Articles | Volume 27, issue 23
https://doi.org/10.5194/hess-27-4355-2023
https://doi.org/10.5194/hess-27-4355-2023
Research article
 | 
11 Dec 2023
Research article |  | 11 Dec 2023

Understanding the influence of “hot” models in climate impact studies: a hydrological perspective

Mehrad Rahimpour Asenjan, Francois Brissette, Jean-Luc Martel, and Richard Arsenault

Related authors

Assessing the Hydrological Impact Sensitivity to Climate Model Weighting Strategies
Mehrad Rahimpour Asenjan, Francois Brissette, Richard Arsenault, and Jean-Luc Martel
EGUsphere, https://doi.org/10.5194/egusphere-2024-1183,https://doi.org/10.5194/egusphere-2024-1183, 2024
Preprint archived
Short summary

Related subject area

Subject: Hydrometeorology | Techniques and Approaches: Modelling approaches
Skilful probabilistic predictions of UK flood risk months ahead using a large-sample machine learning model trained on multimodel ensemble climate forecasts
Simon Moulds, Louise Slater, Louise Arnal, and Andrew W. Wood
Hydrol. Earth Syst. Sci., 29, 2393–2406, https://doi.org/10.5194/hess-29-2393-2025,https://doi.org/10.5194/hess-29-2393-2025, 2025
Short summary
Towards a robust hydrologic data assimilation system for hurricane-induced river flow forecasting
Peyman Abbaszadeh, Fatemeh Gholizadeh, Keyhan Gavahi, and Hamid Moradkhani
Hydrol. Earth Syst. Sci., 29, 2407–2427, https://doi.org/10.5194/hess-29-2407-2025,https://doi.org/10.5194/hess-29-2407-2025, 2025
Short summary
Enhanced evaluation of hourly and daily extreme precipitation in Norway from convection-permitting models at regional and local scales
Kun Xie, Lu Li, Hua Chen, Stephanie Mayer, Andreas Dobler, Chong-Yu Xu, and Ozan Mert Göktürk
Hydrol. Earth Syst. Sci., 29, 2133–2152, https://doi.org/10.5194/hess-29-2133-2025,https://doi.org/10.5194/hess-29-2133-2025, 2025
Short summary
Deep-learning-based sub-seasonal precipitation and streamflow ensemble forecasting over the source region of the Yangtze River
Ningpeng Dong, Haoran Hao, Mingxiang Yang, Jianhui Wei, Shiqin Xu, and Harald Kunstmann
Hydrol. Earth Syst. Sci., 29, 2023–2042, https://doi.org/10.5194/hess-29-2023-2025,https://doi.org/10.5194/hess-29-2023-2025, 2025
Short summary
High-resolution land surface modelling over Africa: the role of uncertain soil properties in combination with forcing temporal resolution
Bamidele Oloruntoba, Stefan Kollet, Carsten Montzka, Harry Vereecken, and Harrie-Jan Hendricks Franssen
Hydrol. Earth Syst. Sci., 29, 1659–1683, https://doi.org/10.5194/hess-29-1659-2025,https://doi.org/10.5194/hess-29-1659-2025, 2025
Short summary

Cited articles

Arsenault, R., Brissette, F., Chen, J., Guo, Q., and Dallaire, G.: NAC 2 H: The North American Climate Change and Hydroclimatology Data Set, Water Resour. Res., 56, e2020WR027097, https://doi.org/10.1029/2020WR027097, 2020a. 
Arsenault, R., Brissette, F., Martel, J.-L., Troin, M., Lévesque, G., Davidson-Chaput, J., Gonzalez, M. C., Ameli, A., and Poulin, A.: A comprehensive, multisource database for hydrometeorological modeling of 14,425 North American watersheds, Sci. Data, 7, 243, https://doi.org/10.1038/s41597-020-00583-2, 2020b. 
Arsenault, R., Brissette, F., Martel, J.-L., Troin, M., Lévesque, G., Davidson-Chaput, J., Castañeda Gonzalez, M., Ameli, A., and Poulin, A.: HYSETS – A 14425 watershed Hydrometeorological Sandbox over North America, OSF [data set], https://doi.org/10.17605/OSF.IO/RPC3W, 2022. 
Cannon, A. J.: Multivariate quantile mapping bias correction: An N-dimensional probability density function transform for climate model simulations of multiple variables, Clim. Dynam., 50, 31–49, https://doi.org/10.1007/s00382-017-3580-6, 2018. 
Download
Short summary
Climate models are central to climate change impact studies. Some models project a future deemed too hot by many. We looked at how including hot models may skew the result of impact studies. Applied to hydrology, this study shows that hot models do not systematically produce hydrological outliers.
Share