/10.5194/hess-24-4169-2020, https://doi.org/10.5194/hess-24-4169-2020, 2020
Short summary
Short summary
This study mainly explores the hydraulic relations, recharge–drainage relations and their transformation paths, and the processes of each water body. It determines the composition of runoff, quantifies the contribution of each runoff component to different types of tributaries, and analyzes the hydrological effects of the temporal and spatial variation in runoff components. More importantly, we discuss the hydrological significance of permafrost and hydrological processes.
Related subject area
Subject: Ecohydrology | Techniques and Approaches: Theory development
Root zone in the Earth system
Soil water sources and their implications for vegetation restoration in the Three-Rivers Headwater Region during different ablation periods
Biocrust-reduced soil water retention and soil infiltration in an alpine Kobresia meadow
The natural abundance of stable water isotopes method may overestimate deep-layer soil water use by trees
Vegetation optimality explains the convergence of catchments on the Budyko curve
Differential response of plant transpiration to uptake of rainwater-recharged soil water for dominant tree species in the semiarid Loess Plateau
Isotopic offsets between bulk plant water and its sources are larger in cool and wet environments
Hydrology without dimensions
Long-term climate-influenced land cover change in discontinuous permafrost peatland complexes
Groundwater fauna in an urban area – natural or affected?
Age and origin of leaf wax n-alkanes in fluvial sediment–paleosol sequences and implications for paleoenvironmental reconstructions
Seasonal partitioning of precipitation between streamflow and evapotranspiration, inferred from end-member splitting analysis
The influence of litter crusts on soil properties and hydrological processes in a sandy ecosystem
Unexplained hydrogen isotope offsets complicate the identification and quantification of tree water sources in a riparian forest
A synthesis of three decades of hydrological research at Scotty Creek, NWT, Canada
Potential evaporation at eddy-covariance sites across the globe
Scaling properties reveal regulation of river flows in the Amazon through a “forest reservoir”
Water movement through plant roots – exact solutions of the water flow equation in roots with linear or exponential piecewise hydraulic properties
Large-scale vegetation responses to terrestrial moisture storage changes
Vegetation dynamics and climate seasonality jointly control the interannual catchment water balance in the Loess Plateau under the Budyko framework
Leaf-scale experiments reveal an important omission in the Penman–Monteith equation
The Budyko functions under non-steady-state conditions
Matching the Budyko functions with the complementary evaporation relationship: consequences for the drying power of the air and the Priestley–Taylor coefficient
Hydrological recovery in two large forested watersheds of southeastern China: the importance of watershed properties in determining hydrological responses to reforestation
The socioecohydrology of rainwater harvesting in India: understanding water storage and release dynamics across spatial scales
Nitrate sinks and sources as controls of spatio-temporal water quality dynamics in an agricultural headwater catchment
Impacts of beaver dams on hydrologic and temperature regimes in a mountain stream
Estimation of crop water requirements: extending the one-step approach to dual crop coefficients
Technical Note: On the Matt–Shuttleworth approach to estimate crop water requirements
Horizontal soil water potential heterogeneity: simplifying approaches for crop water dynamics models
Hurricane impacts on a pair of coastal forested watersheds: implications of selective hurricane damage to forest structure and streamflow dynamics
Regional and local patterns in depth to water table, hydrochemistry and peat properties of bogs and their laggs in coastal British Columbia
Impacts of forest changes on hydrology: a case study of large watersheds in the upper reaches of Minjiang River watershed in China
A simple three-dimensional macroscopic root water uptake model based on the hydraulic architecture approach
Training hydrologists to be ecohydrologists and play a leading role in environmental problem solving
Thermodynamic constraints on effective energy and mass transfer and catchment function
Can we predict groundwater discharge from terrestrial ecosystems using existing eco-hydrological concepts?
Macroinvertebrate community responses to a dewatering disturbance gradient in a restored stream
Mechanisms of vegetation uprooting by flow in alluvial non-cohesive sediment
Forest decline caused by high soil water conditions in a permafrost region
Hongkai Gao, Markus Hrachowitz, Lan Wang-Erlandsson, Fabrizio Fenicia, Qiaojuan Xi, Jianyang Xia, Wei Shao, Ge Sun, and Hubert Savenije
EGUsphere, https://doi.org/10.5194/egusphere-2024-332, https://doi.org/10.5194/egusphere-2024-332, 2024
Short summary
Short summary
The concept of root zone is widely used, but still lacks a precise definition. Moreover, its importance in Earth system science is not well elaborated. Here, we clarified its definition with several similar terms, to bridge the multi-disciplinary gap. We underscore the key role of root zone in Earth system, which links biosphere, hydrosphere, lithosphere, atmosphere, and anthroposphere. To better represent root zone, we advocate a paradigm shift towards ecosystem-centered modelling.
Zongxing Li, Juan Gui, Qiao Cui, Jian Xue, Fa Du, and Lanping Si
Hydrol. Earth Syst. Sci., 28, 719–734, https://doi.org/10.5194/hess-28-719-2024, https://doi.org/10.5194/hess-28-719-2024, 2024
Short summary
Short summary
Precipitation, ground ice, and snow meltwater accounted for approximately 72 %, 20 %, and 8 % of soil water during the early ablation period. Snow is completely melted in the heavy ablation period and the end of the ablation period, and precipitation contributed about 90 % and 94 % of soil water, respectively. These recharges also vary markedly with altitude and vegetation type.
Licong Dai, Ruiyu Fu, Xiaowei Guo, Yangong Du, Guangmin Cao, Huakun Zhou, and Zhongmin Hu
Hydrol. Earth Syst. Sci., 27, 4247–4256, https://doi.org/10.5194/hess-27-4247-2023, https://doi.org/10.5194/hess-27-4247-2023, 2023
Short summary
Short summary
We found that, in the 0–30 cm soil layer, soil water retention and soil water content in normal Kobresia meadow (NM) were higher than those in biocrust meadow (BM), whereas the 30–40 cm layer's soil water retention and soil water content in NM were lower than those in BM. The topsoil infiltration rate in BM was lower than that in NM. Our findings revealed that the establishment of biocrust did not improve soil water retention and infiltration.
Shaofei Wang, Xiaodong Gao, Min Yang, Gaopeng Huo, Xiaolin Song, Kadambot H. M. Siddique, Pute Wu, and Xining Zhao
Hydrol. Earth Syst. Sci., 27, 123–137, https://doi.org/10.5194/hess-27-123-2023, https://doi.org/10.5194/hess-27-123-2023, 2023
Short summary
Short summary
Water uptake depth of 11-year-old apple trees reached 300 cm in the blossom and young fruit stage and only 100 cm in the fruit swelling stage, while 17-year-old trees always consumed water from 0–320 cm soil layers. Overall, the natural abundance of stable water isotopes method overestimated the contribution of deep soil water, especially in the 320–500 cm soils. Our findings highlight that determining the occurrence of root water uptake in deep soils helps to quantify trees' water use strategy.
Remko C. Nijzink and Stanislaus J. Schymanski
Hydrol. Earth Syst. Sci., 26, 6289–6309, https://doi.org/10.5194/hess-26-6289-2022, https://doi.org/10.5194/hess-26-6289-2022, 2022
Short summary
Short summary
Most catchments plot close to the empirical Budyko curve, which allows for estimating the long-term mean annual evaporation and runoff. We found that a model that optimizes vegetation properties in response to changes in precipitation leads it to converge to a single curve. In contrast, models that assume no changes in vegetation start to deviate from a single curve. This implies that vegetation has a stabilizing role, bringing catchments back to equilibrium after changes in climate.
Yakun Tang, Lina Wang, Yongqiang Yu, and Dongxu Lu
Hydrol. Earth Syst. Sci., 26, 4995–5013, https://doi.org/10.5194/hess-26-4995-2022, https://doi.org/10.5194/hess-26-4995-2022, 2022
Short summary
Short summary
Whether rainwater-recharged soil water (RRS) uptake can increase plant transpiration after rainfall pulses requires investigation. Our results indicate a differential response of plant transpiration to RRS uptake. Mixed afforestation enhances these water relationships and decreases soil water source competition in deep soil. Our results suggest that plant species or plantation types that can enhance RRS uptake and reduce water competition should be considered for use in water-limited regions.
Javier de la Casa, Adrià Barbeta, Asun Rodríguez-Uña, Lisa Wingate, Jérôme Ogée, and Teresa E. Gimeno
Hydrol. Earth Syst. Sci., 26, 4125–4146, https://doi.org/10.5194/hess-26-4125-2022, https://doi.org/10.5194/hess-26-4125-2022, 2022
Short summary
Short summary
Recently, studies have been reporting mismatches in the water isotopic composition of plants and soils. In this work, we reviewed worldwide isotopic composition data of field and laboratory studies to see if the mismatch is generalised, and we found it to be true. This contradicts theoretical expectations and may underlie an non-described phenomenon that should be forward investigated and implemented in ecohydrological models to avoid erroneous estimations of water sources used by vegetation.
Amilcare Porporato
Hydrol. Earth Syst. Sci., 26, 355–374, https://doi.org/10.5194/hess-26-355-2022, https://doi.org/10.5194/hess-26-355-2022, 2022
Short summary
Short summary
Applying dimensional analysis to the partitioning of water and soil on terrestrial landscapes reveals their dominant environmental controls. We discuss how the dryness index and the storage index affect the long-term rainfall partitioning, the key nonlinear control of the dryness index in global datasets of weathering rates, and the existence of new macroscopic relations among average variables in landscape evolution statistics with tantalizing analogies with turbulent fluctuations.
Olivia Carpino, Kristine Haynes, Ryan Connon, James Craig, Élise Devoie, and William Quinton
Hydrol. Earth Syst. Sci., 25, 3301–3317, https://doi.org/10.5194/hess-25-3301-2021, https://doi.org/10.5194/hess-25-3301-2021, 2021
Short summary
Short summary
This study demonstrates how climate warming in peatland-dominated regions of discontinuous permafrost is changing the form and function of the landscape. Key insights into the rates and patterns of such changes in the coming decades are provided through careful identification of land cover transitional stages and characterization of the hydrological and energy balance regimes for each stage.
Fabien Koch, Kathrin Menberg, Svenja Schweikert, Cornelia Spengler, Hans Jürgen Hahn, and Philipp Blum
Hydrol. Earth Syst. Sci., 25, 3053–3070, https://doi.org/10.5194/hess-25-3053-2021, https://doi.org/10.5194/hess-25-3053-2021, 2021
Short summary
Short summary
In this study, we address the question of whether groundwater fauna in an urban area is natural or affected in comparison to forested land. We find noticeable differences in the spatial distribution of groundwater species and abiotic parameters. An ecological assessment reveals that conditions in the urban area are mainly not good. Yet, there is no clear spatial pattern in terms of land use and anthropogenic impacts. These are significant findings for conservation and usage of urban groundwater.
Marcel Bliedtner, Hans von Suchodoletz, Imke Schäfer, Caroline Welte, Gary Salazar, Sönke Szidat, Mischa Haas, Nathalie Dubois, and Roland Zech
Hydrol. Earth Syst. Sci., 24, 2105–2120, https://doi.org/10.5194/hess-24-2105-2020, https://doi.org/10.5194/hess-24-2105-2020, 2020
Short summary
Short summary
This study investigates the age and origin of leaf wax n-alkanes from a fluvial sediment–paleosol sequence (FSPS) by compound-class 14C dating. Our results show varying age offsets between the formation and sedimentation of leaf wax n-alkanes from well-developed (paleo)soils and fluvial sediments that are mostly due to their complex origin in such sequences. Thus, dating the leaf wax n-alkanes is an important step for more robust leaf-wax-based paleoenvironmental reconstructions in FSPSs.
James W. Kirchner and Scott T. Allen
Hydrol. Earth Syst. Sci., 24, 17–39, https://doi.org/10.5194/hess-24-17-2020, https://doi.org/10.5194/hess-24-17-2020, 2020
Short summary
Short summary
Perhaps the oldest question in hydrology is
Where does water go when it rains?. Here we present a new way to measure how the terrestrial water cycle partitions precipitation into its two ultimate fates:
green waterthat is evaporated or transpired back to the atmosphere and
blue waterthat is discharged to stream channels. Our analysis may help in gauging the vulnerability of both water resources and terrestrial ecosystems to changes in rainfall patterns.
Yu Liu, Zeng Cui, Ze Huang, Hai-Tao Miao, and Gao-Lin Wu
Hydrol. Earth Syst. Sci., 23, 2481–2490, https://doi.org/10.5194/hess-23-2481-2019, https://doi.org/10.5194/hess-23-2481-2019, 2019
Short summary
Short summary
We focus on the positive effects of litter crusts on soil water holding capacity and water interception capacity compared with biocrusts. Litter crusts can significantly improve sandy water content and organic matter. Water-holding capacity increased with development of litter crusts in the sandy interface. Water infiltration rate is increased by sandy and litter crusts' interface properties. Litter crusts provided a better microhabitat conducive to plant growth in sandy lands.
Adrià Barbeta, Sam P. Jones, Laura Clavé, Lisa Wingate, Teresa E. Gimeno, Bastien Fréjaville, Steve Wohl, and Jérôme Ogée
Hydrol. Earth Syst. Sci., 23, 2129–2146, https://doi.org/10.5194/hess-23-2129-2019, https://doi.org/10.5194/hess-23-2129-2019, 2019
Short summary
Short summary
Plant water sources of a beech riparian forest were monitored using stable isotopes. Isotopic fractionation during root water uptake is usually neglected but may be more common than previously accepted. Xylem water was always more depleted in δ2H than all sources considered, suggesting isotopic discrimination during water uptake or within plant tissues. Thus, the identification and quantification of tree water sources was affected. Still, oxygen isotopes were a good tracer of plant source water.
William Quinton, Aaron Berg, Michael Braverman, Olivia Carpino, Laura Chasmer, Ryan Connon, James Craig, Élise Devoie, Masaki Hayashi, Kristine Haynes, David Olefeldt, Alain Pietroniro, Fereidoun Rezanezhad, Robert Schincariol, and Oliver Sonnentag
Hydrol. Earth Syst. Sci., 23, 2015–2039, https://doi.org/10.5194/hess-23-2015-2019, https://doi.org/10.5194/hess-23-2015-2019, 2019
Short summary
Short summary
This paper synthesizes nearly three decades of eco-hydrological field and modelling studies at Scotty Creek, Northwest Territories, Canada, highlighting the key insights into the major water flux and storage processes operating within and between the major land cover types of this wetland-dominated region of discontinuous permafrost. It also examines the rate and pattern of permafrost-thaw-induced land cover change and how such changes will affect the hydrology and water resources of the region.
Wouter H. Maes, Pierre Gentine, Niko E. C. Verhoest, and Diego G. Miralles
Hydrol. Earth Syst. Sci., 23, 925–948, https://doi.org/10.5194/hess-23-925-2019, https://doi.org/10.5194/hess-23-925-2019, 2019
Short summary
Short summary
Potential evaporation (Ep) is the amount of water an ecosystem would consume if it were not limited by water availability or other stress factors. In this study, we compared several methods to estimate Ep using a global dataset of 107 FLUXNET sites. A simple radiation-driven method calibrated per biome consistently outperformed more complex approaches and makes a suitable tool to investigate the impact of water use and demand, drought severity and biome productivity.
Juan Fernando Salazar, Juan Camilo Villegas, Angela María Rendón, Estiven Rodríguez, Isabel Hoyos, Daniel Mercado-Bettín, and Germán Poveda
Hydrol. Earth Syst. Sci., 22, 1735–1748, https://doi.org/10.5194/hess-22-1735-2018, https://doi.org/10.5194/hess-22-1735-2018, 2018
Short summary
Short summary
River flow regimes are being altered by global change. Understanding the mechanisms behind such alterations is crucial for hydrological prediction. We introduce a novel interpretation of river flow metrics (scaling) that allows any river basin to be classified as regulated or unregulated, and to identify transitions between these states. We propose the
forest reservoirhypothesis to explain how forest loss can force the Amazonian river basins from regulated to unregulated states.
Félicien Meunier, Valentin Couvreur, Xavier Draye, Mohsen Zarebanadkouki, Jan Vanderborght, and Mathieu Javaux
Hydrol. Earth Syst. Sci., 21, 6519–6540, https://doi.org/10.5194/hess-21-6519-2017, https://doi.org/10.5194/hess-21-6519-2017, 2017
Short summary
Short summary
To maintain its yield, a plant needs to transpire water that it acquires from the soil. A deep understanding of the mechanisms that lead to water uptake location and intensity is required to correctly simulate the water transfer in the soil to the atmosphere. This work presents novel and general solutions of the water flow equation in roots with varying hydraulic properties that deeply affect the uptake pattern and the transpiration rate and can be used in ecohydrological models.
Robert L. Andrew, Huade Guan, and Okke Batelaan
Hydrol. Earth Syst. Sci., 21, 4469–4478, https://doi.org/10.5194/hess-21-4469-2017, https://doi.org/10.5194/hess-21-4469-2017, 2017
Short summary
Short summary
In this study we statistically analyse the relationship between vegetation cover and components of total water storage. Splitting water storage into different components allows for a more comprehensive understanding of the temporal response of vegetation to changes in water storage. Generally, vegetation appears to be more sensitive to interannual changes in water storage than to shorter changes, though this varies in different land use types.
Tingting Ning, Zhi Li, and Wenzhao Liu
Hydrol. Earth Syst. Sci., 21, 1515–1526, https://doi.org/10.5194/hess-21-1515-2017, https://doi.org/10.5194/hess-21-1515-2017, 2017
Short summary
Short summary
The relationship between controlling parameters of annual catchment water balance and climate seasonality (S) and vegetation coverage (M) was discussed under the Budyko framework and an empirical equation was further developed so that the contributions from M to actual evapotranspiration (ET) could be determined more accurately. The results showed that the effects of landscape condition changes to ET variation will be estimated with a large error if the impacts of S are ignored.
Stanislaus J. Schymanski and Dani Or
Hydrol. Earth Syst. Sci., 21, 685–706, https://doi.org/10.5194/hess-21-685-2017, https://doi.org/10.5194/hess-21-685-2017, 2017
Short summary
Short summary
Most of the rain falling on land is returned to the atmosphere by plant leaves, which release water vapour (transpire) through tiny pores. To better understand this process, we used artificial leaves in a special wind tunnel and discovered major problems with an established approach (PM equation) widely used to quantify transpiration and its sensitivity to climate change. We present an improved set of equations, consistent with experiments and displaying more realistic climate sensitivity.
Roger Moussa and Jean-Paul Lhomme
Hydrol. Earth Syst. Sci., 20, 4867–4879, https://doi.org/10.5194/hess-20-4867-2016, https://doi.org/10.5194/hess-20-4867-2016, 2016
Short summary
Short summary
A new physically based formulation is proposed to extend the Budyko framework under non-steady-state conditions, taking into account the change in water storage. The new formulation, which introduces an additional parameter, represents a generic framework applicable to any Budyko function at various time steps. It is compared to other formulations from the literature and the analytical solution of Greve et al. (2016) appears to be a particular case.
Jean-Paul Lhomme and Roger Moussa
Hydrol. Earth Syst. Sci., 20, 4857–4865, https://doi.org/10.5194/hess-20-4857-2016, https://doi.org/10.5194/hess-20-4857-2016, 2016
Short summary
Short summary
The Budyko functions are matched with the complementary evaporation relationship. We show that there is a functional dependence between the Budyko functions and the drying power of the air. Examining the case where potential evaporation is calculated by means of a Priestley–Taylor type equation with a varying coefficient, we show that this coefficient should have a specified value as a function of the Budyko shape parameter and the aridity index.
Wenfei Liu, Xiaohua Wei, Qiang Li, Houbao Fan, Honglang Duan, Jianping Wu, Krysta Giles-Hansen, and Hao Zhang
Hydrol. Earth Syst. Sci., 20, 4747–4756, https://doi.org/10.5194/hess-20-4747-2016, https://doi.org/10.5194/hess-20-4747-2016, 2016
Short summary
Short summary
In recent decades, limited research has been conducted to examine the role of watershed properties in hydrological responses in large watersheds. Based on pair-wise comparisons, we conclude that reforestation decreased high flows but increased low flows in the watersheds studied. Hydrological recovery through reforestation is largely dependent on watershed properties when forest change and climate are similar and comparable. This finding has important implications for designing reforestation.
Kimberly J. Van Meter, Michael Steiff, Daniel L. McLaughlin, and Nandita B. Basu
Hydrol. Earth Syst. Sci., 20, 2629–2647, https://doi.org/10.5194/hess-20-2629-2016, https://doi.org/10.5194/hess-20-2629-2016, 2016
Short summary
Short summary
Although village-scale rainwater harvesting (RWH) structures have been used for millennia in India, many of these structures have fallen into disrepair due to increased dependence on groundwater. This dependence has contributed to declines in groundwater resources, and in turn to efforts to revive older RWH systems. In the present study, we use field data to quantify water fluxes in a cascade of irrigation tanks to better our understanding of the impact of RWH systems on the water balance in con
Tobias Schuetz, Chantal Gascuel-Odoux, Patrick Durand, and Markus Weiler
Hydrol. Earth Syst. Sci., 20, 843–857, https://doi.org/10.5194/hess-20-843-2016, https://doi.org/10.5194/hess-20-843-2016, 2016
Short summary
Short summary
We quantify the spatio-temporal impact of distinct nitrate sinks and sources on stream network nitrate dynamics in an agricultural headwater. By applying a data-driven modelling approach, we are able to fully distinguish between mixing and dilution processes, and biogeochemical in-stream removal processes along the stream network. In-stream nitrate removal is estimated by applying a novel transfer coefficient based on energy availability.
M. Majerova, B. T. Neilson, N. M. Schmadel, J. M. Wheaton, and C. J. Snow
Hydrol. Earth Syst. Sci., 19, 3541–3556, https://doi.org/10.5194/hess-19-3541-2015, https://doi.org/10.5194/hess-19-3541-2015, 2015
Short summary
Short summary
This study quantifies the impacts of beaver on hydrologic and temperature regimes, as well as highlights the importance of understanding the spatial and temporal scales of those impacts.
Reach-scale discharge showed shift from losing to gaining. Temperature increased by 0.38°C (3.8%) and mean residence time by 230%. At the sub-reach scale, discharge gains and losses increased in variability. At the beaver dam scale, we observed increase in thermal heterogeneity with warmer and cooler niches.
J. P. Lhomme, N. Boudhina, M. M. Masmoudi, and A. Chehbouni
Hydrol. Earth Syst. Sci., 19, 3287–3299, https://doi.org/10.5194/hess-19-3287-2015, https://doi.org/10.5194/hess-19-3287-2015, 2015
J. P. Lhomme, N. Boudhina, and M. M. Masmoudi
Hydrol. Earth Syst. Sci., 18, 4341–4348, https://doi.org/10.5194/hess-18-4341-2014, https://doi.org/10.5194/hess-18-4341-2014, 2014
V. Couvreur, J. Vanderborght, L. Beff, and M. Javaux
Hydrol. Earth Syst. Sci., 18, 1723–1743, https://doi.org/10.5194/hess-18-1723-2014, https://doi.org/10.5194/hess-18-1723-2014, 2014
A. D. Jayakaran, T. M. Williams, H. Ssegane, D. M. Amatya, B. Song, and C. C. Trettin
Hydrol. Earth Syst. Sci., 18, 1151–1164, https://doi.org/10.5194/hess-18-1151-2014, https://doi.org/10.5194/hess-18-1151-2014, 2014
S. A. Howie and H. J. van Meerveld
Hydrol. Earth Syst. Sci., 17, 3421–3435, https://doi.org/10.5194/hess-17-3421-2013, https://doi.org/10.5194/hess-17-3421-2013, 2013
X. Cui, S. Liu, and X. Wei
Hydrol. Earth Syst. Sci., 16, 4279–4290, https://doi.org/10.5194/hess-16-4279-2012, https://doi.org/10.5194/hess-16-4279-2012, 2012
V. Couvreur, J. Vanderborght, and M. Javaux
Hydrol. Earth Syst. Sci., 16, 2957–2971, https://doi.org/10.5194/hess-16-2957-2012, https://doi.org/10.5194/hess-16-2957-2012, 2012
M. E. McClain, L. Chícharo, N. Fohrer, M. Gaviño Novillo, W. Windhorst, and M. Zalewski
Hydrol. Earth Syst. Sci., 16, 1685–1696, https://doi.org/10.5194/hess-16-1685-2012, https://doi.org/10.5194/hess-16-1685-2012, 2012
C. Rasmussen
Hydrol. Earth Syst. Sci., 16, 725–739, https://doi.org/10.5194/hess-16-725-2012, https://doi.org/10.5194/hess-16-725-2012, 2012
A. P. O'Grady, J. L. Carter, and J. Bruce
Hydrol. Earth Syst. Sci., 15, 3731–3739, https://doi.org/10.5194/hess-15-3731-2011, https://doi.org/10.5194/hess-15-3731-2011, 2011
J. D. Muehlbauer, M. W. Doyle, and E. S. Bernhardt
Hydrol. Earth Syst. Sci., 15, 1771–1783, https://doi.org/10.5194/hess-15-1771-2011, https://doi.org/10.5194/hess-15-1771-2011, 2011
K. Edmaier, P. Burlando, and P. Perona
Hydrol. Earth Syst. Sci., 15, 1615–1627, https://doi.org/10.5194/hess-15-1615-2011, https://doi.org/10.5194/hess-15-1615-2011, 2011
H. Iwasaki, H. Saito, K. Kuwao, T. C. Maximov, and S. Hasegawa
Hydrol. Earth Syst. Sci., 14, 301–307, https://doi.org/10.5194/hess-14-301-2010, https://doi.org/10.5194/hess-14-301-2010, 2010
Cited articles
Baisheng, Y. E., Yongjian, D., Daqing, Y., Tianding, H. A. N., and Yongping,
S.: Regional Parttens of Climate the Last 50 Years Viewed Change in
Northwest China during from Annual Discharge Change, J. Glaciol. Geocryol., 28, 307–311, 2006.
Baisheng, Y. E., Peng, C., Yongjian, D., Daqing, Y., Chong, L. I., and
Yongping, S.: Discharge Changes of the Eight Large Rivers in East Asia during the Last More Than 100 Years, J. Glaciol. Geocryol., 30, 556–561, 2008.
Bo, C., Baotian, P., Hongshan, G., Shaofei, J., Yuhua, W., and Guandonghui,
S.: Glacier Variation in the Lenglongling Range of Eastern Qilian Mountains
from 1972 to 2007, J. Glaciol. Geocryol., 32, 242–248, 2010.
Bowen, G. J., Cai, Z., Fiorella, R. P., and Putman, A. L.: Isotopes in the
Water Cycle: Regional- to Global-Scale Patterns and Applications, Annu. Rev. Earth Planet Sci., 47, 453–500, https://doi.org/10.1146/annurev-earth-053018-060220, 2019.
Cheng, G. and Wu, T.: Responses of permafrost to climate change and their
environmental significance, Qinghai-Tibet Plateau, J. Geophys. Res.-Earth, 112, F02S03, https://doi.org/10.1029/2006JF000631, 2007.
Chen, R., Zhang, S,, and Yang, Y.: Effects of cryospheric changes on runoff in cold regions of western China, Science Press, ISBN 9787030581365, 2019.
Clark, I. D., Lauriol, B., Harwood, L., and Marschner, M.: Groundwater
contributions to discharge in a permafrost setting, Big Fish River, NWT, Canada, Arct. Antarct. Alp. Res., 33, 62–69, https://doi.org/10.2307/1552278, 2001.
Congjian, S., Weihong, L., Yaning, C., Xingong, L., and Yuhui, Y.: Isotopic
and hydrochemical composition of runoff in the Urumqi River, Tianshan Mountains, China, Environ. Earth Sci., 74, 1521–1537,
https://doi.org/10.1007/s12665-015-4144-x, 2015.
Cui, B.-L. and Li, X.-Y.: Runoff processes in the Qinghai Lake Basin, Northeast Qinghai-Tibet Plateau, China: Insights from stable isotope and
hydrochemistry, Quatern. Int., 380, 123–132, https://doi.org/10.1016/j.quaint.2015.02.030, 2015.
Deng, S.: Impacts of climate change on vegetation in Qilian mountains from 2000 to 2011, Lanzhou University, https://kns.cnki.net/KCMS/detail/detail.aspx?dbname=CDFD1214&filename=1013239281.nh (last access: 2 January 2023), 2013.
Fan, Y., Chen, Y., Li, X., Li, W., and Li, Q.: Characteristics of water
isotopes and ice-snowmelt quantification in the Tizinafu River, north Kunlun
Mountains, Central Asia, Quatern. Int., 380, 116–122,
https://doi.org/10.1016/j.quaint.2014.05.020, 2015.
Fei, Z., Yingshi, L. I. U., and Tongliang, G.: Winter Runoff in a Typical
Alpine Permafrost Region, Tibet-Himalayas, Adv. Earth Sci., 21, 1333–1338, 2006.
Florke, M., Schneider, C., and McDonald, R. I.: Water competition between
cities and agriculture driven by climate change and urban growth, Nat.
Sustain., 1, 51–58, https://doi.org/10.1038/s41893-017-0006-8, 2018.
Gat, J. R., Shemesh, A., Tziperman, E., Hecht, A., Georgopoulos, D., and
Basturk, O.: The stable isotope composition of waters of the eastern
Mediterranean Sea, J. Geophys. Res.-Oceans, 101, 6441–6451,
https://doi.org/10.1029/95JC02829, 1996.
Genereux, D.: Quantifying uncertainty in tracer-based hydrograph separations, Water Resour. Res., 34, 915–919, https://doi.org/10.1029/98WR00010, 1998.
Hooper, R. P.: Diagnostic tools for mixing models of stream water chemistry,
Water Resour. Res., 39, 1055, https://doi.org/10.1029/2002WR001528, 2003.
Hooper, R. P. and Shoemaker, C. A.: A Comparison Of Chemical And Isotopic Hydrograph Separation, Water Resour. Res., 22, 1444–1454,
https://doi.org/10.1029/WR022i010p01444, 1986.
Hou, Y., Li, C., Nie, Y., and Xu, T.: Analysis on decoupling effect and driving factors between water resources utilization and economic growth in Gansu Province, Water Resources and Hydropower Engineering, 1–15, https://doi.org/10.13928/j.cnki.wrahe.2022.05.006, 2021.
Immerzeel, W. W., van Beek, L. P. H., and Bierkens, M. F. P.: Climate Change
Will Affect the Asian Water Towers, Science, 328, 1382–1385,
https://doi.org/10.1126/science.1183188, 2010.
IPCC: Summary for Policymakers. Climate Change 2013: The Physical Science
Basis, in: Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge, UK and New York, NY, USA, ISBN 978-1-107-05799-1, 2013.
Juan, G., Li, Z., Qi, F., Ruifeng, Y., Tingting, N., Baijuan, Z., Jian, X.,
Wende, G., Fusen, N., Weixuan, D., Anle, Y., and Pengfei, L.: Environmental
effect and spatiotemporal pattern of stable isotopes in precipitation on the
transition zone between the Tibetan Plateau and arid region, Sci. Total Environ., 749, 141559, https://doi.org/10.1016/j.scitotenv.2020.141559, 2020.
Kalyuzhnyi, I. L. and Lavrov, S. A.: Basic Physical Processes and Regularities of Winter and Spring River Runoff Formation under Climate Warming Conditions, Russ. Meteorol. Hydrol., 37, 47–56,
https://doi.org/10.3103/S1068373912010074, 2012.
Kang, E. S., Chen, R. S., and Zhang, Z. H.: Study on mountainous hydrology and ecology in inland basins of China, Adv. Earth Sci., 23, 675–681, 2008.
Klaus, J. and McDonnell, J. J.: Hydrograph separation using stable isotopes:
Review and evaluation, J. Hydrol., 505, 47–64, https://doi.org/10.1016/j.jhydrol.2013.09.006, 2013.
Kong, Y. and Pang, Z.: Evaluating the sensitivity of glacier rivers to climate change based on hydrograph separation of discharge, J. Hydrol., 434, 121–129, https://doi.org/10.1016/j.jhydrol.2012.02.029, 2012.
Kriegel, D., Mayer, C., Hagg, W., Vorogushyn, S., Duethmann, D., Gafurov, A., and Farinotti, D.: Changes in glacierisation, climate and runoff in the second half of the 20th century in the Naryn basin, Central Asia, Global
Planet. Change, 110, 51–61, https://doi.org/10.1016/j.gloplacha.2013.05.014, 2013.
Laskar, A. H., Bhattacharya, S. K., Rao, D. K., Jani, R. A., and Gandhi, N.:
Seasonal variation in stable isotope compositions of waters from a Himalayan
river: Estimation of glacier melt contribution, Hydrol. Process., 32, 3866–3880, https://doi.org/10.1002/hyp.13295, 2018.
Li, Z., Qi, F., Li, J., Pan, Y., Wang, T., Li, L., Xiaoyan, G., Yan, G.,
Bing, J., and Rui, G.: Environmental significance and hydrochemical processes at a cold alpine basin in the Qilian Mountains, Environ. Earth Sci., 73, 4043–4052, https://doi.org/10.1007/s12665-014-3689-4, 2015.
Li, Z., Gui, J., Wang, X., Feng, Q., Zhao, T., Ouyang, C., Guo, X., Zhang, B., and Shi, Y.: Water resources in inland regions of central Asia: Evidence
from stable isotope tracing, J. Hydrol., 570, 1–16, https://doi.org/10.1016/j.jhydrol.2019.01.003, 2019.
Li, Z.-J., Li, Z.-X., Song, L.-L., Gui, J., Xue, J., Zhang, B. J., and Gao,
W. de: Hydrological and runoff formation processes based on isotope tracing
during ablation period in the source regions of Yangtze River, Hydrol. Earth
Syst. Sci., 24, 4169–4187, https://doi.org/10.5194/hess-24-4169-2020, 2020a.
Li, Z.-J., Li, Z.-X., Fan, X.-J., Wang, Y., Song, L.-L., Gui, J., Xue, J.,
Zhang, B.-J., and Gao, W.-D.: The sources of supra-permafrost water and its
hydrological effect based on stable isotopes in the third pole region,
Sci. Total Environ., 715, 136911, https://doi.org/10.1016/j.scitotenv.2020.136911, 2020b.
Lin, Z., Yong-jian, D., Guang-yue, L. I. U., Shao-ling, W., and Hui-jun, J.
I. N.: Estimates of the Reserves of Ground Ice in Permafrost Regions on the
Tibetan Plateau, J. Glaciol. Geocryol., 32, 1–9, 2010.
Liu, F. J., Williams, M. W., and Caine, N.: Source waters and flow paths in
an alpine catchment, Colorado Front Range, United States, Water Resour. Res.,
40, W09401, https://doi.org/10.1029/2004WR003076, 2004.
Liu, S. Y., Sun, W. X., Shen, Y. P., and Li, G.: Glacier changes since the
Little Ice Age maximum in the western Qilian Shan, northwest China, and
consequences of glacier runoff for water supply, J. Glaciol., 49, 117–124, https://doi.org/10.3189/172756503781830926, 2003.
Liu, X., Yang, L., and Wang, F.: An Analysis of Runoff Evolution Law in
Qinghai Lake Basin in the Past 60 Years, China's Rural Water and Hydropower,
11, 1–13, 2020.
Liu, Y., Fan, N., An, S., Bai, X., Liu, F., Xu, Z., Wang, Z., and Liu, S.:
Characteristics of water isotopes and hydrograph separation during the wet
season in the Heishui River, China, J. Hydrol., 353, 314–321,
https://doi.org/10.1016/j.jhydrol.2008.02.017, 2008.
Maurya, A. S., Shah, M., Deshpande, R. D., Bhardwaj, R. M., Prasad, A., and
Gupta, S. K.: Hydrograph separation and precipitation source identification
using stable water isotopes and conductivity: River Ganga at Himalayan
foothills, Hydrol. Process., 25, 1521–1530, https://doi.org/10.1002/hyp.7912, 2011.
McDonnell, J. J., Stewart, M. K., and Owens, I. F.: Effect Of Catchment-Scale Subsurface Mixing On Stream Isotopic Response, Water Resour. Res., 27, 3065–3073, https://doi.org/10.1029/91WR02025, 1991.
Meiping, S., Shiyin, L., Xiaojun, Y., Wanqin, G., and Junli, X.: Glacier
changes in the Qilian Mountains in the past half century: Based on the revised First and Second Chinese Glacier Inventory, Acta Geogr. Sin., 70, 1402–1414, 2015.
Meng, Y. and Liu, G.: Stable isotopic information for hydrological investigation in Hailuogou watershed on the eastern slope of Mount Gongga,
China, Environ. Earth Sci., 69, 29–39, https://doi.org/10.1007/s12665-012-1931-5, 2013.
Miller, S. A., Mercer, J. J., Lyon, S. W., Williams, D. G., and Miller, S. N.: Stable isotopes of water and specific conductance reveal complimentary information on streamflow generation in snowmelt-dominated, seasonally arid watersheds, J. Hydrol., 596, 126075, https://doi.org/10.1016/j.jhydrol.2021.126075, 2021.
Milly, P. C. D. and Dunne, K. A.: Colorado River flow dwindles as warming-driven loss of reflective snow energizes evaporation, Science, 367, 1252–1255, https://doi.org/10.1126/science.aay9187, 2020.
Mortatti, J., Moraes, J. M., Victoria, R. L., and Martinelli, L. A.: Hydrograph Separation of the Amazon River: A Methodological Study, Aquat.
Geochem., 3, 117–128, https://doi.org/10.1023/A:1009606801595, 1997.
Pu, T., He, Y., Zhu, G., Zhang, N., Du, J., and Wang, C.: Characteristics of
water stable isotopes and hydrograph separation in Baishui catchment during
the wet season in Mt.Yulong region, south western China, Hydrol. Process., 27, 3641–3648, https://doi.org/10.1002/hyp.9479, 2013.
Ren, L., Lin, Z., YongJian, D., TongHua, W., Yao, X., ErJi, D., GuangYue, L., and YongPing, Q.: Temporal and spatial variations of the active layer along the Qinghai-Tibet Highway in a permafrost region, Chinese Sci. Bull., 57, 4609–4616, https://doi.org/10.1007/s11434-012-5323-8, 2012.
Rock, L. and Mayer, B.: Isotope hydrology of the Oldman River basin, southern Alberta, Canada, Hydrol. Process. 21, 3301–3315, https://doi.org/10.1002/hyp.6545, 2007.
Shengjie, W., Mingjun, Z., Zhongqin, L., Feiteng, W., Huilin, L., Yaju, L.,
and Xiaoyan, H.: Glacier area variation and climate change in the Chinese
Tianshan Mountains since 1960, J. Geogr. Sci., 21, 263–273, https://doi.org/10.1007/s11442-011-0843-8, 2011.
Tiaofeng, Z., Xide, Z., Yongjian, W., Hongmei, L., and Caihong, L.: The Impact of Climate Variability and Human Activity on Runoff Changes in the
Huangshui River Basin, Resour. Sci., 36, 2256–2262, 2014.
Tongliang, G., Changming, L. I. U., and Jingshi, L. I. U.: Hydrological
Response of Lhasa River to Climate Change and Permafrost Degradation in
Xizang, Acta Geogr. Sin., 61, 519–526, 2006.
Uhlenbrook, S., Frey, M., Leibundgut, C., and Maloszewski, P.: Hydrograph
separations in a mesoscale mountainous basin at event and seasonal timescales, Water Resour. Res., 38, 1096, https://doi.org/10.1029/2001WR000938, 2002.
Wang, J.: Study of Mechanism and Process of Water Transmission on Resource
Conservation Forests Ecosystem in Qilian Mountains, Central South University
of Forestry and Technology, https://kns.cnki.net/KCMS/detail/detail.aspx?dbname=CDFD1214&filename=1011065151.nh (last access: 2 January 2023), 2006.
Weiming, C., Shangmin, Z., Chenghu, Z., and Xi, C.: Simulation of the Decadal Permafrost Distribution on the Qinghai-Tibet Plateau (China) over the Past 50 Years, Permafrost Periglac. Process., 23, 292–300, https://doi.org/10.1002/ppp.1758, 2012.
Wenxiong, J.: Temporal and Spatial Changes of Precipitation in Qilian Mountains and Hexi Corridor during 1960–2009, Acta Geogr. Sin., 67, 631–644, 2012.
Xianfang, S., Jianrong, L. I. U., Xiaomin, S. U. N., Guofu, Y., Xin, L. I. U., Shiqin, W., and Shibin, H. O. U.: Establishment of Chinese Network of
Isotopes in Precipitation (CHNIP) Based on CERN, Adv.n Earth Sci., 22, 738–747, 2007.
Yafeng, S., Yongping, S., Dongliang, L., Wate, Z. G. H. and, Yongjian, D., Ruji, H., and Ersi, K.: Discussion on the present climate change from warm-dry to warm-wet in northwest china, Quatern. Sci., 23, 152–164, 2003.
Yang, Z., Liu, X. R., and Zeng, Q.: Hydrology in cold regions of China, Science Press, ISBN 7030078802, 2000.
Yao, T., Masson-Delmotte, V., and Gao, J.: A review of climatic controls on δ18O in precipitation over the Tibetan Plateau: Observations and simulations, Rev. Geophys., 51, 525–548, 2013.
Ye, W., Huang, Y., Zhou, Z., and Zhu, Y.: Temporal and spatial variations of air temperature in the Qilian Mountains during the past 60 years, Sci. Technol. Eng., 22, 1344–1353, 2022.
Yingsong, Z., Shiyin, L., Donghui, S., Jing, L., and Jingdong, Z.: Thinning
and shrinkage of Laohugou No. 12 glacier in the Western Qilian Mountains,
China, from 1957 to 2007, J. Mt. Sci., 9, 343–350, https://doi.org/10.1007/s11629-009-2296-4, 2012.
Yingzheng, W., Jia, L., Lixin, W., Lei, G., and Jianjiang, L.: Using remote
sensing images to monitor the glacier changes in Qilian Mountains during
1987–2018 and analyzing the impact factors, J. Glaciol. Geocryol., 42,
344–356, 2020.
Yongjian, D., Shiqiang, Z., and Rensheng, C.: Cryospheric Hydrology: Decode
the Largest Freshwater Reservoir on Earth, Bull. Chinese Acad. Sci., 35, 414–424, 2020.
Yuemin, L., Zongxing, L., Qi, F., Yongge, L., Ruifeng, Y., Juan, G., Zongjie, L., and Baijuan, Z.: Analysis of Extreme Temperature Changes in Qilian Mountains in the Past 60 Years, Plateau Meteorol., 38, 959–970, 2019.
Zhang, D. and Zhao, Q.: Hydrological variability of runoff sequences from
major rivers in the Qilian Mountains, Water Plann. Design Water, 8, 1672–2469, 2018.
Zhang, L., Su, F., Yang, D., Hao, Z., and Tong, K.: Discharge regime and simulation for the upstream of major rivers over Tibetan Plateau, J. Geophys. Res.-Atmos., 118, 8500–8518, https://doi.org/10.1002/jgrd.50665, 2013.
Zhao, Q., Ding, Y., Wang, J., Gao, H., Zhang, S., Zhao, C., Xu, J., Han, H.,
and Shangguan, D.: Projecting climate change impacts on hydrological processes on the Tibetan Plateau with model calibration against the glacier
inventory data and observed streamflow, J. Hydrol., 573, 60–81,
https://doi.org/10.1016/j.jhydrol.2019.03.043, 2019.
Zhou, Y., Guo, D., Qiu, G., and Cheng, G.: Geocryology in China, Science Press, Beijing, ISBN 7030082850, 2000.
Zongxing, L., Qi, F., Wei, L., Tingting, W., Aifang, C., Yan, G., Xiaoyan, G., Yanhui, P., Jianguo, L., Rui, G., and Bing, J.: Study on the contribution of cryosphere to runoff in the cold alpine basin: A case study of Hulugou River Basin in the Qilian Mountains, Global Planet. Change, 122, 345–361, https://doi.org/10.1016/j.gloplacha.2014.10.001, 2014.
Zongxing, L., Qi, F., Wang, Q. J., Song, Y., Aifang, C., and Jianguo, L.:
Contribution from frozen soil meltwater to runoff in an in-land river basin
under water scarcity by isotopic tracing in northwestern China, Global Planet. Change, 136, 41–51, https://doi.org/10.1016/j.gloplacha.2015.12.002, 2016a.
Zongxing, L., Qi, F., Song, Y., Wang, Q. J., Yang, J., Yongge, L., Jianguo,
L., and Xiaoyan, G.: Stable isotope composition of precipitation in the
south and north slopes of Wushaoling Mountain, northwestern China, Atmos.
Res., 182, 87–101, https://doi.org/10.1016/j.atmosres.2016.07.023, 2016b.
Zongxing, L., Qi, F., Zongjie, L., Ruifeng, Y., Juan, G., and Yuemin, L.:
Climate background, fact and hydrological effect of multiphase water
transformation in cold regions of the Western China: A review, Earth Sci.
Rev., 190, 33–57, https://doi.org/10.1016/j.earscirev.2018.12.004, 2019.
Short summary
As the transition zone between the Tibetan Plateau and the arid region, the Qilian Mountains are important ecological barriers and source regions of inland rivers in northwest China. In recent decades, drastic changes in the cryosphere have had a significant impact on the quantity and formation process of water resources in the Qilian Mountains. The mountain runoff of the Qilian Mountains mainly comes from the cryosphere belt, which contributes to approximately 80 % runoff.
As the transition zone between the Tibetan Plateau and the arid region, the Qilian Mountains are...