Articles | Volume 27, issue 17
https://doi.org/10.5194/hess-27-3293-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-27-3293-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
airGRteaching: an open-source tool for teaching hydrological modeling with R
Olivier Delaigue
CORRESPONDING AUTHOR
Université Paris-Saclay, INRAE, HYCAR, Antony, France
Pierre Brigode
Université Paris-Saclay, INRAE, HYCAR, Antony, France
Université Côte d'Azur, CNRS, OCA, IRD, Géoazur, Sophia Antipolis, France
Guillaume Thirel
Université Paris-Saclay, INRAE, HYCAR, Antony, France
Laurent Coron
EDF – PMC Hydrometeorological Center, Toulouse, France
Related authors
Guillaume Thirel, Léonard Santos, Olivier Delaigue, and Charles Perrin
EGUsphere, https://doi.org/10.5194/egusphere-2023-775, https://doi.org/10.5194/egusphere-2023-775, 2023
Short summary
Short summary
We discuss how mathematical transformations impact calibrated hydrological model simulations. We assess how 11 transformations behave over the complete range of streamflows. Extreme transformations lead to models that are specialized for extreme streamflows, but show poor performance outside the range of the targeted streamflows and are less robust. We show that no a priori assumption on transformations must be taken as warranted.
Cyril Thébault, Charles Perrin, Vazken Andréassian, Guillaume Thirel, Sébastien Legrand, and Olivier Delaigue
EGUsphere, https://doi.org/10.5194/egusphere-2023-569, https://doi.org/10.5194/egusphere-2023-569, 2023
Short summary
Short summary
Streamflow forecasting is useful for many applications, ranging from population safety (e.g. floods) to water resource management (e.g. agriculture or hydropower). To this end, hydrological models must be optimized. However, a model is inherently wrong. This study aims to analyse the contribution of a multi-model approach within a variable spatial framework to improve streamflow simulations. The underlying idea is to take advantage of the strength of each modelling frameworks tested.
Laurent Strohmenger, Eric Sauquet, Claire Bernard, Jérémie Bonneau, Flora Branger, Amélie Bresson, Pierre Brigode, Rémy Buzier, Alban de Lavenne, Olivier Delaigue, Alexandre Devers, Guillaume Evin, Maïté Fournier, Shu-Chen Hsu, Sandra Lanini, Thibault Lemaitre-Basset, Claire Magand, Guilherme Mendoza Guimarães, Max Mentha, Simon Munier, Charles Perrin, Tristan Podechard, Léo Rouchy, Malak Sadki, Myriam Soutif-Bellenger, François Tilmant, Yves Tramblay, Anne-Lise Véron, Jean-Philippe Vidal, and Guillaume Thirel
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2023-58, https://doi.org/10.5194/hess-2023-58, 2023
Revised manuscript accepted for HESS
Short summary
Short summary
We present the results of a large visual inspection campaign of 674 streamflow time series in France. The objective was to detect non-natural records resulting from instrument failure or anthropogenic influences, such as hydroelectric power generation or reservoir management. We conclude that the identification of flaws in flow time series is highly dependent on the objectives and skills of individual evaluators, and we raise the need for better practices for data cleaning.
Paul C. Astagneau, Guillaume Thirel, Olivier Delaigue, Joseph H. A. Guillaume, Juraj Parajka, Claudia C. Brauer, Alberto Viglione, Wouter Buytaert, and Keith J. Beven
Hydrol. Earth Syst. Sci., 25, 3937–3973, https://doi.org/10.5194/hess-25-3937-2021, https://doi.org/10.5194/hess-25-3937-2021, 2021
Short summary
Short summary
The R programming language has become an important tool for many applications in hydrology. In this study, we provide an analysis of some of the R tools providing hydrological models. In total, two aspects are uniformly investigated, namely the conceptualisation of the models and the practicality of their implementation for end-users. These comparisons aim at easing the choice of R tools for users and at improving their usability for hydrology modelling to support more transferable research.
Pierre Nicolle, François Besson, Olivier Delaigue, Pierre Etchevers, Didier François, Matthieu Le Lay, Charles Perrin, Fabienne Rousset, Dominique Thiéry, François Tilmant, Claire Magand, Timothée Leurent, and Élise Jacob
Proc. IAHS, 383, 381–389, https://doi.org/10.5194/piahs-383-381-2020, https://doi.org/10.5194/piahs-383-381-2020, 2020
Louise J. Slater, Guillaume Thirel, Shaun Harrigan, Olivier Delaigue, Alexander Hurley, Abdou Khouakhi, Ilaria Prosdocimi, Claudia Vitolo, and Katie Smith
Hydrol. Earth Syst. Sci., 23, 2939–2963, https://doi.org/10.5194/hess-23-2939-2019, https://doi.org/10.5194/hess-23-2939-2019, 2019
Short summary
Short summary
This paper explores the benefits and advantages of R's usage in hydrology. We provide an overview of a typical hydrological workflow based on reproducible principles and packages for retrieval of hydro-meteorological data, spatial analysis, hydrological modelling, statistics, and the design of static and dynamic visualizations and documents. We discuss some of the challenges that arise when using R in hydrology as well as a roadmap for R’s future within the discipline.
Nils Poncet, Philippe Lucas-Picher, Yves Tramblay, Guillaume Thirel, Humberto Vergara, Jonathan Gourley, and Antoinette Alias
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2023-82, https://doi.org/10.5194/nhess-2023-82, 2023
Preprint under review for NHESS
Short summary
Short summary
A high resolution convection-permitting climate model is coupled with hydrological models over a Mediterranean catchment to simulate historical and future flood events. Results show the added value of this new generation of climate models for simulating Mediterranean floods. Future projections show an increase of the magnitude of the largest floods while the moderate floods are expected to decrease. Most floods are expected to become flashier i.e. potentially catastrophic in a warmer climate.
Guillaume Thirel, Léonard Santos, Olivier Delaigue, and Charles Perrin
EGUsphere, https://doi.org/10.5194/egusphere-2023-775, https://doi.org/10.5194/egusphere-2023-775, 2023
Short summary
Short summary
We discuss how mathematical transformations impact calibrated hydrological model simulations. We assess how 11 transformations behave over the complete range of streamflows. Extreme transformations lead to models that are specialized for extreme streamflows, but show poor performance outside the range of the targeted streamflows and are less robust. We show that no a priori assumption on transformations must be taken as warranted.
Cyril Thébault, Charles Perrin, Vazken Andréassian, Guillaume Thirel, Sébastien Legrand, and Olivier Delaigue
EGUsphere, https://doi.org/10.5194/egusphere-2023-569, https://doi.org/10.5194/egusphere-2023-569, 2023
Short summary
Short summary
Streamflow forecasting is useful for many applications, ranging from population safety (e.g. floods) to water resource management (e.g. agriculture or hydropower). To this end, hydrological models must be optimized. However, a model is inherently wrong. This study aims to analyse the contribution of a multi-model approach within a variable spatial framework to improve streamflow simulations. The underlying idea is to take advantage of the strength of each modelling frameworks tested.
Laurent Strohmenger, Eric Sauquet, Claire Bernard, Jérémie Bonneau, Flora Branger, Amélie Bresson, Pierre Brigode, Rémy Buzier, Alban de Lavenne, Olivier Delaigue, Alexandre Devers, Guillaume Evin, Maïté Fournier, Shu-Chen Hsu, Sandra Lanini, Thibault Lemaitre-Basset, Claire Magand, Guilherme Mendoza Guimarães, Max Mentha, Simon Munier, Charles Perrin, Tristan Podechard, Léo Rouchy, Malak Sadki, Myriam Soutif-Bellenger, François Tilmant, Yves Tramblay, Anne-Lise Véron, Jean-Philippe Vidal, and Guillaume Thirel
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2023-58, https://doi.org/10.5194/hess-2023-58, 2023
Revised manuscript accepted for HESS
Short summary
Short summary
We present the results of a large visual inspection campaign of 674 streamflow time series in France. The objective was to detect non-natural records resulting from instrument failure or anthropogenic influences, such as hydroelectric power generation or reservoir management. We conclude that the identification of flaws in flow time series is highly dependent on the objectives and skills of individual evaluators, and we raise the need for better practices for data cleaning.
Reyhaneh Hashemi, Pierre Brigode, Pierre-André Garambois, and Pierre Javelle
Hydrol. Earth Syst. Sci., 26, 5793–5816, https://doi.org/10.5194/hess-26-5793-2022, https://doi.org/10.5194/hess-26-5793-2022, 2022
Short summary
Short summary
Hydrologists have long dreamed of a tool that could adequately predict runoff in catchments. Data-driven long short-term memory (LSTM) models appear very promising to the hydrology community in this respect. Here, we have sought to benefit from traditional practices in hydrology to improve the effectiveness of LSTM models. We discovered that one LSTM parameter has a hydrologic interpretation and that there is a need to increase the data and to tune two parameters, thereby improving predictions.
Eva Sebok, Hans Jørgen Henriksen, Ernesto Pastén-Zapata, Peter Berg, Guillaume Thirel, Anthony Lemoine, Andrea Lira-Loarca, Christiana Photiadou, Rafael Pimentel, Paul Royer-Gaspard, Erik Kjellström, Jens Hesselbjerg Christensen, Jean Philippe Vidal, Philippe Lucas-Picher, Markus G. Donat, Giovanni Besio, María José Polo, Simon Stisen, Yvan Caballero, Ilias G. Pechlivanidis, Lars Troldborg, and Jens Christian Refsgaard
Hydrol. Earth Syst. Sci., 26, 5605–5625, https://doi.org/10.5194/hess-26-5605-2022, https://doi.org/10.5194/hess-26-5605-2022, 2022
Short summary
Short summary
Hydrological models projecting the impact of changing climate carry a lot of uncertainty. Thus, these models usually have a multitude of simulations using different future climate data. This study used the subjective opinion of experts to assess which climate and hydrological models are the most likely to correctly predict climate impacts, thereby easing the computational burden. The experts could select more likely hydrological models, while the climate models were deemed equally probable.
Małgorzata Chmiel, Maxime Godano, Marco Piantini, Pierre Brigode, Florent Gimbert, Maarten Bakker, Françoise Courboulex, Jean-Paul Ampuero, Diane Rivet, Anthony Sladen, David Ambrois, and Margot Chapuis
Nat. Hazards Earth Syst. Sci., 22, 1541–1558, https://doi.org/10.5194/nhess-22-1541-2022, https://doi.org/10.5194/nhess-22-1541-2022, 2022
Short summary
Short summary
On 2 October 2020, the French Maritime Alps were struck by an extreme rainfall event caused by Storm Alex. Here, we show that seismic data provide the timing and velocity of the propagation of flash-flood waves along the Vésubie River. We also detect 114 small local earthquakes triggered by the rainwater weight and/or its infiltration into the ground. This study paves the way for future works that can reveal further details of the impact of Storm Alex on the Earth’s surface and subsurface.
Thibault Lemaitre-Basset, Ludovic Oudin, Guillaume Thirel, and Lila Collet
Hydrol. Earth Syst. Sci., 26, 2147–2159, https://doi.org/10.5194/hess-26-2147-2022, https://doi.org/10.5194/hess-26-2147-2022, 2022
Short summary
Short summary
Increasing temperature will impact evaporation and water resource management. Hydrological models are fed with an estimation of the evaporative demand of the atmosphere, called potential evapotranspiration (PE). The objectives of this study were (1) to compute the future PE anomaly over France and (2) to determine the impact of the choice of the method to estimate PE. Our results show that all methods present similar future trends. No method really stands out from the others.
Paul Royer-Gaspard, Vazken Andréassian, and Guillaume Thirel
Hydrol. Earth Syst. Sci., 25, 5703–5716, https://doi.org/10.5194/hess-25-5703-2021, https://doi.org/10.5194/hess-25-5703-2021, 2021
Short summary
Short summary
Most evaluation studies based on the differential split-sample test (DSST) endorse the consensus that rainfall–runoff models lack climatic robustness. In this technical note, we propose a new performance metric to evaluate model robustness without applying the DSST and which can be used with a single hydrological model calibration. Our work makes it possible to evaluate the temporal transferability of any hydrological model, including uncalibrated models, at a very low computational cost.
Alexis Jeantet, Hocine Henine, Cédric Chaumont, Lila Collet, Guillaume Thirel, and Julien Tournebize
Hydrol. Earth Syst. Sci., 25, 5447–5471, https://doi.org/10.5194/hess-25-5447-2021, https://doi.org/10.5194/hess-25-5447-2021, 2021
Short summary
Short summary
The hydrological subsurface drainage model SIDRA-RU is assessed at the French national scale, using a unique database representing the large majority of the French drained areas. The model is evaluated following its capacity to simulate the drainage discharge variability and the annual drained water balance. Eventually, the temporal robustness of SIDRA-RU is assessed to demonstrate the utility of this model as a long-term management tool.
Pierre Nicolle, Vazken Andréassian, Paul Royer-Gaspard, Charles Perrin, Guillaume Thirel, Laurent Coron, and Léonard Santos
Hydrol. Earth Syst. Sci., 25, 5013–5027, https://doi.org/10.5194/hess-25-5013-2021, https://doi.org/10.5194/hess-25-5013-2021, 2021
Short summary
Short summary
In this note, a new method (RAT) is proposed to assess the robustness of hydrological models. The RAT method is particularly interesting because it does not require multiple calibrations (it is therefore applicable to uncalibrated models), and it can be used to determine whether a hydrological model may be safely used for climate change impact studies. Success at the robustness assessment test is a necessary (but not sufficient) condition of model robustness.
Paul C. Astagneau, Guillaume Thirel, Olivier Delaigue, Joseph H. A. Guillaume, Juraj Parajka, Claudia C. Brauer, Alberto Viglione, Wouter Buytaert, and Keith J. Beven
Hydrol. Earth Syst. Sci., 25, 3937–3973, https://doi.org/10.5194/hess-25-3937-2021, https://doi.org/10.5194/hess-25-3937-2021, 2021
Short summary
Short summary
The R programming language has become an important tool for many applications in hydrology. In this study, we provide an analysis of some of the R tools providing hydrological models. In total, two aspects are uniformly investigated, namely the conceptualisation of the models and the practicality of their implementation for end-users. These comparisons aim at easing the choice of R tools for users and at improving their usability for hydrology modelling to support more transferable research.
Laurène J. E. Bouaziz, Fabrizio Fenicia, Guillaume Thirel, Tanja de Boer-Euser, Joost Buitink, Claudia C. Brauer, Jan De Niel, Benjamin J. Dewals, Gilles Drogue, Benjamin Grelier, Lieke A. Melsen, Sotirios Moustakas, Jiri Nossent, Fernando Pereira, Eric Sprokkereef, Jasper Stam, Albrecht H. Weerts, Patrick Willems, Hubert H. G. Savenije, and Markus Hrachowitz
Hydrol. Earth Syst. Sci., 25, 1069–1095, https://doi.org/10.5194/hess-25-1069-2021, https://doi.org/10.5194/hess-25-1069-2021, 2021
Short summary
Short summary
We quantify the differences in internal states and fluxes of 12 process-based models with similar streamflow performance and assess their plausibility using remotely sensed estimates of evaporation, snow cover, soil moisture and total storage anomalies. The dissimilarities in internal process representation imply that these models cannot all simultaneously be close to reality. Therefore, we invite modelers to evaluate their models using multiple variables and to rely on multi-model studies.
Manon Cassagnole, Maria-Helena Ramos, Ioanna Zalachori, Guillaume Thirel, Rémy Garçon, Joël Gailhard, and Thomas Ouillon
Hydrol. Earth Syst. Sci., 25, 1033–1052, https://doi.org/10.5194/hess-25-1033-2021, https://doi.org/10.5194/hess-25-1033-2021, 2021
Pierre Nicolle, François Besson, Olivier Delaigue, Pierre Etchevers, Didier François, Matthieu Le Lay, Charles Perrin, Fabienne Rousset, Dominique Thiéry, François Tilmant, Claire Magand, Timothée Leurent, and Élise Jacob
Proc. IAHS, 383, 381–389, https://doi.org/10.5194/piahs-383-381-2020, https://doi.org/10.5194/piahs-383-381-2020, 2020
Louise J. Slater, Guillaume Thirel, Shaun Harrigan, Olivier Delaigue, Alexander Hurley, Abdou Khouakhi, Ilaria Prosdocimi, Claudia Vitolo, and Katie Smith
Hydrol. Earth Syst. Sci., 23, 2939–2963, https://doi.org/10.5194/hess-23-2939-2019, https://doi.org/10.5194/hess-23-2939-2019, 2019
Short summary
Short summary
This paper explores the benefits and advantages of R's usage in hydrology. We provide an overview of a typical hydrological workflow based on reproducible principles and packages for retrieval of hydro-meteorological data, spatial analysis, hydrological modelling, statistics, and the design of static and dynamic visualizations and documents. We discuss some of the challenges that arise when using R in hydrology as well as a roadmap for R’s future within the discipline.
Theano Iliopoulou, Cristina Aguilar, Berit Arheimer, María Bermúdez, Nejc Bezak, Andrea Ficchì, Demetris Koutsoyiannis, Juraj Parajka, María José Polo, Guillaume Thirel, and Alberto Montanari
Hydrol. Earth Syst. Sci., 23, 73–91, https://doi.org/10.5194/hess-23-73-2019, https://doi.org/10.5194/hess-23-73-2019, 2019
Short summary
Short summary
We investigate the seasonal memory properties of a large sample of European rivers in terms of high and low flows. We compute seasonal correlations between peak and low flows and average flows in the previous seasons and explore the links with various physiographic and hydro-climatic catchment descriptors. Our findings suggest that there is a traceable physical basis for river memory which in turn can be employed to reduce uncertainty and improve probabilistic predictions of floods and droughts.
Léonard Santos, Guillaume Thirel, and Charles Perrin
Hydrol. Earth Syst. Sci., 22, 4583–4591, https://doi.org/10.5194/hess-22-4583-2018, https://doi.org/10.5194/hess-22-4583-2018, 2018
Short summary
Short summary
The Kling and Gupta efficiency (KGE) is a score used in hydrology to evaluate flow simulation compared to observations. In order to force the evaluation on the low flows, some authors used the log-transformed flow to calculate the KGE. In this technical note, we show that this transformation should be avoided because it produced numerical flaws that lead to difficulties in the score value interpretation.
Gaia Piazzi, Guillaume Thirel, Lorenzo Campo, and Simone Gabellani
The Cryosphere, 12, 2287–2306, https://doi.org/10.5194/tc-12-2287-2018, https://doi.org/10.5194/tc-12-2287-2018, 2018
Short summary
Short summary
The study focuses on the development of a multivariate particle filtering data assimilation scheme into a point-scale snow model. One of the main challenging issues concerns the impoverishment of the particle sample, which is addressed by jointly perturbing meteorological data and model parameters. An additional snow density model is introduced to reduce sensitivity to the availability of snow mass-related observations. In this configuration, the system reveals a satisfying performance.
Léonard Santos, Guillaume Thirel, and Charles Perrin
Geosci. Model Dev., 11, 1591–1605, https://doi.org/10.5194/gmd-11-1591-2018, https://doi.org/10.5194/gmd-11-1591-2018, 2018
Short summary
Short summary
Many rainfall–runoff models are based on stores. However, the differential equations that describe the stores' evolution are rarely presented in literature.
This represents an issue when the temporal resolution changes. In this work, we propose and evaluate a state-space version of a simple rainfall–runoff model within a robust resolution scheme. The results show that the proposed model performs equally well or slightly better than the original one and is independent of the temporal resolution.
Philippe Riboust, Nicolas Le Moine, Guillaume Thirel, and Pierre Ribstein
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2017-539, https://doi.org/10.5194/hess-2017-539, 2017
Revised manuscript not accepted
Short summary
Short summary
In hydrological modelling complex forcing data are often needed to reproduce the energy balance, mainly for simulating snowmelt and evapotranspiration processes. Incoming radiation data are not widely measured and are often derived from reanalyses. We provide a method for simulating these radiations in mountainous areas using only daily temperature range data and a digital elevation model. The method has been validated on 105 weather stations and a simple snow surface temperature model.
Tanja de Boer-Euser, Laurène Bouaziz, Jan De Niel, Claudia Brauer, Benjamin Dewals, Gilles Drogue, Fabrizio Fenicia, Benjamin Grelier, Jiri Nossent, Fernando Pereira, Hubert Savenije, Guillaume Thirel, and Patrick Willems
Hydrol. Earth Syst. Sci., 21, 423–440, https://doi.org/10.5194/hess-21-423-2017, https://doi.org/10.5194/hess-21-423-2017, 2017
Short summary
Short summary
In this study, the rainfall–runoff models of eight international research groups were compared for a set of subcatchments of the Meuse basin to investigate the influence of certain model components on the modelled discharge. Although the models showed similar performances based on general metrics, clear differences could be observed for specific events. The differences during drier conditions could indeed be linked to differences in model structures.
Vazken Andréassian, Laurent Coron, Julien Lerat, and Nicolas Le Moine
Hydrol. Earth Syst. Sci., 20, 4503–4524, https://doi.org/10.5194/hess-20-4503-2016, https://doi.org/10.5194/hess-20-4503-2016, 2016
Short summary
Short summary
We present a new method to derive the empirical (i.e., data-based) elasticity of streamflow to precipitation and potential evaporation. This method, which uses long-term hydrometeorological records, is tested on a set of 519 French catchments. We compare our method with the classical approach found in the literature and demonstrate its robustness and efficiency. Empirical elasticity is a powerful tool to test the extrapolation capacity of hydrological models.
Pierre Brigode, François Brissette, Antoine Nicault, Luc Perreault, Anna Kuentz, Thibault Mathevet, and Joël Gailhard
Clim. Past, 12, 1785–1804, https://doi.org/10.5194/cp-12-1785-2016, https://doi.org/10.5194/cp-12-1785-2016, 2016
Short summary
Short summary
In this paper, we apply a new hydro-climatic reconstruction method on the Caniapiscau Reservoir (Canada), compare the obtained streamflow time series against time series derived from dendrohydrology by other authors on the same catchment, and study the natural streamflow variability over the 1881–2011 period. This new reconstruction is based on a historical reanalysis of global geopotential height fields and aims to produce daily streamflow time series (using a rainfall–runoff model).
Alban de Lavenne, Guillaume Thirel, Vazken Andréassian, Charles Perrin, and Maria-Helena Ramos
Proc. IAHS, 373, 87–94, https://doi.org/10.5194/piahs-373-87-2016, https://doi.org/10.5194/piahs-373-87-2016, 2016
Short summary
Short summary
Developing modelling tools that help to understand the spatial distribution of water resources is a key issue for better management. Ideally, hydrological models which discretise catchment space into sub-catchments should offer better streamflow simulations than lumped models, along with spatially-relevant water resources management solutions. However we demonstrate that those model raise other issues related to the calibration strategy and to the identifiability of the parameters.
P. Brigode, Z. Mićović, P. Bernardara, E. Paquet, F. Garavaglia, J. Gailhard, and P. Ribstein
Hydrol. Earth Syst. Sci., 17, 1455–1473, https://doi.org/10.5194/hess-17-1455-2013, https://doi.org/10.5194/hess-17-1455-2013, 2013
Related subject area
Subject: Catchment hydrology | Techniques and Approaches: Modelling approaches
Stable water isotopes and tritium tracers tell the same tale: no evidence for underestimation of catchment transit times inferred by stable isotopes in StorAge Selection (SAS)-function models
Uncertainty in water transit time estimation with StorAge Selection functions and tracer data interpolation
Changes in Mediterranean flood processes and seasonality
Can the combining of wetlands with reservoir operation reduce the risk of future floods and droughts?
Knowledge-informed deep learning for hydrological model calibration: an application to Coal Creek Watershed in Colorado
When best is the enemy of good – critical evaluation of performance criteria in hydrological models
The suitability of differentiable, physics-informed machine learning hydrologic models for ungauged regions and climate change impact assessment
Producing reliable hydrologic scenarios from raw climate model outputs without resorting to meteorological observations
Using normalised difference infrared index patterns to constrain semi-distributed rainfall–runoff models in tropical nested catchments
Direct integration of reservoirs’ operations in a hydrological model for streamflow estimation: coupling a CLSTM model with MOHID-Land
Revisiting the hydrological basis of the Budyko framework with the principle of hydrologically similar groups
Reconstructing five decades of sediment export from two glacierized high-alpine catchments in Tyrol, Austria, using nonparametric regression
Water and energy budgets over hydrological basins on short and long timescales
An advanced tool integrating failure and sensitivity analysis to novel modeling for stormwater flooding volume
Hydrological response to climate change and human activities in the Three-River Source Region
Modeling the sensitivity of snowmelt, soil moisture and streamflow generation to climate over the Canadian Prairies using a basin classification approach
Incorporating experimentally derived streamflow contributions into model parameterization to improve discharge prediction
Machine-learning- and deep-learning-based streamflow prediction in a hilly catchment for future scenarios using CMIP6 GCM data
River hydraulic modeling with ICESat-2 land and water surface elevation
Hydrological modeling using the Soil and Water Assessment Tool in urban and peri-urban environments: the case of Kifisos experimental subbasin (Athens, Greece)
Calibrating macro-scale hydrological models in poorly gauged and heavily regulated basins
Technical note: How physically based is hydrograph separation by recursive digital filtering?
A comprehensive open-source course for teaching applied hydrological modelling in Central Asia
Impact of distributed meteorological forcing on simulated snow cover and hydrological fluxes over a mid-elevation alpine micro-scale catchment
Technical note: Extending the SWAT model to transport chemicals through tile and groundwater flow
Long-term reconstruction of satellite-based precipitation, soil moisture, and snow water equivalent in China
Disentangling scatter in long-term concentration–discharge relationships: the role of event types
Simulating the hydrological impacts of land use conversion from annual crop to perennial forage in the Canadian Prairies using the Cold Regions Hydrological Modelling platform
How can we benefit from regime information to make more effective use of long short-term memory (LSTM) runoff models?
On the value of satellite remote sensing to reduce uncertainties of regional simulations of the Colorado River
Assessing runoff sensitivity of North American Prairie Pothole Region basins to wetland drainage using a basin classification-based virtual modelling approach
A large-sample investigation into uncertain climate change impacts on high flows across Great Britain
Effects of passive-storage conceptualization on modeling hydrological function and isotope dynamics in the flow system of a cockpit karst landscape
Technical note: Data assimilation and autoregression for using near-real-time streamflow observations in long short-term memory networks
Attribution of climate change and human activities to streamflow variations with a posterior distribution of hydrological simulations
A time-varying distributed unit hydrograph method considering soil moisture
Flood patterns in a catchment with mixed bedrock geology and a hilly landscape: identification of flashy runoff contributions during storm events
A graph neural network (GNN) approach to basin-scale river network learning: the role of physics-based connectivity and data fusion
Improving hydrologic models for predictions and process understanding using neural ODEs
To what extent does river routing matter in hydrological modeling?
Response of active catchment water storage capacity to a prolonged meteorological drought and asymptotic climate variation
HESS Opinions: Participatory Digital eARth Twin Hydrology systems (DARTHs) for everyone – a blueprint for hydrologists
Development of a national 7-day ensemble streamflow forecasting service for Australia
Future snow changes and their impact on the upstream runoff in Salween
Technical note: Do different projections matter for the Budyko framework?
Representation of seasonal land use dynamics in SWAT+ for improved assessment of blue and green water consumption
Large-sample assessment of varying spatial resolution on the streamflow estimates of the wflow_sbm hydrological model
An algorithm for deriving the topology of belowground urban stormwater networks
Assessing the influence of water sampling strategy on the performance of tracer-aided hydrological modeling in a mountainous basin on the Tibetan Plateau
Flood forecasting with machine learning models in an operational framework
Siyuan Wang, Markus Hrachowitz, Gerrit Schoups, and Christine Stumpp
Hydrol. Earth Syst. Sci., 27, 3083–3114, https://doi.org/10.5194/hess-27-3083-2023, https://doi.org/10.5194/hess-27-3083-2023, 2023
Short summary
Short summary
This study shows that previously reported underestimations of water ages are most likely not due to the use of seasonally variable tracers. Rather, these underestimations can be largely attributed to the choices of model approaches which rely on assumptions not frequently met in catchment hydrology. We therefore strongly advocate avoiding the use of this model type in combination with seasonally variable tracers and instead adopting StorAge Selection (SAS)-based or comparable model formulations.
Arianna Borriero, Rohini Kumar, Tam V. Nguyen, Jan H. Fleckenstein, and Stefanie R. Lutz
Hydrol. Earth Syst. Sci., 27, 2989–3004, https://doi.org/10.5194/hess-27-2989-2023, https://doi.org/10.5194/hess-27-2989-2023, 2023
Short summary
Short summary
We analyzed the uncertainty of the water transit time distribution (TTD) arising from model input (interpolated tracer data) and structure (StorAge Selection, SAS, functions). We found that uncertainty was mainly associated with temporal interpolation, choice of SAS function, nonspatial interpolation, and low-flow conditions. It is important to characterize the specific uncertainty sources and their combined effects on TTD, as this has relevant implications for both water quantity and quality.
Yves Tramblay, Patrick Arnaud, Guillaume Artigue, Michel Lang, Emmanuel Paquet, Luc Neppel, and Eric Sauquet
Hydrol. Earth Syst. Sci., 27, 2973–2987, https://doi.org/10.5194/hess-27-2973-2023, https://doi.org/10.5194/hess-27-2973-2023, 2023
Short summary
Short summary
Mediterranean floods are causing major damage, and recent studies have shown that, despite the increase in intense rainfall, there has been no increase in river floods. This study reveals that the seasonality of floods changed in the Mediterranean Basin during 1959–2021. There was also an increased frequency of floods linked to short episodes of intense rain, associated with a decrease in soil moisture. These changes need to be taken into consideration to adapt flood warning systems.
Yanfeng Wu, Jingxuan Sun, Boting Hu, Y. Jun Xu, Alain N. Rousseau, and Guangxin Zhang
Hydrol. Earth Syst. Sci., 27, 2725–2745, https://doi.org/10.5194/hess-27-2725-2023, https://doi.org/10.5194/hess-27-2725-2023, 2023
Short summary
Short summary
Reservoirs and wetlands are important regulators of watershed hydrology, which should be considered when projecting floods and droughts. We first coupled wetlands and reservoir operations into a semi-spatially-explicit hydrological model and then applied it in a case study involving a large river basin in northeast China. We found that, overall, the risk of future floods and droughts will increase further even under the combined influence of reservoirs and wetlands.
Peishi Jiang, Pin Shuai, Alexander Sun, Maruti K. Mudunuru, and Xingyuan Chen
Hydrol. Earth Syst. Sci., 27, 2621–2644, https://doi.org/10.5194/hess-27-2621-2023, https://doi.org/10.5194/hess-27-2621-2023, 2023
Short summary
Short summary
We developed a novel deep learning approach to estimate the parameters of a computationally expensive hydrological model on only a few hundred realizations. Our approach leverages the knowledge obtained by data-driven analysis to guide the design of the deep learning model used for parameter estimation. We demonstrate this approach by calibrating a state-of-the-art hydrological model against streamflow and evapotranspiration observations at a snow-dominated watershed in Colorado.
Guillaume Cinkus, Naomi Mazzilli, Hervé Jourde, Andreas Wunsch, Tanja Liesch, Nataša Ravbar, Zhao Chen, and Nico Goldscheider
Hydrol. Earth Syst. Sci., 27, 2397–2411, https://doi.org/10.5194/hess-27-2397-2023, https://doi.org/10.5194/hess-27-2397-2023, 2023
Short summary
Short summary
The Kling–Gupta Efficiency (KGE) is a performance criterion extensively used to evaluate hydrological models. We conduct a critical study on the KGE and its variant to examine counterbalancing errors. Results show that, when assessing a simulation, concurrent over- and underestimation of discharge can lead to an overall higher criterion score without an associated increase in model relevance. We suggest that one carefully choose performance criteria and use scaling factors.
Dapeng Feng, Hylke Beck, Kathryn Lawson, and Chaopeng Shen
Hydrol. Earth Syst. Sci., 27, 2357–2373, https://doi.org/10.5194/hess-27-2357-2023, https://doi.org/10.5194/hess-27-2357-2023, 2023
Short summary
Short summary
Powerful hybrid models (called δ or delta models) embrace the fundamental learning capability of AI and can also explain the physical processes. Here we test their performance when applied to regions not in the training data. δ models rivaled the accuracy of state-of-the-art AI models under the data-dense scenario and even surpassed them for the data-sparse one. They generalize well due to the physical structure included. δ models could be ideal candidates for global hydrologic assessment.
Simon Ricard, Philippe Lucas-Picher, Antoine Thiboult, and François Anctil
Hydrol. Earth Syst. Sci., 27, 2375–2395, https://doi.org/10.5194/hess-27-2375-2023, https://doi.org/10.5194/hess-27-2375-2023, 2023
Short summary
Short summary
A simplified hydroclimatic modelling workflow is proposed to quantify the impact of climate change on water discharge without resorting to meteorological observations. Results confirm that the proposed workflow produces equivalent projections of the seasonal mean flows in comparison to a conventional hydroclimatic modelling approach. The proposed approach supports the participation of end-users in interpreting the impact of climate change on water resources.
Nutchanart Sriwongsitanon, Wasana Jandang, James Williams, Thienchart Suwawong, Ekkarin Maekan, and Hubert H. G. Savenije
Hydrol. Earth Syst. Sci., 27, 2149–2171, https://doi.org/10.5194/hess-27-2149-2023, https://doi.org/10.5194/hess-27-2149-2023, 2023
Short summary
Short summary
We developed predictive semi-distributed rainfall–runoff models for nested sub-catchments in the upper Ping basin, which yielded better or similar performance compared to calibrated lumped models. The normalised difference infrared index proves to be an effective proxy for distributed root zone moisture capacity over sub-catchments and is well correlated with the percentage of evergreen forest. In validation, soil moisture simulations appeared to be highly correlated with the soil wetness index.
Ana R. Oliveira, Tiago B. Ramos, Lígia Pinto, and Ramiro Neves
EGUsphere, https://doi.org/10.5194/egusphere-2023-915, https://doi.org/10.5194/egusphere-2023-915, 2023
Short summary
Short summary
This paper intends to demonstrate the adequacy of a hybrid solution to overcome the difficulties related to the incorporation of human behaviour when modelling hydrological processes. Two models were implemented, one to estimate the outflow of a reservoir and the other to simulate the hydrological processes of the watershed. With both models feeding each other, results show that the proposed approach significantly improved the streamflow estimation downstream reservoir.
Yuchan Chen, Xiuzhi Chen, Meimei Xue, Chuanxun Yang, Wei Zheng, Jun Cao, Wenting Yan, and Wenping Yuan
Hydrol. Earth Syst. Sci., 27, 1929–1943, https://doi.org/10.5194/hess-27-1929-2023, https://doi.org/10.5194/hess-27-1929-2023, 2023
Short summary
Short summary
This study addresses the quantification and estimation of the watershed-characteristic-related parameter (Pw) in the Budyko framework with the principle of hydrologically similar groups. The results show that Pw is closely related to soil moisture and fractional vegetation cover, and the relationship varies across specific hydrologic similarity groups. The overall satisfactory performance of the Pw estimation model improves the applicability of the Budyko framework for global runoff estimation.
Lena Katharina Schmidt, Till Francke, Peter Martin Grosse, Christoph Mayer, and Axel Bronstert
Hydrol. Earth Syst. Sci., 27, 1841–1863, https://doi.org/10.5194/hess-27-1841-2023, https://doi.org/10.5194/hess-27-1841-2023, 2023
Short summary
Short summary
We present a suitable method to reconstruct sediment export from decadal records of hydroclimatic predictors (discharge, precipitation, temperature) and shorter suspended sediment measurements. This lets us fill the knowledge gap on how sediment export from glacierized high-alpine areas has responded to climate change. We find positive trends in sediment export from the two investigated nested catchments with step-like increases around 1981 which are linked to crucial changes in glacier melt.
Samantha Petch, Bo Dong, Tristan Quaife, Robert P. King, and Keith Haines
Hydrol. Earth Syst. Sci., 27, 1723–1744, https://doi.org/10.5194/hess-27-1723-2023, https://doi.org/10.5194/hess-27-1723-2023, 2023
Short summary
Short summary
Gravitational measurements of water storage from GRACE (Gravity Recovery and Climate Experiment) can improve understanding of the water budget. We produce flux estimates over large river catchments based on observations that close the monthly water budget and ensure consistency with GRACE on short and long timescales. We use energy data to provide additional constraints and balance the long-term energy budget. These flux estimates are important for evaluating climate models.
Francesco Fatone, Bartosz Szeląg, Przemysław Kowal, Arthur McGarity, Adam Kiczko, Grzegorz Wałek, Ewa Wojciechowska, Michał Stachura, and Nicolas Caradot
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2023-63, https://doi.org/10.5194/hess-2023-63, 2023
Revised manuscript accepted for HESS
Short summary
Short summary
A novel methodology for the development of a stormwater network performance simulator and advanced risk assessment, were proposed. The applied tool enables the analysis of the influence of the spatial variability of catchment and stormwater network characteristics on the relation between SWMM parameters and specific flood volume, as an alternative approach to mechanistic models. The proposed method can be used at the stage of catchment model development and spatial planning management
Ting Su, Chiyuan Miao, Qingyun Duan, Jiaojiao Gou, Xiaoying Guo, and Xi Zhao
Hydrol. Earth Syst. Sci., 27, 1477–1492, https://doi.org/10.5194/hess-27-1477-2023, https://doi.org/10.5194/hess-27-1477-2023, 2023
Short summary
Short summary
The Three-River Source Region (TRSR) plays an extremely important role in water resources security and ecological and environmental protection in China and even all of Southeast Asia. This study used the variable infiltration capacity (VIC) land surface hydrologic model linked with the degree-day factor algorithm to simulate the runoff change in the TRSR. These results will help to guide current and future regulation and management of water resources in the TRSR.
Zhihua He, Kevin Shook, Christopher Spence, John W. Pomeroy, and Colin J. Whitfield
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2023-71, https://doi.org/10.5194/hess-2023-71, 2023
Revised manuscript accepted for HESS
Short summary
Short summary
This study evaluated the impacts of climate change on snowmelt, soil moisture and streamflow in the Canadian Prairies. The entire Prairies was divided into seven sub-regions. We found strong variations of hydrological sensitivity to precipitation and temperature changes in different land cover and regions, which suggests that different water management and adaptation methods are needed to address enhanced water stress due to expected climate change in different locations of the Prairies.
Andreas Hartmann, Jean-Lionel Payeur-Poirier, and Luisa Hopp
Hydrol. Earth Syst. Sci., 27, 1325–1341, https://doi.org/10.5194/hess-27-1325-2023, https://doi.org/10.5194/hess-27-1325-2023, 2023
Short summary
Short summary
We advance our understanding of including information derived from environmental tracers into hydrological modeling. We present a simple approach that integrates streamflow observations and tracer-derived streamflow contributions for model parameter estimation. We consider multiple observed streamflow components and their variation over time to quantify the impact of their inclusion for streamflow prediction at the catchment scale.
Dharmaveer Singh, Manu Vardhan, Rakesh Sahu, Debrupa Chatterjee, Pankaj Chauhan, and Shiyin Liu
Hydrol. Earth Syst. Sci., 27, 1047–1075, https://doi.org/10.5194/hess-27-1047-2023, https://doi.org/10.5194/hess-27-1047-2023, 2023
Short summary
Short summary
This study examines, for the first time, the potential of various machine learning models in streamflow prediction over the Sutlej River basin (rainfall-dominated zone) in western Himalaya during the period 2041–2070 (2050s) and 2071–2100 (2080s) and its relationship to climate variability. The mean ensemble of the model results shows that the mean annual streamflow of the Sutlej River is expected to rise between the 2050s and 2080s by 0.79 to 1.43 % for SSP585 and by 0.87 to 1.10 % for SSP245.
Monica Coppo Frias, Suxia Liu, Xingguo Mo, Karina Nielsen, Heidi Ranndal, Liguang Jiang, Jun Ma, and Peter Bauer-Gottwein
Hydrol. Earth Syst. Sci., 27, 1011–1032, https://doi.org/10.5194/hess-27-1011-2023, https://doi.org/10.5194/hess-27-1011-2023, 2023
Short summary
Short summary
This paper uses remote sensing data from ICESat-2 to calibrate a 1D hydraulic model. With the model, we can make estimations of discharge and water surface elevation, which are important indicators in flooding risk assessment. ICESat-2 data give an added value, thanks to the 0.7 m resolution, which allows the measurement of narrow river streams. In addition, ICESat-2 provides measurements on the river dry portion geometry that can be included in the model.
Evgenia Koltsida, Nikos Mamassis, and Andreas Kallioras
Hydrol. Earth Syst. Sci., 27, 917–931, https://doi.org/10.5194/hess-27-917-2023, https://doi.org/10.5194/hess-27-917-2023, 2023
Short summary
Short summary
Daily and hourly rainfall observations were inputted to a Soil and Water Assessment Tool (SWAT) hydrological model to investigate the impacts of rainfall temporal resolution on a discharge simulation. Results indicated that groundwater flow parameters were more sensitive to daily time intervals, and channel routing parameters were more influential for hourly time intervals. This study suggests that the SWAT model appears to be a reliable tool to predict discharge in a mixed-land-use basin.
Dung Trung Vu, Thanh Duc Dang, Francesca Pianosi, and Stefano Galelli
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2023-35, https://doi.org/10.5194/hess-2023-35, 2023
Revised manuscript accepted for HESS
Short summary
Short summary
The calibration of hydrological models over extensive spatial domains is often challenged by the lack of data on river discharge and the operations of hydraulic infrastructures. Here, we use satellite data to address the lack of data that could unintentionally bias the calibration process. Our study is underpinned by a computational framework that quantifies this bias and provides a safe approach to the calibration of models in poorly gauged and heavily regulated basins.
Klaus Eckhardt
Hydrol. Earth Syst. Sci., 27, 495–499, https://doi.org/10.5194/hess-27-495-2023, https://doi.org/10.5194/hess-27-495-2023, 2023
Short summary
Short summary
An important hydrological issue is to identify components of streamflow that react to precipitation with different degrees of attenuation and delay. From the multitude of methods that have been developed for this so-called hydrograph separation, a specific, frequently used one is singled out here. It is shown to be derived from plausible physical principles. This increases confidence in its results.
Beatrice Sabine Marti, Aidar Zhumabaev, and Tobias Siegfried
Hydrol. Earth Syst. Sci., 27, 319–330, https://doi.org/10.5194/hess-27-319-2023, https://doi.org/10.5194/hess-27-319-2023, 2023
Short summary
Short summary
Numerical modelling is often used for climate impact studies in water resources management. It is, however, not yet highly accessible to many students of hydrology in Central Asia. One big hurdle for new learners is the preparation of relevant data prior to the actual modelling. We present a robust, open-source workflow and comprehensive teaching material that can be used by teachers and by students for self study.
Aniket Gupta, Alix Reverdy, Jean-Martial Cohard, Basile Hector, Marc Descloitres, Jean-Pierre Vandervaere, Catherine Coulaud, Romain Biron, Lucie Liger, Reed Maxwell, Jean-Gabriel Valay, and Didier Voisin
Hydrol. Earth Syst. Sci., 27, 191–212, https://doi.org/10.5194/hess-27-191-2023, https://doi.org/10.5194/hess-27-191-2023, 2023
Short summary
Short summary
Patchy snow cover during spring impacts mountainous ecosystems on a large range of spatio-temporal scales. A hydrological model simulated such snow patchiness at 10 m resolution. Slope and orientation controls precipitation, radiation, and wind generate differences in snowmelt, subsurface storage, streamflow, and evapotranspiration. The snow patchiness increases the duration of the snowmelt to stream and subsurface storage, which sustains the plants and streamflow later in the summer.
Hendrik Rathjens, Jens Kiesel, Michael Winchell, Jeffrey Arnold, and Robin Sur
Hydrol. Earth Syst. Sci., 27, 159–167, https://doi.org/10.5194/hess-27-159-2023, https://doi.org/10.5194/hess-27-159-2023, 2023
Short summary
Short summary
The SWAT model can simulate the transport of water-soluble chemicals through the landscape but neglects the transport through groundwater or agricultural tile drains. These transport pathways are, however, important to assess the amount of chemicals in streams. We added this capability to the model, which significantly improved the simulation. The representation of all transport pathways in the model enables watershed managers to develop robust strategies for reducing chemicals in streams.
Wencong Yang, Hanbo Yang, Changming Li, Taihua Wang, Ziwei Liu, Qingfang Hu, and Dawen Yang
Hydrol. Earth Syst. Sci., 26, 6427–6441, https://doi.org/10.5194/hess-26-6427-2022, https://doi.org/10.5194/hess-26-6427-2022, 2022
Short summary
Short summary
We produced a daily 0.1° dataset of precipitation, soil moisture, and snow water equivalent in 1981–2017 across China via reconstructions. The dataset used global background data and local on-site data as forcing input and satellite-based data as reconstruction benchmarks. This long-term high-resolution national hydrological dataset is valuable for national investigations of hydrological processes.
Felipe A. Saavedra, Andreas Musolff, Jana von Freyberg, Ralf Merz, Stefano Basso, and Larisa Tarasova
Hydrol. Earth Syst. Sci., 26, 6227–6245, https://doi.org/10.5194/hess-26-6227-2022, https://doi.org/10.5194/hess-26-6227-2022, 2022
Short summary
Short summary
Nitrate contamination of rivers from agricultural sources is a challenge for water quality management. During runoff events, different transport paths within the catchment might be activated, generating a variety of responses in nitrate concentration in stream water. Using nitrate samples from 184 German catchments and a runoff event classification, we show that hydrologic connectivity during runoff events is a key control of nitrate transport from catchments to streams in our study domain.
Marcos R. C. Cordeiro, Kang Liang, Henry F. Wilson, Jason Vanrobaeys, David A. Lobb, Xing Fang, and John W. Pomeroy
Hydrol. Earth Syst. Sci., 26, 5917–5931, https://doi.org/10.5194/hess-26-5917-2022, https://doi.org/10.5194/hess-26-5917-2022, 2022
Short summary
Short summary
This study addresses the issue of increasing interest in the hydrological impacts of converting cropland to perennial forage cover in the Canadian Prairies. By developing customized models using the Cold Regions Hydrological Modelling (CRHM) platform, this long-term (1992–2013) modelling study is expected to provide stakeholders with science-based information regarding the hydrological impacts of land use conversion from annual crop to perennial forage cover in the Canadian Prairies.
Reyhaneh Hashemi, Pierre Brigode, Pierre-André Garambois, and Pierre Javelle
Hydrol. Earth Syst. Sci., 26, 5793–5816, https://doi.org/10.5194/hess-26-5793-2022, https://doi.org/10.5194/hess-26-5793-2022, 2022
Short summary
Short summary
Hydrologists have long dreamed of a tool that could adequately predict runoff in catchments. Data-driven long short-term memory (LSTM) models appear very promising to the hydrology community in this respect. Here, we have sought to benefit from traditional practices in hydrology to improve the effectiveness of LSTM models. We discovered that one LSTM parameter has a hydrologic interpretation and that there is a need to increase the data and to tune two parameters, thereby improving predictions.
Mu Xiao, Giuseppe Mascaro, Zhaocheng Wang, Kristen M. Whitney, and Enrique R. Vivoni
Hydrol. Earth Syst. Sci., 26, 5627–5646, https://doi.org/10.5194/hess-26-5627-2022, https://doi.org/10.5194/hess-26-5627-2022, 2022
Short summary
Short summary
As the major water resource in the southwestern United States, the Colorado River is experiencing decreases in naturalized streamflow and is predicted to face severe challenges under future climate scenarios. Here, we demonstrate the value of Earth observing satellites to improve and build confidence in the spatiotemporal simulations from regional hydrologic models for assessing the sensitivity of the Colorado River to climate change and supporting regional water managers.
Christopher Spence, Zhihua He, Kevin R. Shook, John W. Pomeroy, Colin J. Whitfield, and Jared D. Wolfe
Hydrol. Earth Syst. Sci., 26, 5555–5575, https://doi.org/10.5194/hess-26-5555-2022, https://doi.org/10.5194/hess-26-5555-2022, 2022
Short summary
Short summary
We learnt how streamflow from small creeks could be altered by wetland removal in the Canadian Prairies, where this practice is pervasive. Every creek basin in the region was placed into one of seven groups. We selected one of these groups and used its traits to simulate streamflow. The model worked well enough so that we could trust the results even if we removed the wetlands. Wetland removal did not change low flow amounts very much, but it doubled high flow and tripled average flow.
Rosanna A. Lane, Gemma Coxon, Jim Freer, Jan Seibert, and Thorsten Wagener
Hydrol. Earth Syst. Sci., 26, 5535–5554, https://doi.org/10.5194/hess-26-5535-2022, https://doi.org/10.5194/hess-26-5535-2022, 2022
Short summary
Short summary
This study modelled the impact of climate change on river high flows across Great Britain (GB). Generally, results indicated an increase in the magnitude and frequency of high flows along the west coast of GB by 2050–2075. In contrast, average flows decreased across GB. All flow projections contained large uncertainties; the climate projections were the largest source of uncertainty overall but hydrological modelling uncertainties were considerable in some regions.
Guangxuan Li, Xi Chen, Zhicai Zhang, Lichun Wang, and Chris Soulsby
Hydrol. Earth Syst. Sci., 26, 5515–5534, https://doi.org/10.5194/hess-26-5515-2022, https://doi.org/10.5194/hess-26-5515-2022, 2022
Short summary
Short summary
We developed a coupled flow–tracer model to understand the effects of passive storage on modeling hydrological function and isotope dynamics in a karst flow system. Models with passive storages show improvement in matching isotope dynamics performance, and the improved performance also strongly depends on the number and location of passive storages. Our results also suggested that the solute transport is primarily controlled by advection and hydrodynamic dispersion in the steep hillslope unit.
Grey S. Nearing, Daniel Klotz, Jonathan M. Frame, Martin Gauch, Oren Gilon, Frederik Kratzert, Alden Keefe Sampson, Guy Shalev, and Sella Nevo
Hydrol. Earth Syst. Sci., 26, 5493–5513, https://doi.org/10.5194/hess-26-5493-2022, https://doi.org/10.5194/hess-26-5493-2022, 2022
Short summary
Short summary
When designing flood forecasting models, it is necessary to use all available data to achieve the most accurate predictions possible. This manuscript explores two basic ways of ingesting near-real-time streamflow data into machine learning streamflow models. The point we want to make is that when working in the context of machine learning (instead of traditional hydrology models that are based on
bio-geophysics), it is not necessary to use complex statistical methods for injecting sparse data.
Xiongpeng Tang, Guobin Fu, Silong Zhang, Chao Gao, Guoqing Wang, Zhenxin Bao, Yanli Liu, Cuishan Liu, and Junliang Jin
Hydrol. Earth Syst. Sci., 26, 5315–5339, https://doi.org/10.5194/hess-26-5315-2022, https://doi.org/10.5194/hess-26-5315-2022, 2022
Short summary
Short summary
In this study, we proposed a new framework that considered the uncertainties of model simulations in quantifying the contribution rate of climate change and human activities to streamflow changes. Then, the Lancang River basin was selected for the case study. The results of quantitative analysis using the new framework showed that the reason for the decrease in the streamflow at Yunjinghong station was mainly human activities.
Bin Yi, Lu Chen, Hansong Zhang, Vijay P. Singh, Ping Jiang, Yizhuo Liu, Hexiang Guo, and Hongya Qiu
Hydrol. Earth Syst. Sci., 26, 5269–5289, https://doi.org/10.5194/hess-26-5269-2022, https://doi.org/10.5194/hess-26-5269-2022, 2022
Short summary
Short summary
An improved GIS-derived distributed unit hydrograph routing method considering time-varying soil moisture was proposed for flow routing. The method considered the changes of time-varying soil moisture and rainfall intensity. The response of underlying surface to the soil moisture content was considered an important factor in this study. The SUH, DUH, TDUH and proposed routing methods (TDUH-MC) were used for flood forecasts, and the simulated results were compared and discussed.
Audrey Douinot, Jean François Iffly, Cyrille Tailliez, Claude Meisch, and Laurent Pfister
Hydrol. Earth Syst. Sci., 26, 5185–5206, https://doi.org/10.5194/hess-26-5185-2022, https://doi.org/10.5194/hess-26-5185-2022, 2022
Short summary
Short summary
The objective of the paper is to highlight the seasonal and singular shift of the transfer time distributions of two catchments (≅10 km2).
Based on 2 years of rainfall and discharge observations, we compare variations in the properties of TTDs with the physiographic characteristics of catchment areas and the eco-hydrological cycle. The paper eventually aims to deduce several factors conducive to particularly rapid and concentrated water transfers, which leads to flash floods.
Alexander Y. Sun, Peishi Jiang, Zong-Liang Yang, Yangxinyu Xie, and Xingyuan Chen
Hydrol. Earth Syst. Sci., 26, 5163–5184, https://doi.org/10.5194/hess-26-5163-2022, https://doi.org/10.5194/hess-26-5163-2022, 2022
Short summary
Short summary
High-resolution river modeling is of great interest to local governments and stakeholders for flood-hazard mitigation. This work presents a physics-guided, machine learning (ML) framework for combining the strengths of high-resolution process-based river network models with a graph-based ML model capable of modeling spatiotemporal processes. Results show that the ML model can approximate the dynamics of the process model with high fidelity, and data fusion further improves the forecasting skill.
Marvin Höge, Andreas Scheidegger, Marco Baity-Jesi, Carlo Albert, and Fabrizio Fenicia
Hydrol. Earth Syst. Sci., 26, 5085–5102, https://doi.org/10.5194/hess-26-5085-2022, https://doi.org/10.5194/hess-26-5085-2022, 2022
Short summary
Short summary
Neural ODEs fuse physics-based models with deep learning: neural networks substitute terms in differential equations that represent the mechanistic structure of the system. The approach combines the flexibility of machine learning with physical constraints for inter- and extrapolation. We demonstrate that neural ODE models achieve state-of-the-art predictive performance while keeping full interpretability of model states and processes in hydrologic modelling over multiple catchments.
Nicolás Cortés-Salazar, Nicolás Vásquez, Naoki Mizukami, Pablo Mendoza, and Ximena Vargas
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2022-338, https://doi.org/10.5194/hess-2022-338, 2022
Revised manuscript accepted for HESS
Short summary
Short summary
This paper shows how important river models can be for water resources applications that involve hydrological models and, in particular, parameter calibration. To this end, we conduct numerical experiments in a pilot basin, using a combination of hydrologic model simulations obtained from a large sample of parameter sets, and different routing methods. We obtain that routing can affect streamflow simulations even at monthly time steps, the choice of parameters, and relevant streamflow metrics.
Jing Tian, Zhengke Pan, Shenglian Guo, Jiabo Yin, Yanlai Zhou, and Jun Wang
Hydrol. Earth Syst. Sci., 26, 4853–4874, https://doi.org/10.5194/hess-26-4853-2022, https://doi.org/10.5194/hess-26-4853-2022, 2022
Short summary
Short summary
Most of the literature has focused on the runoff response to climate change, while neglecting the impacts of the potential variation in the active catchment water storage capacity (ACWSC) that plays an essential role in the transfer of climate inputs to the catchment runoff. This study aims to systematically identify the response of the ACWSC to a long-term meteorological drought and asymptotic climate change.
Riccardo Rigon, Giuseppe Formetta, Marialaura Bancheri, Niccolò Tubini, Concetta D'Amato, Olaf David, and Christian Massari
Hydrol. Earth Syst. Sci., 26, 4773–4800, https://doi.org/10.5194/hess-26-4773-2022, https://doi.org/10.5194/hess-26-4773-2022, 2022
Short summary
Short summary
The
Digital Earth(DE) metaphor is very useful for both end users and hydrological modelers. We analyse different categories of models, with the view of making them part of a Digital eARth Twin Hydrology system (called DARTH). We also stress the idea that DARTHs are not models in and of themselves, rather they need to be built on an appropriate information technology infrastructure. It is remarked that DARTHs have to, by construction, support the open-science movement and its ideas.
Hapu Arachchige Prasantha Hapuarachchi, Mohammed Abdul Bari, Aynul Kabir, Mohammad Mahadi Hasan, Fitsum Markos Woldemeskel, Nilantha Gamage, Patrick Daniel Sunter, Xiaoyong Sophie Zhang, David Ewen Robertson, James Clement Bennett, and Paul Martinus Feikema
Hydrol. Earth Syst. Sci., 26, 4801–4821, https://doi.org/10.5194/hess-26-4801-2022, https://doi.org/10.5194/hess-26-4801-2022, 2022
Short summary
Short summary
Methodology for developing an operational 7-day ensemble streamflow forecasting service for Australia is presented. The methodology is tested for 100 catchments to learn the characteristics of different NWP rainfall forecasts, the effect of post-processing, and the optimal ensemble size and bootstrapping parameters. Forecasts are generated using NWP rainfall products post-processed by the CHyPP model, the GR4H hydrologic model, and the ERRIS streamflow post-processor inbuilt in the SWIFT package
Chenhao Chai, Lei Wang, Deliang Chen, Jing Zhou, Hu Liu, Jingtian Zhang, Yuanwei Wang, Tao Chen, and Ruishun Liu
Hydrol. Earth Syst. Sci., 26, 4657–4683, https://doi.org/10.5194/hess-26-4657-2022, https://doi.org/10.5194/hess-26-4657-2022, 2022
Short summary
Short summary
This work quantifies future snow changes and their impacts on hydrology in the upper Salween River (USR) under SSP126 and SSP585 using a cryosphere–hydrology model. Future warm–wet climate is not conducive to the development of snow. The rain–snow-dominated pattern of runoff will shift to a rain-dominated pattern after the 2040s under SSP585 but is unchanged under SSP126. The findings improve our understanding of cryosphere–hydrology processes and can assist water resource management in the USR.
Remko C. Nijzink and Stanislaus J. Schymanski
Hydrol. Earth Syst. Sci., 26, 4575–4585, https://doi.org/10.5194/hess-26-4575-2022, https://doi.org/10.5194/hess-26-4575-2022, 2022
Short summary
Short summary
Most catchments plot close to the empirical Budyko curve, which allows for the estimation of the long-term mean annual evaporation and runoff. The Budyko curve can be defined as a function of a wetness index or a dryness index. We found that differences can occur and that there is an uncertainty due to the different formulations.
Anna Msigwa, Celray James Chawanda, Hans C. Komakech, Albert Nkwasa, and Ann van Griensven
Hydrol. Earth Syst. Sci., 26, 4447–4468, https://doi.org/10.5194/hess-26-4447-2022, https://doi.org/10.5194/hess-26-4447-2022, 2022
Short summary
Short summary
Studies using agro-hydrological models, like the Soil and Water Assessment Tool (SWAT), to map evapotranspiration (ET) do not account for cropping seasons. A comparison between the default SWAT+ set-up (with static land use representation) and a dynamic SWAT+ model set-up (with seasonal land use representation) is made by spatial mapping of the ET. The results show that ET with seasonal representation is closer to remote sensing estimates, giving better performance than ET with static land use.
Jerom P. M. Aerts, Rolf W. Hut, Nick C. van de Giesen, Niels Drost, Willem J. van Verseveld, Albrecht H. Weerts, and Pieter Hazenberg
Hydrol. Earth Syst. Sci., 26, 4407–4430, https://doi.org/10.5194/hess-26-4407-2022, https://doi.org/10.5194/hess-26-4407-2022, 2022
Short summary
Short summary
In recent years gridded hydrological modelling moved into the realm of hyper-resolution modelling (<10 km). In this study, we investigate the effect of varying grid-cell sizes for the wflow_sbm hydrological model. We used a large sample of basins from the CAMELS data set to test the effect that varying grid-cell sizes has on the simulation of streamflow at the basin outlet. Results show that there is no single best grid-cell size for modelling streamflow throughout the domain.
Taher Chegini and Hong-Yi Li
Hydrol. Earth Syst. Sci., 26, 4279–4300, https://doi.org/10.5194/hess-26-4279-2022, https://doi.org/10.5194/hess-26-4279-2022, 2022
Short summary
Short summary
Belowground urban stormwater networks (BUSNs) play a critical and irreplaceable role in preventing or mitigating urban floods. However, they are often not available for urban flood modeling at regional or larger scales. We develop a novel algorithm to estimate existing BUSNs using ubiquitously available aboveground data at large scales based on graph theory. The algorithm has been validated in different urban areas; thus, it is well transferable.
Yi Nan, Zhihua He, Fuqiang Tian, Zhongwang Wei, and Lide Tian
Hydrol. Earth Syst. Sci., 26, 4147–4167, https://doi.org/10.5194/hess-26-4147-2022, https://doi.org/10.5194/hess-26-4147-2022, 2022
Short summary
Short summary
Tracer-aided hydrological models are useful tool to reduce uncertainty of hydrological modeling in cold basins, but there is little guidance on the sampling strategy for isotope analysis, which is important for large mountainous basins. This study evaluated the reliance of the tracer-aided modeling performance on the availability of isotope data in the Yarlung Tsangpo river basin, and provides implications for collecting water isotope data for running tracer-aided hydrological models.
Sella Nevo, Efrat Morin, Adi Gerzi Rosenthal, Asher Metzger, Chen Barshai, Dana Weitzner, Dafi Voloshin, Frederik Kratzert, Gal Elidan, Gideon Dror, Gregory Begelman, Grey Nearing, Guy Shalev, Hila Noga, Ira Shavitt, Liora Yuklea, Moriah Royz, Niv Giladi, Nofar Peled Levi, Ofir Reich, Oren Gilon, Ronnie Maor, Shahar Timnat, Tal Shechter, Vladimir Anisimov, Yotam Gigi, Yuval Levin, Zach Moshe, Zvika Ben-Haim, Avinatan Hassidim, and Yossi Matias
Hydrol. Earth Syst. Sci., 26, 4013–4032, https://doi.org/10.5194/hess-26-4013-2022, https://doi.org/10.5194/hess-26-4013-2022, 2022
Short summary
Short summary
Early flood warnings are one of the most effective tools to save lives and goods. Machine learning (ML) models can improve flood prediction accuracy but their use in operational frameworks is limited. The paper presents a flood warning system, operational in India and Bangladesh, that uses ML models for forecasting river stage and flood inundation maps and discusses the models' performances. In 2021, more than 100 million flood alerts were sent to people near rivers over an area of 470 000 km2.
Cited articles
Addor, N., Newman, A. J., Mizukami, N., and Clark, M. P.: The CAMELS data set: catchment attributes and meteorology for large-sample studies, Hydrol. Earth Syst. Sci., 21, 5293–5313, https://doi.org/10.5194/hess-21-5293-2017, 2017. a
AghaKouchak, A., Nakhjiri, N., and Habib, E.: An educational model for ensemble streamflow simulation and uncertainty analysis, Hydrol. Earth Syst. Sci., 17, 445–452, https://doi.org/10.5194/hess-17-445-2013, 2013. a
Astagneau, P. C., Thirel, G., Delaigue, O., Guillaume, J. H. A., Parajka, J.,
Brauer, C. C., Viglione, A., Buytaert, W., and Beven, K. J.: Technical note:
Hydrology modelling R packages – a unified analysis of models and
practicalities from a user perspective, Hydrol. Earth Syst. Sci., 25, 3937–3973, https://doi.org/10.5194/hess-25-3937-2021, 2021. a, b
Baahmed, D., Oudin, L., and Errih, M.: Current runoff variations in the Macta
catchment (Algeria): is climate the sole factor? [Le facteur climatique
est-il la seule cause des modifications actuelles de l'écoulement dans le
bassin versant de la Macta (Algérie)?], Hydrolog. Sci. J., 60,
1331–1339, https://doi.org/10.1080/02626667.2014.975708, 2015. a
Belarbi, H., Touaibia, B., Boumechra, N., Amiar, S., and Baghli, N.: Drought
and modification of the rainfall-runoff relation: case of Wadi Sebdou basin
(western Algeria) [Sécheresse et modification de la relation pluie–débit: cas du bassin versant de l'Oued Sebdou (Algérie Occidentale)], Hydrolog. Sci. J., 62, 124–136, https://doi.org/10.1080/02626667.2015.1112394, 2017. a
Bezak, N., Jemec Auflič, M., and Mikoš, M.: Application of
hydrological modelling for temporal prediction of rainfall-induced shallow
landslides, Landslides, 16, 1273–1283, https://doi.org/10.1007/s10346-019-01169-9, 2019. a
Blöschl, G., Bierkens, M. F. P., Chambel, A., Cudennec, C., Destouni, G.,
Fiori, A., Kirchner, J. W., McDonnell, J. J., Savenije, H. H. G., Sivapalan,
M., Stumpp, C., Toth, E., Volpi, E., Carr, G., Lupton, C., Salinas, J.,
Széles, B., Viglione, A., Aksoy, H., et al.: Twenty-three unsolved problems in
hydrology (UPH) – a community perspective, Hydrolog. Sci. J., 64, 1141–1158, https://doi.org/10.1080/02626667.2019.1620507, 2019. a
Brigode, P., Lilas, D., Andréassian, V., Nicolle, P., Le Moine, N., Perrin,
C., Gremminger, S., and Augeard, B.: Une cartographie de l'écoulement des
rivières de Corse, La Houille Blanche, 1, 68–77, https://doi.org/10.1051/lhb/2019009, 2019. a
Brigode, P., Génot, B., Lobligeois, F., and Delaigue, O.: Summary sheets of
watershed-scale hydroclimatic observed data for France, Recherche Data Gouv [data set], https://doi.org/10.15454/UV01P1, 2020. a
Burt, T. and Butcher, D.: Stimulation from simulation? A teaching model of
hillslope hydrology for use on microcomputers, J. Geogr. High. Educ., 10, 23–39, https://doi.org/10.1080/03098268608708953, 1986. a
Carriba Demange, L., Chanoual, A., and Gazull, A.: Evaluation des logiciels,
modèles et packages disponibles pour l'enseignement de la modélisation
hydrologique, Projet d'ingénierie GE5, Polytech Nice Sophia, Université
Côte d'Azur, https://hal.science/hal-04191446 (last access: 20 July 2023), 2022. a
Cassagnole, M., Ramos, M.-H., Zalachori, I., Thirel, G., Garçon, R., Gailhard, J., and Ouillon, T.: Impact of the quality of hydrological forecasts on the management and revenue of hydroelectric reservoirs – a conceptual approach, Hydrology and Earth System Sciences, 25, 1033–1052,
https://doi.org/10.5194/hess-25-1033-2021, 2021. a
Ceola, S., Arheimer, B., Baratti, E., Blöschl, G., Capell, R., Castellarin, A., Freer, J., Han, D., Hrachowitz, M., Hundecha, Y., Hutton, C., Lindström, G., Montanari, A., Nijzink, R., Parajka, J., Toth, E., Viglione, A., and Wagener, T.: Virtual laboratories: new opportunities for collaborative water science, Hydrol. Earth Syst. Sci., 19, 2101–2117,
https://doi.org/10.5194/hess-19-2101-2015, 2015. a
Chang, W., Cheng, J., Allaire, J., Sievert, C., Schloerke, B., Xie, Y., Allen, J., McPherson, J., Dipert, A., and Borges, B.: shiny: Web Application
Framework for R, R package version 1.7.2, https://CRAN.R-project.org/package=shiny (last access: 20 July 2023), 2022. a
Chauveau, M., Chazot, S., Perrin, C., Bourgin, P.-Y., Sauquet, E.,
Vidal, J.-P., Rouchy, N., Martin, E., David, J., Norotte, T.,
Maugis, P., and De Lacaze, X.: Quels impacts des changements climatiques
sur les eaux de surface en France à l´horizon 2070?, La Houille
Blanche, 4, 5–15, https://doi.org/10.1051/lhb/2013027, 2013. a
Clark, M. P., Kavetski, D., and Fenicia, F.: Pursuing the method of multiple
working hypotheses for hydrological modeling, Water Resour. Res., 47,
W09301, https://doi.org/10.1029/2010WR009827, 2011. a
Coron, L., Delaigue, O., Thirel, G., Dorchies, D., Perrin, C., and Michel, C.: airGR: Suite of GR Hydrological Models for Precipitation-Runoff
Modelling, R package version 1.7.0, https://doi.org/10.15454/EX11NA, https://CRAN.R-project.org/package=airGR (last access: 5 August 2023), 2022. a, b, c
Delaigue, O., Thirel, G., Coron, L., and Brigode, P.: airGR and
airGRteaching: Two Open-Source Tools for Rainfall-Runoff Modeling and
Teaching Hydrology, in: HIC 2018, 13th International Conference on
Hydroinformatics, vol. 3 of EPiC Series in Engineering, edited by: La Loggia, G., Freni, G., Puleo, V., and De Marchis, M., EasyChair, 541–548, https://doi.org/10.29007/qsqj, 2018. a
Delaigue, O., Brigode, P., Andréassian, V., Perrin, C., Etchevers, P.,
Soubeyroux, J.-M., Janet, B., and Addor, N.: CAMELS-FR: A large sample
hydroclimatic dataset for France to explore hydrological diversity and
support model benchmarking, https://hal.inrae.fr/hal-03687235 (last access: 30 December 2022), 2022. a, b
Delaigue, O., Brigode, P., and Thirel, G.: airGRdatasets: Hydro-Meteorological Catchments Datasets for the “airGR” Packages, R package version 0.2.1, https://doi.org/10.57745/3SPJ4B, https://CRAN.R-project.org/package=airGRdatasets (last access: 5 August 2023), 2023a. a, b
Delaigue, O., Coron, L., Brigode, P., and Thirel, G.: airGRteaching: Teaching Hydrological Modelling with GR (Shiny Interface Included),
R package version 0.3.2, https://doi.org/10.15454/W0SSKT, https://CRAN.R-project.org/package=airGRteaching (last access: 5 August 2023), 2023b. a, b
de Lavenne, A., Andréassian, V., Thirel, G., Ramos, M.-H., and Perrin, C.: A
Regularization Approach to Improve the Sequential Calibration of a
Semidistributed Hydrological Model, Water Resour. Res., 55, 8821–8839, https://doi.org/10.1029/2018WR024266, 2019. a
Desclaux, T., Lemonnier, H., Genthon, P., Soulard, B., and Gendre, R. L.:
Suitability of a lumped rainfall–runoff model for flashy tropical
watersheds in New Caledonia, Hydrolog. Sci. J., 63, 1689–1706,
https://doi.org/10.1080/02626667.2018.1523613, 2018. a
Dorchies, D., Thirel, G., Jay-Allemand, M., Chauveau, M., Dehay, F., Bourgin,
P.-Y., Perrin, C., Jost, C., Rizzoli, J.-L., Demerliac, S., and Thépot, R.:
Climate change impacts on multi-objective reservoir management: case study on
the Seine River basin, France, Int. J. River Basin Manage., 12, 265–283, https://doi.org/10.1080/15715124.2013.865636, 2014. a
Dorchies, D., Delaigue, O., and Thirel, G.: airGRiwrm: “airGR” Integrated Water Resource Management, R package version 0.6.1, https://doi.org/10.15454/3CVD1I, https://CRAN.R-project.org/package=airGRiwrm (last access: 5 August 2023), 2022. a
Elshorbagy, A.: Learner-centered approach to teaching watershed hydrology using system dynamics, Int. J. Eng. Educ., 21, 1203–1213, 2005. a
Ficchì, A., Perrin, C., and Andréassian, V.: Hydrological modelling at
multiple sub-daily time steps: Model improvement via flux-matching, J. Hydrol., 575, 1308–1327, https://doi.org/10.1016/j.jhydrol.2019.05.084, 2019. a
Fiering, M. B.: Streamflow Synthesis, Harvard University Press, Cambridge, Mass., ISBN 9780674189270, 1967. a
Fuka, D., Walter, M., Archibald, J., Steenhuis, T., and Easton, Z.:
EcoHydRology: A Community Modeling Foundation for Eco-Hydrology, R package
version 0.4.12.1, CRAN, https://CRAN.R-project.org/package=EcoHydRology (last access: 20 July 2023), 2018. a
Furusho, C., Perrin, C., Viatgé, J., Lamblin, R., and Andréassian, V.:
Synergies entre acteurs opérationnels et scientifiques au service de
l'amélioration de la prévision des crues, La Houille Blanche, 4, 5–10, https://doi.org/10.1051/lhb/2016033, 2016. a
García Hernández, J., Paredes Arquiola, J., Foehn, A., Roquier, B., and Fluixá-Sanmartín, J.: RS MINERVE – Technical Manual
v2.25, Tech. rep., RS MINERVE Group, Sion, Switzerland, https://crealp.ch/wp-content/uploads/2021/09/rsminerve_technical_manual_v2.25.pdf (last access: 30 August 2023),
2020. a, b
GEBCO Bathymetric Compilation Group 2021: The GEBCO_2021 Grid – a
continuous terrain model of the global oceans and land, ERC EDS British Oceanographic Data Centre NOC [data set], https://doi.org/10.5285/c6612cbe-50b3-0cff-e053-6c86abc09f8f, 2021. a
Gupta, H. V., Kling, H., Yilmaz, K. K., and Martinez, G. F.: Decomposition of
the mean squared error and NSE performance criteria: Implications for
improving hydrological modelling, J. Hydrol., 377, 80–91,
https://doi.org/10.1016/j.jhydrol.2009.08.003, 2009. a
Hall, C. A., Saia, S. M., Popp, A. L., Dogulu, N., Schymanski, S. J., Drost,
N., van Emmerik, T., and Hut, R.: A hydrologist's guide to open science,
Hydrol. Earth Syst. Sci., 26, 647–664, https://doi.org/10.5194/hess-26-647-2022, 2022. a
Hutton, C., Wagener, T., Freer, J., Han, D., Duffy, C., and Arheimer, B.: Most computational hydrology is not reproducible, so is it really science?, Water Resour. Res., 52, 7548–7555, https://doi.org/10.1002/2016WR019285, 2016. a, b
Irving, K., Kuemmerlen, M., Kiesel, J., Kakouei, K., Domisch, S., and Jähnig,
S. C.: A high-resolution streamflow and hydrological metrics dataset for
ecological modeling using a regression model, Sci. Data, 5, 180224, https://doi.org/10.1038/sdata.2018.224, 2018. a
Kay, D., Kay, N., and McDonald, A.: Teaching Catchment Hydrology: Two
Dynamic Models for Classroom Use, Teach. Geogr., 7, 118–124, 1982. a
Kirkby, M. and Naden, P.: The use of simulation models in teaching geomorphology and hydrology, J. Geogr. High. Educ., 12, 31–49, https://doi.org/10.1080/03098268808709023, 1988. a
Klemeš, V.: Operational testing of hydrological simulation models, Hydrolog. Sci. J., 31, 13–24, https://doi.org/10.1080/02626668609491024, 1986. a, b
Kling, H., Fuchs, M., and Paulin, M.: Runoff conditions in the upper Danube basin under an ensemble of climate change scenarios, J. Hydrol., 424–425, 264–277, https://doi.org/10.1016/j.jhydrol.2012.01.011, 2012. a
Knoben, W. J. M. and Spieler, D.: Teaching hydrological modelling: illustrating model structure uncertainty with a ready-to-use computational exercise, Hydrol. Earth Syst. Sci., 26, 3299–3314,
https://doi.org/10.5194/hess-26-3299-2022, 2022. a
Kouassi, A., Koffi, Y., Kouame, K., Lasm, T., and Biemi, J.: Modeling of annual flows using a conceptual model and an artificial neural network model in the N'zi-Bandama watershed (Côte d'Ivoire), Agris On-line Papers in Economics and Informatics, 2, 2082–2094, 2012. a
Lehner, B. and Grill, G.: Global river hydrography and network routing:
baseline data and new approaches to study the world's large river systems,
Hydrol. Process., 27, 2171–2186, https://doi.org/10.1002/hyp.9740, 2013. a
Le Moine, N.: Le bassin versant de surface vu par le souterrain: une voie
d’amélioration des performances et du réalisme des modèles pluie-débit?, PhD thesis, Université Pierre et Marie Curie, Paris 6,
https://hal.science/tel-02591478
(last access: 30 December 2022), 2008. a
Marchane, A., Tramblay, Y., Hanich, L., Ruelland, D., and Jarlan, L.: Climate
change impacts on surface water resources in the Rheraya catchment (High
Atlas, Morocco), Hydrolog. Sci. J., 62, 979–995,
https://doi.org/10.1080/02626667.2017.1283042, 2017. a
Marshall, J. A., Castillo, A. J., and Cardenas, M. B.: The Effect of
Modeling and Visualization Resources on Student Understanding of
Physical Hydrology, J. Geosci. Educ., 63, 127–139, https://doi.org/10.5408/14-057.1, 2015. a
Martel, J.-L., Demeester, K., Brissette, F., Poulin, A., and Arsenault, R.:
HMETS – A simple and efficient hydrology model for teaching hydrological
modelling, flow forecasting and climate change impacts, Int. J. Eng. Educ., 33, 1307–1316, 2017. a
Mathevet, T.: Quels modèles pluie-débit globaux au pas de temps horaire?
Développements empiriques et comparaison de modèles sur un large échantillon de bassins versants, PhD thesis, ENGREF, Paris,
https://hal.science/tel-02587642v1
(last access: 30 December 2022), 2005. a
MATLAB: 9.7.0.1190202 (R2019b), The MathWorks Inc., Natick, Massachusetts,
https://www.mathworks.com (last access: 30 August 2023), 2018. a
McConnell, S.: Code complete, 2nd Edn., Microsoft Press, Redmond, Wash.
ISBN-13 9780735619678, 2004. a
Mendez, M. and Calvo-Valverde, L.: Development of the HBV-TEC Hydrological Model, Proced. Eng., 154, 1116–1123,
https://doi.org/10.1016/j.proeng.2016.07.521, 2016. a
Merwade, V. and Ruddell, B. L.: Moving university hydrology education forward
with community-based geoinformatics, data and modeling resources, Hydrol.
Earth Syst. Sci., 16, 2393–2404, https://doi.org/10.5194/hess-16-2393-2012, 2012. a
Michel, C.: How to use single-parameter conceptual model in hydrology?, La
Houille Blanche, 69, 39–44, https://doi.org/10.1051/lhb/1983004, 1983. a
Michel, C.: Hydrologie appliquée aux petits bassins ruraux, Cemagref, Antony,
https://belinrae.inrae.fr/index.php?lvl=notice_display&id=225112 (last access: 1 August 2023), 1991. a
Mouelhi, S., Michel, C., Perrin, C., and Andréassian, V.: Linking stream flow
to rainfall at the annual time step: The Manabe bucket model revisited,
J. Hydrol., 328, 283–296, https://doi.org/10.1016/j.jhydrol.2005.12.022, 2006a. a
Mouelhi, S., Michel, C., Perrin, C., and Andréassian, V.: Stepwise development of a two-parameter monthly water balance model, J. Hydrol., 318, 200–214, https://doi.org/10.1016/j.jhydrol.2005.06.014, 2006b. a
Nash, J. E. and Sutcliffe, J. V.: River flow forecasting through conceptual
models part I – A discussion of principles, J. Hydrol., 10, 282–290, https://doi.org/10.1016/0022-1694(70)90255-6, 1970. a
Neumann, J. L., Arnal, L., Emerton, R. E., Griffith, H., Hyslop, S.,
Theofanidi, S., and Cloke, H. L.: Can seasonal hydrological forecasts inform
local decisions and actions? A decision-making activity, Geosci. Commun., 1, 35–57, https://doi.org/10.5194/gc-1-35-2018, 2018. a
Nicolle, P., Pushpalatha, R., Perrin, C., François, D., Thiéry, D.,
Mathevet, T., Le Lay, M., Besson, F., Soubeyroux, J.-M., Viel, C., Regimbeau,
F., Andréassian, V., Maugis, P., Augeard, B., and Morice, E.: Benchmarking hydrological models for low-flow simulation and forecasting on French catchments, Hydrol. Earth Syst. Sci., 18, 2829–2857,
https://doi.org/10.5194/hess-18-2829-2014, 2014. a
Oudin, L., Andréassian, V., Mathevet, T., Perrin, C., and Michel, C.: Dynamic
averaging of rainfall-runoff model simulations from complementary model
parameterizations, Water Resour. Res., 42, W07410, https://doi.org/10.1029/2005WR004636, 2006. a
Paquet, E., Garavaglia, F., Garçon, R., and Gailhard, J.: The SCHADEX
method: A semi-continuous rainfall–runoff simulation for extreme flood
estimation, J. Hydrol., 495, 23–37, https://doi.org/10.1016/j.jhydrol.2013.04.045, 2013. a
Pérez-Sánchez, J., Senent-Aparicio, J., and Jimeno-Sáez, P.: The application of spreadsheets for teaching hydrological modeling and climate change impacts on streamflow, Comput. Appl. Eng. Educ., 30, 1510–1525, https://doi.org/10.1002/cae.22541, 2022. a
Perrin, C., Michel, C., and Andréassian, V.: Improvement of a parsimonious
model for streamflow simulation, J. Hydrol., 279, 275–289,
https://doi.org/10.1016/S0022-1694(03)00225-7, 2003. a, b, c
Piazzi, G. and Delaigue, O.: airGRdatassim: Suite of Tools to Perform
Ensemble-Based Data Assimilation in GR Hydrological Models, R package version 0.1.3, https://doi.org/10.15454/WEYYVZ, https://CRAN.R-project.org/package=airGRdatassim (last access: 5 August 2023) 2021. a
Piazzi, G., Thirel, G., Perrin, C., and Delaigue, O.: Sequential Data
Assimilation for Streamflow Forecasting: Assessing the Sensitivity
to Uncertainties and Updated Variables of a Conceptual Hydrological
Model at Basin Scale, Water Resour. Res., 57, e2020WR02839, https://doi.org/10.1029/2020WR028390, 2021. a
Pushpalatha, R., Perrin, C., Le Moine, N., Mathevet, T., and Andréassian, V.:
A downward structural sensitivity analysis of hydrological models to improve
low-flow simulation, J. Hydrol, 411, 66–76, https://doi.org/10.1016/j.jhydrol.2011.09.034, 2011. a
Ramos, M. H., van Andel, S. J., and Pappenberger, F.: Do probabilistic
forecasts lead to better decisions?, Hydrol. Earth Syst. Sci., 17, 2219–2232, https://doi.org/10.5194/hess-17-2219-2013, 2013. a
R Core Team: R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria,
https://www.R-project.org/, last access: 20 July 2023. a
Riboust, P., Thirel, G., Moine, N. L., and Ribstein, P.: Revisiting a Simple Degree-Day Model for Integrating Satellite Data: Implementation of Swe-Sca Hystereses, J. Hydrol. Hydromech., 67, 70–81, https://doi.org/10.2478/johh-2018-0004, 2019. a, b
Richmond, B., Aspinwall, D., Vescuso, P., Peterson, S., and High Performance
Systems, Inc.: STELLA, High Performance, Lyme, NH, OCLC: 14639320,
https://www.iseesystems.com (last access: 1 August 2023), 1985. a
Roux, Q. and Brigode, P.: How long would we have to wait before (re)filling the Malpasset dam reservoir? An example of a teaching project done using R and airGR modeling packages, https://hal.science/hal-03020769 (last access: 20 July 2023), 2018. a
Sanchez, C. A., Ruddell, B. L., Schiesser, R., and Merwade, V.: Enhancing the
T-shaped learning profile when teaching hydrology using data, modeling, and
visualization activities, Hydrol. Earth Syst. Sci., 20, 1289–1299, https://doi.org/10.5194/hess-20-1289-2016, 2016. a
Santos, L., Thirel, G., and Perrin, C.: Technical note: Pitfalls in using
log-transformed flows within the KGE criterion, Hydrol. Earth Syst. Sci., 22, 4583–4591, https://doi.org/10.5194/hess-22-4583-2018, 2018. a
Seibert, J. and Vis, M. J. P.: Teaching hydrological modeling with a
user-friendly catchment-runoff-model software package, Hydrol. Earth Syst. Sci., 16, 3315–3325, https://doi.org/10.5194/hess-16-3315-2012, 2012. a
Seibert, J., Uhlenbrook, S., and Wagener, T.: Preface “Hydrology education in a changing world”, Hydrol. Earth Syst. Sci., 17, 1393–1399,
https://doi.org/10.5194/hess-17-1393-2013, 2013. a
Shmueli, G.: To Explain or to Predict?, Stat. Sci., 25, 289–310, https://doi.org/10.1214/10-STS330, 2010. a
Slater, L. J., Thirel, G., Harrigan, S., Delaigue, O., Hurley, A., Khouakhi, A., Prosdocimi, I., Vitolo, C., and Smith, K.: Using R in hydrology: a review of recent developments and future directions, Hydrol. Earth Syst. Sci., 23, 2939–2963, https://doi.org/10.5194/hess-23-2939-2019, 2019.
a, b, c
Tarboton, D., Idaszak, R., Horsburgh, J., Heard, J., Ames, D., Goodall, J.,
Band, L., Merwade, V., Couch, A., Arrigo, J., Hooper, R., Valentine, D., and
Maidment, D.: HydroShare: Advancing Collaboration through Hydrologic
Data and Model Sharing, in:7th International Congress on Environmental Modelling and Software - San Diego, California, USA, 15–19 June 2014,
https://scholarsarchive.byu.edu/iemssconference/2014/Stream-A/7 (last access: 20 July 2023), 2014. a
Toum, E., Masiokas, M. H., Villalba, R., Pitte, P., and Ruiz, L.: The
HBV.IANIGLA Hydrological Model, R J., 13, 378–395, 2021. a
Valéry, A., Andréassian, V., and Perrin, C.: `As simple as possible but not simpler': what is useful in a temperature-based snow-accounting routine? Part 2 – Sensitivity analysis of the Cemaneige snow accounting routine on 380 catchments, J. Hydrol., 517, 1176–1187, https://doi.org/10.1016/j.jhydrol.2014.04.058, 2014. a, b
Vanderkam, D., Allaire, J., Owen, J., Gromer, D., and Thieurmel, B.: dygraphs: Interface to 'Dygraphs' Interactive Time Series Charting Library,
R package version 1.1.1.6, https://CRAN.R-project.org/package=dygraphs
(last access: 20 July 2023), 2018. a
Vidal, J., Martin, E., Franchistéguy, L., Baillon, M., and Soubeyroux, J.: A
50-year high-resolution atmospheric reanalysis over France with the
Safran system, Int. J. Climatol., 30, 1627–1644,
https://doi.org/10.1002/joc.2003, 2010. a
Wi, S., Ray, P., Demaria, E. M. C., Steinschneider, S., and Brown, C.: A
user-friendly software package for VIC hydrologic model development, Environ. Model. Softw., 98, 35–53, https://doi.org/10.1016/j.envsoft.2017.09.006, 2017. a
Zimmerman, W. B. J.: Multiphysics Modeling with Finite Element Methods, in: vol. 18 of eries on Stability, Vibration and Control of
Systems, Series A, World Scientific, https://doi.org/10.1142/6141, 2006. a
Zipper, S., Albers, S., and Prosdocimi, I.: CRAN Task View: Hydrological Data and Modeling, https://cran.r-project.org/view=Hydrology (last access: 1 August 2023), 2022. a
Short summary
Teaching hydrological modeling is an important, but difficult, matter. It requires appropriate tools and teaching material. In this article, we present the airGRteaching package, which is an open-source software tool relying on widely used hydrological models. This tool proposes an interface and numerous hydrological modeling exercises representing a wide range of hydrological applications. We show how this tool can be applied to simple but real-life cases.
Teaching hydrological modeling is an important, but difficult, matter. It requires appropriate...