Articles | Volume 27, issue 17
https://doi.org/10.5194/hess-27-3293-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-27-3293-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
airGRteaching: an open-source tool for teaching hydrological modeling with R
Olivier Delaigue
CORRESPONDING AUTHOR
Université Paris-Saclay, INRAE, HYCAR, Antony, France
Pierre Brigode
Université Paris-Saclay, INRAE, HYCAR, Antony, France
Université Côte d'Azur, CNRS, OCA, IRD, Géoazur, Sophia Antipolis, France
Guillaume Thirel
Université Paris-Saclay, INRAE, HYCAR, Antony, France
Laurent Coron
EDF – PMC Hydrometeorological Center, Toulouse, France
Related authors
Olivier Delaigue, Guilherme Mendoza Guimarães, Pierre Brigode, Benoît Génot, Charles Perrin, Jean-Michel Soubeyroux, Bruno Janet, Nans Addor, and Vazken Andréassian
Earth Syst. Sci. Data, 17, 1461–1479, https://doi.org/10.5194/essd-17-1461-2025, https://doi.org/10.5194/essd-17-1461-2025, 2025
Short summary
Short summary
This dataset covers 654 rivers all flowing in France. The provided time series and catchment attributes will be of interest to those modelers wishing to analyze hydrological behavior and perform model assessments.
Guillaume Thirel, Léonard Santos, Olivier Delaigue, and Charles Perrin
Hydrol. Earth Syst. Sci., 28, 4837–4860, https://doi.org/10.5194/hess-28-4837-2024, https://doi.org/10.5194/hess-28-4837-2024, 2024
Short summary
Short summary
We discuss how mathematical transformations impact calibrated hydrological model simulations. We assess how 11 transformations behave over the complete range of streamflows. Extreme transformations lead to models that are specialized for extreme streamflows but show poor performance outside the range of targeted streamflows and are less robust. We show that no a priori assumption about transformations can be taken as warranted.
Cyril Thébault, Charles Perrin, Vazken Andréassian, Guillaume Thirel, Sébastien Legrand, and Olivier Delaigue
Hydrol. Earth Syst. Sci., 28, 1539–1566, https://doi.org/10.5194/hess-28-1539-2024, https://doi.org/10.5194/hess-28-1539-2024, 2024
Short summary
Short summary
Streamflow forecasting is useful for many applications, ranging from population safety (e.g. floods) to water resource management (e.g. agriculture or hydropower). To this end, hydrological models must be optimized. However, a model is inherently wrong. This study aims to analyse the contribution of a multi-model approach within a variable spatial framework to improve streamflow simulations. The underlying idea is to take advantage of the strength of each modelling framework tested.
Laurent Strohmenger, Eric Sauquet, Claire Bernard, Jérémie Bonneau, Flora Branger, Amélie Bresson, Pierre Brigode, Rémy Buzier, Olivier Delaigue, Alexandre Devers, Guillaume Evin, Maïté Fournier, Shu-Chen Hsu, Sandra Lanini, Alban de Lavenne, Thibault Lemaitre-Basset, Claire Magand, Guilherme Mendoza Guimarães, Max Mentha, Simon Munier, Charles Perrin, Tristan Podechard, Léo Rouchy, Malak Sadki, Myriam Soutif-Bellenger, François Tilmant, Yves Tramblay, Anne-Lise Véron, Jean-Philippe Vidal, and Guillaume Thirel
Hydrol. Earth Syst. Sci., 27, 3375–3391, https://doi.org/10.5194/hess-27-3375-2023, https://doi.org/10.5194/hess-27-3375-2023, 2023
Short summary
Short summary
We present the results of a large visual inspection campaign of 674 streamflow time series in France. The objective was to detect non-natural records resulting from instrument failure or anthropogenic influences, such as hydroelectric power generation or reservoir management. We conclude that the identification of flaws in flow time series is highly dependent on the objectives and skills of individual evaluators, and we raise the need for better practices for data cleaning.
Paul C. Astagneau, Guillaume Thirel, Olivier Delaigue, Joseph H. A. Guillaume, Juraj Parajka, Claudia C. Brauer, Alberto Viglione, Wouter Buytaert, and Keith J. Beven
Hydrol. Earth Syst. Sci., 25, 3937–3973, https://doi.org/10.5194/hess-25-3937-2021, https://doi.org/10.5194/hess-25-3937-2021, 2021
Short summary
Short summary
The R programming language has become an important tool for many applications in hydrology. In this study, we provide an analysis of some of the R tools providing hydrological models. In total, two aspects are uniformly investigated, namely the conceptualisation of the models and the practicality of their implementation for end-users. These comparisons aim at easing the choice of R tools for users and at improving their usability for hydrology modelling to support more transferable research.
Pierre Nicolle, François Besson, Olivier Delaigue, Pierre Etchevers, Didier François, Matthieu Le Lay, Charles Perrin, Fabienne Rousset, Dominique Thiéry, François Tilmant, Claire Magand, Timothée Leurent, and Élise Jacob
Proc. IAHS, 383, 381–389, https://doi.org/10.5194/piahs-383-381-2020, https://doi.org/10.5194/piahs-383-381-2020, 2020
Guillaume Evin, Benoit Hingray, Guillaume Thirel, Agnès Ducharne, Laurent Strohmenger, Lola Corre, Yves Tramblay, Jean-Philippe Vidal, Jérémie Bonneau, François Colleoni, Joël Gailhard, Florence Habets, Frédéric Hendrickx, Louis Héraut, Peng Huang, Matthieu Le Lay, Claire Magand, Paola Marson, Céline Monteil, Simon Munier, Alix Reverdy, Jean-Michel Soubeyroux, Yoann Robin, Jean-Pierre Vergnes, Mathieu Vrac, and Eric Sauquet
EGUsphere, https://doi.org/10.5194/egusphere-2025-2727, https://doi.org/10.5194/egusphere-2025-2727, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Short summary
Explore2 provides hydrological projections for 1,735 French catchments. Using QUALYPSO, this study assesses uncertainties, including internal variability. By the end of the century, low flows are projected to decline in southern France under high emissions, while other indicators remain uncertain. Emission scenarios and regional climate models are key uncertainty sources. Internal variability is often as large as climate-driven changes.
Eric Sauquet, Guillaume Evin, Sonia Siauve, Ryma Aissat, Patrick Arnaud, Maud Bérel, Jérémie Bonneau, Flora Branger, Yvan Caballero, François Colléoni, Agnès Ducharne, Joël Gailhard, Florence Habets, Frédéric Hendrickx, Louis Héraut, Benoît Hingray, Peng Huang, Tristan Jaouen, Alexis Jeantet, Sandra Lanini, Matthieu Le Lay, Claire Magand, Louise Mimeau, Céline Monteil, Simon Munier, Charles Perrin, Olivier Robelin, Fabienne Rousset, Jean-Michel Soubeyroux, Laurent Strohmenger, Guillaume Thirel, Flore Tocquer, Yves Tramblay, Jean-Pierre Vergnes, and Jean-Philippe Vidal
EGUsphere, https://doi.org/10.5194/egusphere-2025-1788, https://doi.org/10.5194/egusphere-2025-1788, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Short summary
The Explore2 project has provided an unprecedented set of hydrological projections in terms of the number of hydrological models used and the spatial and temporal resolution. The results have been made available through various media. Under the high-emission scenario, the hydrological models mostly agree on the decrease in seasonal flows in the south of France, confirming its hotspot status, and on the decrease in summer flows throughout France, with the exception of the northern part of France.
Yves Tramblay, Guillaume Thirel, Laurent Strohmenger, Guillaume Evin, Lola Corre, Louis Heraut, and Eric Sauquet
EGUsphere, https://doi.org/10.5194/egusphere-2025-1635, https://doi.org/10.5194/egusphere-2025-1635, 2025
Short summary
Short summary
How climate change impacts floods in France? Using simulations for 3000 rivers in climate projections, results show that flood trends vary depending on the region. In the north, floods may become more severe, but in many other areas, the trends are mixed. Floods from intense rainfall are becoming more frequent, while snowmelt floods are strongly decreasing. Overall, the study shows that understanding what causes floods is key to predicting how they are likely to change with the climate.
Olivier Delaigue, Guilherme Mendoza Guimarães, Pierre Brigode, Benoît Génot, Charles Perrin, Jean-Michel Soubeyroux, Bruno Janet, Nans Addor, and Vazken Andréassian
Earth Syst. Sci. Data, 17, 1461–1479, https://doi.org/10.5194/essd-17-1461-2025, https://doi.org/10.5194/essd-17-1461-2025, 2025
Short summary
Short summary
This dataset covers 654 rivers all flowing in France. The provided time series and catchment attributes will be of interest to those modelers wishing to analyze hydrological behavior and perform model assessments.
Léonard Santos, Vazken Andréassian, Torben O. Sonnenborg, Göran Lindström, Alban de Lavenne, Charles Perrin, Lila Collet, and Guillaume Thirel
Hydrol. Earth Syst. Sci., 29, 683–700, https://doi.org/10.5194/hess-29-683-2025, https://doi.org/10.5194/hess-29-683-2025, 2025
Short summary
Short summary
This work investigates how hydrological models are transferred to a period in which climate conditions are different to the ones of the period in which they were set up. The robustness assessment test built to detect dependencies between model error and climatic drivers was applied to three hydrological models in 352 catchments in Denmark, France and Sweden. Potential issues are seen in a significant number of catchments for the models, even though the catchments differ for each model.
Guillaume Thirel, Léonard Santos, Olivier Delaigue, and Charles Perrin
Hydrol. Earth Syst. Sci., 28, 4837–4860, https://doi.org/10.5194/hess-28-4837-2024, https://doi.org/10.5194/hess-28-4837-2024, 2024
Short summary
Short summary
We discuss how mathematical transformations impact calibrated hydrological model simulations. We assess how 11 transformations behave over the complete range of streamflows. Extreme transformations lead to models that are specialized for extreme streamflows but show poor performance outside the range of targeted streamflows and are less robust. We show that no a priori assumption about transformations can be taken as warranted.
Pierre Brigode and Ludovic Oudin
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-336, https://doi.org/10.5194/hess-2024-336, 2024
Preprint under review for HESS
Short summary
Short summary
We analyzed how well two global climate datasets can simulate river flows across Europe over the last 150 years. Our results show good performance overall, revealing important long-term changes in water availability and extreme events, like floods, in different regions. This research helps us better understand past and future water trends, providing insights to manage resources and address the challenges posed by climate change.
Carlo Mologni, Marie Revel, Eric Chaumillon, Emmanuel Malet, Thibault Coulombier, Pierre Sabatier, Pierre Brigode, Gwenael Hervé, Anne-Lise Develle, Laure Schenini, Medhi Messous, Gourguen Davtian, Alain Carré, Delphine Bosch, Natacha Volto, Clément Ménard, Lamya Khalidi, and Fabien Arnaud
Clim. Past, 20, 1837–1860, https://doi.org/10.5194/cp-20-1837-2024, https://doi.org/10.5194/cp-20-1837-2024, 2024
Short summary
Short summary
The reactivity of local to regional hydrosystems to global changes remains understated in East African climate models. By reconstructing a chronicle of seasonal floods and droughts from a lacustrine sedimentary core, this paper highlights the impact of El Niño anomalies in the Awash River valley (Ethiopia). Studying regional hydrosystem feedbacks to global atmospheric anomalies is essential for better comprehending and mitigating the effects of global warming in extreme environments.
Ralph Bathelemy, Pierre Brigode, Vazken Andréassian, Charles Perrin, Vincent Moron, Cédric Gaucherel, Emmanuel Tric, and Dominique Boisson
Earth Syst. Sci. Data, 16, 2073–2098, https://doi.org/10.5194/essd-16-2073-2024, https://doi.org/10.5194/essd-16-2073-2024, 2024
Short summary
Short summary
The aim of this work is to provide the first hydroclimatic database for Haiti, a Caribbean country particularly vulnerable to meteorological and hydrological hazards. The resulting database, named Simbi, provides hydroclimatic time series for around 150 stations and 24 catchment areas.
Cyril Thébault, Charles Perrin, Vazken Andréassian, Guillaume Thirel, Sébastien Legrand, and Olivier Delaigue
Hydrol. Earth Syst. Sci., 28, 1539–1566, https://doi.org/10.5194/hess-28-1539-2024, https://doi.org/10.5194/hess-28-1539-2024, 2024
Short summary
Short summary
Streamflow forecasting is useful for many applications, ranging from population safety (e.g. floods) to water resource management (e.g. agriculture or hydropower). To this end, hydrological models must be optimized. However, a model is inherently wrong. This study aims to analyse the contribution of a multi-model approach within a variable spatial framework to improve streamflow simulations. The underlying idea is to take advantage of the strength of each modelling framework tested.
Nils Poncet, Philippe Lucas-Picher, Yves Tramblay, Guillaume Thirel, Humberto Vergara, Jonathan Gourley, and Antoinette Alias
Nat. Hazards Earth Syst. Sci., 24, 1163–1183, https://doi.org/10.5194/nhess-24-1163-2024, https://doi.org/10.5194/nhess-24-1163-2024, 2024
Short summary
Short summary
High-resolution convection-permitting climate models (CPMs) are now available to better simulate rainstorm events leading to flash floods. In this study, two hydrological models are compared to simulate floods in a Mediterranean basin, showing a better ability of the CPM to reproduce flood peaks compared to coarser-resolution climate models. Future projections are also different, with a projected increase for the most severe floods and a potential decrease for the most frequent events.
Laurent Strohmenger, Eric Sauquet, Claire Bernard, Jérémie Bonneau, Flora Branger, Amélie Bresson, Pierre Brigode, Rémy Buzier, Olivier Delaigue, Alexandre Devers, Guillaume Evin, Maïté Fournier, Shu-Chen Hsu, Sandra Lanini, Alban de Lavenne, Thibault Lemaitre-Basset, Claire Magand, Guilherme Mendoza Guimarães, Max Mentha, Simon Munier, Charles Perrin, Tristan Podechard, Léo Rouchy, Malak Sadki, Myriam Soutif-Bellenger, François Tilmant, Yves Tramblay, Anne-Lise Véron, Jean-Philippe Vidal, and Guillaume Thirel
Hydrol. Earth Syst. Sci., 27, 3375–3391, https://doi.org/10.5194/hess-27-3375-2023, https://doi.org/10.5194/hess-27-3375-2023, 2023
Short summary
Short summary
We present the results of a large visual inspection campaign of 674 streamflow time series in France. The objective was to detect non-natural records resulting from instrument failure or anthropogenic influences, such as hydroelectric power generation or reservoir management. We conclude that the identification of flaws in flow time series is highly dependent on the objectives and skills of individual evaluators, and we raise the need for better practices for data cleaning.
Reyhaneh Hashemi, Pierre Brigode, Pierre-André Garambois, and Pierre Javelle
Hydrol. Earth Syst. Sci., 26, 5793–5816, https://doi.org/10.5194/hess-26-5793-2022, https://doi.org/10.5194/hess-26-5793-2022, 2022
Short summary
Short summary
Hydrologists have long dreamed of a tool that could adequately predict runoff in catchments. Data-driven long short-term memory (LSTM) models appear very promising to the hydrology community in this respect. Here, we have sought to benefit from traditional practices in hydrology to improve the effectiveness of LSTM models. We discovered that one LSTM parameter has a hydrologic interpretation and that there is a need to increase the data and to tune two parameters, thereby improving predictions.
Eva Sebok, Hans Jørgen Henriksen, Ernesto Pastén-Zapata, Peter Berg, Guillaume Thirel, Anthony Lemoine, Andrea Lira-Loarca, Christiana Photiadou, Rafael Pimentel, Paul Royer-Gaspard, Erik Kjellström, Jens Hesselbjerg Christensen, Jean Philippe Vidal, Philippe Lucas-Picher, Markus G. Donat, Giovanni Besio, María José Polo, Simon Stisen, Yvan Caballero, Ilias G. Pechlivanidis, Lars Troldborg, and Jens Christian Refsgaard
Hydrol. Earth Syst. Sci., 26, 5605–5625, https://doi.org/10.5194/hess-26-5605-2022, https://doi.org/10.5194/hess-26-5605-2022, 2022
Short summary
Short summary
Hydrological models projecting the impact of changing climate carry a lot of uncertainty. Thus, these models usually have a multitude of simulations using different future climate data. This study used the subjective opinion of experts to assess which climate and hydrological models are the most likely to correctly predict climate impacts, thereby easing the computational burden. The experts could select more likely hydrological models, while the climate models were deemed equally probable.
Małgorzata Chmiel, Maxime Godano, Marco Piantini, Pierre Brigode, Florent Gimbert, Maarten Bakker, Françoise Courboulex, Jean-Paul Ampuero, Diane Rivet, Anthony Sladen, David Ambrois, and Margot Chapuis
Nat. Hazards Earth Syst. Sci., 22, 1541–1558, https://doi.org/10.5194/nhess-22-1541-2022, https://doi.org/10.5194/nhess-22-1541-2022, 2022
Short summary
Short summary
On 2 October 2020, the French Maritime Alps were struck by an extreme rainfall event caused by Storm Alex. Here, we show that seismic data provide the timing and velocity of the propagation of flash-flood waves along the Vésubie River. We also detect 114 small local earthquakes triggered by the rainwater weight and/or its infiltration into the ground. This study paves the way for future works that can reveal further details of the impact of Storm Alex on the Earth’s surface and subsurface.
Thibault Lemaitre-Basset, Ludovic Oudin, Guillaume Thirel, and Lila Collet
Hydrol. Earth Syst. Sci., 26, 2147–2159, https://doi.org/10.5194/hess-26-2147-2022, https://doi.org/10.5194/hess-26-2147-2022, 2022
Short summary
Short summary
Increasing temperature will impact evaporation and water resource management. Hydrological models are fed with an estimation of the evaporative demand of the atmosphere, called potential evapotranspiration (PE). The objectives of this study were (1) to compute the future PE anomaly over France and (2) to determine the impact of the choice of the method to estimate PE. Our results show that all methods present similar future trends. No method really stands out from the others.
Paul Royer-Gaspard, Vazken Andréassian, and Guillaume Thirel
Hydrol. Earth Syst. Sci., 25, 5703–5716, https://doi.org/10.5194/hess-25-5703-2021, https://doi.org/10.5194/hess-25-5703-2021, 2021
Short summary
Short summary
Most evaluation studies based on the differential split-sample test (DSST) endorse the consensus that rainfall–runoff models lack climatic robustness. In this technical note, we propose a new performance metric to evaluate model robustness without applying the DSST and which can be used with a single hydrological model calibration. Our work makes it possible to evaluate the temporal transferability of any hydrological model, including uncalibrated models, at a very low computational cost.
Alexis Jeantet, Hocine Henine, Cédric Chaumont, Lila Collet, Guillaume Thirel, and Julien Tournebize
Hydrol. Earth Syst. Sci., 25, 5447–5471, https://doi.org/10.5194/hess-25-5447-2021, https://doi.org/10.5194/hess-25-5447-2021, 2021
Short summary
Short summary
The hydrological subsurface drainage model SIDRA-RU is assessed at the French national scale, using a unique database representing the large majority of the French drained areas. The model is evaluated following its capacity to simulate the drainage discharge variability and the annual drained water balance. Eventually, the temporal robustness of SIDRA-RU is assessed to demonstrate the utility of this model as a long-term management tool.
Pierre Nicolle, Vazken Andréassian, Paul Royer-Gaspard, Charles Perrin, Guillaume Thirel, Laurent Coron, and Léonard Santos
Hydrol. Earth Syst. Sci., 25, 5013–5027, https://doi.org/10.5194/hess-25-5013-2021, https://doi.org/10.5194/hess-25-5013-2021, 2021
Short summary
Short summary
In this note, a new method (RAT) is proposed to assess the robustness of hydrological models. The RAT method is particularly interesting because it does not require multiple calibrations (it is therefore applicable to uncalibrated models), and it can be used to determine whether a hydrological model may be safely used for climate change impact studies. Success at the robustness assessment test is a necessary (but not sufficient) condition of model robustness.
Paul C. Astagneau, Guillaume Thirel, Olivier Delaigue, Joseph H. A. Guillaume, Juraj Parajka, Claudia C. Brauer, Alberto Viglione, Wouter Buytaert, and Keith J. Beven
Hydrol. Earth Syst. Sci., 25, 3937–3973, https://doi.org/10.5194/hess-25-3937-2021, https://doi.org/10.5194/hess-25-3937-2021, 2021
Short summary
Short summary
The R programming language has become an important tool for many applications in hydrology. In this study, we provide an analysis of some of the R tools providing hydrological models. In total, two aspects are uniformly investigated, namely the conceptualisation of the models and the practicality of their implementation for end-users. These comparisons aim at easing the choice of R tools for users and at improving their usability for hydrology modelling to support more transferable research.
Laurène J. E. Bouaziz, Fabrizio Fenicia, Guillaume Thirel, Tanja de Boer-Euser, Joost Buitink, Claudia C. Brauer, Jan De Niel, Benjamin J. Dewals, Gilles Drogue, Benjamin Grelier, Lieke A. Melsen, Sotirios Moustakas, Jiri Nossent, Fernando Pereira, Eric Sprokkereef, Jasper Stam, Albrecht H. Weerts, Patrick Willems, Hubert H. G. Savenije, and Markus Hrachowitz
Hydrol. Earth Syst. Sci., 25, 1069–1095, https://doi.org/10.5194/hess-25-1069-2021, https://doi.org/10.5194/hess-25-1069-2021, 2021
Short summary
Short summary
We quantify the differences in internal states and fluxes of 12 process-based models with similar streamflow performance and assess their plausibility using remotely sensed estimates of evaporation, snow cover, soil moisture and total storage anomalies. The dissimilarities in internal process representation imply that these models cannot all simultaneously be close to reality. Therefore, we invite modelers to evaluate their models using multiple variables and to rely on multi-model studies.
Manon Cassagnole, Maria-Helena Ramos, Ioanna Zalachori, Guillaume Thirel, Rémy Garçon, Joël Gailhard, and Thomas Ouillon
Hydrol. Earth Syst. Sci., 25, 1033–1052, https://doi.org/10.5194/hess-25-1033-2021, https://doi.org/10.5194/hess-25-1033-2021, 2021
Pierre Nicolle, François Besson, Olivier Delaigue, Pierre Etchevers, Didier François, Matthieu Le Lay, Charles Perrin, Fabienne Rousset, Dominique Thiéry, François Tilmant, Claire Magand, Timothée Leurent, and Élise Jacob
Proc. IAHS, 383, 381–389, https://doi.org/10.5194/piahs-383-381-2020, https://doi.org/10.5194/piahs-383-381-2020, 2020
Cited articles
Addor, N., Newman, A. J., Mizukami, N., and Clark, M. P.: The CAMELS data set: catchment attributes and meteorology for large-sample studies, Hydrol. Earth Syst. Sci., 21, 5293–5313, https://doi.org/10.5194/hess-21-5293-2017, 2017. a
AghaKouchak, A., Nakhjiri, N., and Habib, E.: An educational model for ensemble streamflow simulation and uncertainty analysis, Hydrol. Earth Syst. Sci., 17, 445–452, https://doi.org/10.5194/hess-17-445-2013, 2013. a
Astagneau, P. C., Thirel, G., Delaigue, O., Guillaume, J. H. A., Parajka, J.,
Brauer, C. C., Viglione, A., Buytaert, W., and Beven, K. J.: Technical note:
Hydrology modelling R packages – a unified analysis of models and
practicalities from a user perspective, Hydrol. Earth Syst. Sci., 25, 3937–3973, https://doi.org/10.5194/hess-25-3937-2021, 2021. a, b
Baahmed, D., Oudin, L., and Errih, M.: Current runoff variations in the Macta
catchment (Algeria): is climate the sole factor? [Le facteur climatique
est-il la seule cause des modifications actuelles de l'écoulement dans le
bassin versant de la Macta (Algérie)?], Hydrolog. Sci. J., 60,
1331–1339, https://doi.org/10.1080/02626667.2014.975708, 2015. a
Belarbi, H., Touaibia, B., Boumechra, N., Amiar, S., and Baghli, N.: Drought
and modification of the rainfall-runoff relation: case of Wadi Sebdou basin
(western Algeria) [Sécheresse et modification de la relation pluie–débit: cas du bassin versant de l'Oued Sebdou (Algérie Occidentale)], Hydrolog. Sci. J., 62, 124–136, https://doi.org/10.1080/02626667.2015.1112394, 2017. a
Bezak, N., Jemec Auflič, M., and Mikoš, M.: Application of
hydrological modelling for temporal prediction of rainfall-induced shallow
landslides, Landslides, 16, 1273–1283, https://doi.org/10.1007/s10346-019-01169-9, 2019. a
Blöschl, G., Bierkens, M. F. P., Chambel, A., Cudennec, C., Destouni, G.,
Fiori, A., Kirchner, J. W., McDonnell, J. J., Savenije, H. H. G., Sivapalan,
M., Stumpp, C., Toth, E., Volpi, E., Carr, G., Lupton, C., Salinas, J.,
Széles, B., Viglione, A., Aksoy, H., et al.: Twenty-three unsolved problems in
hydrology (UPH) – a community perspective, Hydrolog. Sci. J., 64, 1141–1158, https://doi.org/10.1080/02626667.2019.1620507, 2019. a
Brigode, P., Lilas, D., Andréassian, V., Nicolle, P., Le Moine, N., Perrin,
C., Gremminger, S., and Augeard, B.: Une cartographie de l'écoulement des
rivières de Corse, La Houille Blanche, 1, 68–77, https://doi.org/10.1051/lhb/2019009, 2019. a
Brigode, P., Génot, B., Lobligeois, F., and Delaigue, O.: Summary sheets of
watershed-scale hydroclimatic observed data for France, Recherche Data Gouv [data set], https://doi.org/10.15454/UV01P1, 2020. a
Burt, T. and Butcher, D.: Stimulation from simulation? A teaching model of
hillslope hydrology for use on microcomputers, J. Geogr. High. Educ., 10, 23–39, https://doi.org/10.1080/03098268608708953, 1986. a
Carriba Demange, L., Chanoual, A., and Gazull, A.: Evaluation des logiciels,
modèles et packages disponibles pour l'enseignement de la modélisation
hydrologique, Projet d'ingénierie GE5, Polytech Nice Sophia, Université
Côte d'Azur, https://hal.science/hal-04191446 (last access: 20 July 2023), 2022. a
Cassagnole, M., Ramos, M.-H., Zalachori, I., Thirel, G., Garçon, R., Gailhard, J., and Ouillon, T.: Impact of the quality of hydrological forecasts on the management and revenue of hydroelectric reservoirs – a conceptual approach, Hydrology and Earth System Sciences, 25, 1033–1052,
https://doi.org/10.5194/hess-25-1033-2021, 2021. a
Ceola, S., Arheimer, B., Baratti, E., Blöschl, G., Capell, R., Castellarin, A., Freer, J., Han, D., Hrachowitz, M., Hundecha, Y., Hutton, C., Lindström, G., Montanari, A., Nijzink, R., Parajka, J., Toth, E., Viglione, A., and Wagener, T.: Virtual laboratories: new opportunities for collaborative water science, Hydrol. Earth Syst. Sci., 19, 2101–2117,
https://doi.org/10.5194/hess-19-2101-2015, 2015. a
Chang, W., Cheng, J., Allaire, J., Sievert, C., Schloerke, B., Xie, Y., Allen, J., McPherson, J., Dipert, A., and Borges, B.: shiny: Web Application
Framework for R, R package version 1.7.2, https://CRAN.R-project.org/package=shiny (last access: 20 July 2023), 2022. a
Chauveau, M., Chazot, S., Perrin, C., Bourgin, P.-Y., Sauquet, E.,
Vidal, J.-P., Rouchy, N., Martin, E., David, J., Norotte, T.,
Maugis, P., and De Lacaze, X.: Quels impacts des changements climatiques
sur les eaux de surface en France à l´horizon 2070?, La Houille
Blanche, 4, 5–15, https://doi.org/10.1051/lhb/2013027, 2013. a
Clark, M. P., Kavetski, D., and Fenicia, F.: Pursuing the method of multiple
working hypotheses for hydrological modeling, Water Resour. Res., 47,
W09301, https://doi.org/10.1029/2010WR009827, 2011. a
Coron, L., Delaigue, O., Thirel, G., Dorchies, D., Perrin, C., and Michel, C.: airGR: Suite of GR Hydrological Models for Precipitation-Runoff
Modelling, R package version 1.7.0, https://doi.org/10.15454/EX11NA, https://CRAN.R-project.org/package=airGR (last access: 5 August 2023), 2022. a, b, c
Delaigue, O., Thirel, G., Coron, L., and Brigode, P.: airGR and
airGRteaching: Two Open-Source Tools for Rainfall-Runoff Modeling and
Teaching Hydrology, in: HIC 2018, 13th International Conference on
Hydroinformatics, vol. 3 of EPiC Series in Engineering, edited by: La Loggia, G., Freni, G., Puleo, V., and De Marchis, M., EasyChair, 541–548, https://doi.org/10.29007/qsqj, 2018. a
Delaigue, O., Brigode, P., Andréassian, V., Perrin, C., Etchevers, P.,
Soubeyroux, J.-M., Janet, B., and Addor, N.: CAMELS-FR: A large sample
hydroclimatic dataset for France to explore hydrological diversity and
support model benchmarking, https://hal.inrae.fr/hal-03687235 (last access: 30 December 2022), 2022. a, b
Delaigue, O., Brigode, P., and Thirel, G.: airGRdatasets: Hydro-Meteorological Catchments Datasets for the “airGR” Packages, R package version 0.2.1, https://doi.org/10.57745/3SPJ4B, https://CRAN.R-project.org/package=airGRdatasets (last access: 5 August 2023), 2023a. a, b
Delaigue, O., Coron, L., Brigode, P., and Thirel, G.: airGRteaching: Teaching Hydrological Modelling with GR (Shiny Interface Included),
R package version 0.3.2, https://doi.org/10.15454/W0SSKT, https://CRAN.R-project.org/package=airGRteaching (last access: 5 August 2023), 2023b. a, b
de Lavenne, A., Andréassian, V., Thirel, G., Ramos, M.-H., and Perrin, C.: A
Regularization Approach to Improve the Sequential Calibration of a
Semidistributed Hydrological Model, Water Resour. Res., 55, 8821–8839, https://doi.org/10.1029/2018WR024266, 2019. a
Desclaux, T., Lemonnier, H., Genthon, P., Soulard, B., and Gendre, R. L.:
Suitability of a lumped rainfall–runoff model for flashy tropical
watersheds in New Caledonia, Hydrolog. Sci. J., 63, 1689–1706,
https://doi.org/10.1080/02626667.2018.1523613, 2018. a
Dorchies, D., Thirel, G., Jay-Allemand, M., Chauveau, M., Dehay, F., Bourgin,
P.-Y., Perrin, C., Jost, C., Rizzoli, J.-L., Demerliac, S., and Thépot, R.:
Climate change impacts on multi-objective reservoir management: case study on
the Seine River basin, France, Int. J. River Basin Manage., 12, 265–283, https://doi.org/10.1080/15715124.2013.865636, 2014. a
Dorchies, D., Delaigue, O., and Thirel, G.: airGRiwrm: “airGR” Integrated Water Resource Management, R package version 0.6.1, https://doi.org/10.15454/3CVD1I, https://CRAN.R-project.org/package=airGRiwrm (last access: 5 August 2023), 2022. a
Elshorbagy, A.: Learner-centered approach to teaching watershed hydrology using system dynamics, Int. J. Eng. Educ., 21, 1203–1213, 2005. a
Ficchì, A., Perrin, C., and Andréassian, V.: Hydrological modelling at
multiple sub-daily time steps: Model improvement via flux-matching, J. Hydrol., 575, 1308–1327, https://doi.org/10.1016/j.jhydrol.2019.05.084, 2019. a
Fiering, M. B.: Streamflow Synthesis, Harvard University Press, Cambridge, Mass., ISBN 9780674189270, 1967. a
Fuka, D., Walter, M., Archibald, J., Steenhuis, T., and Easton, Z.:
EcoHydRology: A Community Modeling Foundation for Eco-Hydrology, R package
version 0.4.12.1, CRAN, https://CRAN.R-project.org/package=EcoHydRology (last access: 20 July 2023), 2018. a
Furusho, C., Perrin, C., Viatgé, J., Lamblin, R., and Andréassian, V.:
Synergies entre acteurs opérationnels et scientifiques au service de
l'amélioration de la prévision des crues, La Houille Blanche, 4, 5–10, https://doi.org/10.1051/lhb/2016033, 2016. a
García Hernández, J., Paredes Arquiola, J., Foehn, A., Roquier, B., and Fluixá-Sanmartín, J.: RS MINERVE – Technical Manual
v2.25, Tech. rep., RS MINERVE Group, Sion, Switzerland, https://crealp.ch/wp-content/uploads/2021/09/rsminerve_technical_manual_v2.25.pdf (last access: 30 August 2023),
2020. a, b
GEBCO Bathymetric Compilation Group 2021: The GEBCO_2021 Grid – a
continuous terrain model of the global oceans and land, ERC EDS British Oceanographic Data Centre NOC [data set], https://doi.org/10.5285/c6612cbe-50b3-0cff-e053-6c86abc09f8f, 2021. a
Gupta, H. V., Kling, H., Yilmaz, K. K., and Martinez, G. F.: Decomposition of
the mean squared error and NSE performance criteria: Implications for
improving hydrological modelling, J. Hydrol., 377, 80–91,
https://doi.org/10.1016/j.jhydrol.2009.08.003, 2009. a
Hall, C. A., Saia, S. M., Popp, A. L., Dogulu, N., Schymanski, S. J., Drost,
N., van Emmerik, T., and Hut, R.: A hydrologist's guide to open science,
Hydrol. Earth Syst. Sci., 26, 647–664, https://doi.org/10.5194/hess-26-647-2022, 2022. a
Hutton, C., Wagener, T., Freer, J., Han, D., Duffy, C., and Arheimer, B.: Most computational hydrology is not reproducible, so is it really science?, Water Resour. Res., 52, 7548–7555, https://doi.org/10.1002/2016WR019285, 2016. a, b
Irving, K., Kuemmerlen, M., Kiesel, J., Kakouei, K., Domisch, S., and Jähnig,
S. C.: A high-resolution streamflow and hydrological metrics dataset for
ecological modeling using a regression model, Sci. Data, 5, 180224, https://doi.org/10.1038/sdata.2018.224, 2018. a
Kay, D., Kay, N., and McDonald, A.: Teaching Catchment Hydrology: Two
Dynamic Models for Classroom Use, Teach. Geogr., 7, 118–124, 1982. a
Kirkby, M. and Naden, P.: The use of simulation models in teaching geomorphology and hydrology, J. Geogr. High. Educ., 12, 31–49, https://doi.org/10.1080/03098268808709023, 1988. a
Klemeš, V.: Operational testing of hydrological simulation models, Hydrolog. Sci. J., 31, 13–24, https://doi.org/10.1080/02626668609491024, 1986. a, b
Kling, H., Fuchs, M., and Paulin, M.: Runoff conditions in the upper Danube basin under an ensemble of climate change scenarios, J. Hydrol., 424–425, 264–277, https://doi.org/10.1016/j.jhydrol.2012.01.011, 2012. a
Knoben, W. J. M. and Spieler, D.: Teaching hydrological modelling: illustrating model structure uncertainty with a ready-to-use computational exercise, Hydrol. Earth Syst. Sci., 26, 3299–3314,
https://doi.org/10.5194/hess-26-3299-2022, 2022. a
Kouassi, A., Koffi, Y., Kouame, K., Lasm, T., and Biemi, J.: Modeling of annual flows using a conceptual model and an artificial neural network model in the N'zi-Bandama watershed (Côte d'Ivoire), Agris On-line Papers in Economics and Informatics, 2, 2082–2094, 2012. a
Lehner, B. and Grill, G.: Global river hydrography and network routing:
baseline data and new approaches to study the world's large river systems,
Hydrol. Process., 27, 2171–2186, https://doi.org/10.1002/hyp.9740, 2013. a
Le Moine, N.: Le bassin versant de surface vu par le souterrain: une voie
d’amélioration des performances et du réalisme des modèles pluie-débit?, PhD thesis, Université Pierre et Marie Curie, Paris 6,
https://hal.science/tel-02591478
(last access: 30 December 2022), 2008. a
Marchane, A., Tramblay, Y., Hanich, L., Ruelland, D., and Jarlan, L.: Climate
change impacts on surface water resources in the Rheraya catchment (High
Atlas, Morocco), Hydrolog. Sci. J., 62, 979–995,
https://doi.org/10.1080/02626667.2017.1283042, 2017. a
Marshall, J. A., Castillo, A. J., and Cardenas, M. B.: The Effect of
Modeling and Visualization Resources on Student Understanding of
Physical Hydrology, J. Geosci. Educ., 63, 127–139, https://doi.org/10.5408/14-057.1, 2015. a
Martel, J.-L., Demeester, K., Brissette, F., Poulin, A., and Arsenault, R.:
HMETS – A simple and efficient hydrology model for teaching hydrological
modelling, flow forecasting and climate change impacts, Int. J. Eng. Educ., 33, 1307–1316, 2017. a
Mathevet, T.: Quels modèles pluie-débit globaux au pas de temps horaire?
Développements empiriques et comparaison de modèles sur un large échantillon de bassins versants, PhD thesis, ENGREF, Paris,
https://hal.science/tel-02587642v1
(last access: 30 December 2022), 2005. a
MATLAB: 9.7.0.1190202 (R2019b), The MathWorks Inc., Natick, Massachusetts,
https://www.mathworks.com (last access: 30 August 2023), 2018. a
McConnell, S.: Code complete, 2nd Edn., Microsoft Press, Redmond, Wash.
ISBN-13 9780735619678, 2004. a
Mendez, M. and Calvo-Valverde, L.: Development of the HBV-TEC Hydrological Model, Proced. Eng., 154, 1116–1123,
https://doi.org/10.1016/j.proeng.2016.07.521, 2016. a
Merwade, V. and Ruddell, B. L.: Moving university hydrology education forward
with community-based geoinformatics, data and modeling resources, Hydrol.
Earth Syst. Sci., 16, 2393–2404, https://doi.org/10.5194/hess-16-2393-2012, 2012. a
Michel, C.: How to use single-parameter conceptual model in hydrology?, La
Houille Blanche, 69, 39–44, https://doi.org/10.1051/lhb/1983004, 1983. a
Michel, C.: Hydrologie appliquée aux petits bassins ruraux, Cemagref, Antony,
https://belinrae.inrae.fr/index.php?lvl=notice_display&id=225112 (last access: 1 August 2023), 1991. a
Mouelhi, S., Michel, C., Perrin, C., and Andréassian, V.: Linking stream flow
to rainfall at the annual time step: The Manabe bucket model revisited,
J. Hydrol., 328, 283–296, https://doi.org/10.1016/j.jhydrol.2005.12.022, 2006a. a
Mouelhi, S., Michel, C., Perrin, C., and Andréassian, V.: Stepwise development of a two-parameter monthly water balance model, J. Hydrol., 318, 200–214, https://doi.org/10.1016/j.jhydrol.2005.06.014, 2006b. a
Nash, J. E. and Sutcliffe, J. V.: River flow forecasting through conceptual
models part I – A discussion of principles, J. Hydrol., 10, 282–290, https://doi.org/10.1016/0022-1694(70)90255-6, 1970. a
Neumann, J. L., Arnal, L., Emerton, R. E., Griffith, H., Hyslop, S.,
Theofanidi, S., and Cloke, H. L.: Can seasonal hydrological forecasts inform
local decisions and actions? A decision-making activity, Geosci. Commun., 1, 35–57, https://doi.org/10.5194/gc-1-35-2018, 2018. a
Nicolle, P., Pushpalatha, R., Perrin, C., François, D., Thiéry, D.,
Mathevet, T., Le Lay, M., Besson, F., Soubeyroux, J.-M., Viel, C., Regimbeau,
F., Andréassian, V., Maugis, P., Augeard, B., and Morice, E.: Benchmarking hydrological models for low-flow simulation and forecasting on French catchments, Hydrol. Earth Syst. Sci., 18, 2829–2857,
https://doi.org/10.5194/hess-18-2829-2014, 2014. a
Oudin, L., Andréassian, V., Mathevet, T., Perrin, C., and Michel, C.: Dynamic
averaging of rainfall-runoff model simulations from complementary model
parameterizations, Water Resour. Res., 42, W07410, https://doi.org/10.1029/2005WR004636, 2006. a
Paquet, E., Garavaglia, F., Garçon, R., and Gailhard, J.: The SCHADEX
method: A semi-continuous rainfall–runoff simulation for extreme flood
estimation, J. Hydrol., 495, 23–37, https://doi.org/10.1016/j.jhydrol.2013.04.045, 2013. a
Pérez-Sánchez, J., Senent-Aparicio, J., and Jimeno-Sáez, P.: The application of spreadsheets for teaching hydrological modeling and climate change impacts on streamflow, Comput. Appl. Eng. Educ., 30, 1510–1525, https://doi.org/10.1002/cae.22541, 2022. a
Perrin, C., Michel, C., and Andréassian, V.: Improvement of a parsimonious
model for streamflow simulation, J. Hydrol., 279, 275–289,
https://doi.org/10.1016/S0022-1694(03)00225-7, 2003. a, b, c
Piazzi, G. and Delaigue, O.: airGRdatassim: Suite of Tools to Perform
Ensemble-Based Data Assimilation in GR Hydrological Models, R package version 0.1.3, https://doi.org/10.15454/WEYYVZ, https://CRAN.R-project.org/package=airGRdatassim (last access: 5 August 2023) 2021. a
Piazzi, G., Thirel, G., Perrin, C., and Delaigue, O.: Sequential Data
Assimilation for Streamflow Forecasting: Assessing the Sensitivity
to Uncertainties and Updated Variables of a Conceptual Hydrological
Model at Basin Scale, Water Resour. Res., 57, e2020WR02839, https://doi.org/10.1029/2020WR028390, 2021. a
Pushpalatha, R., Perrin, C., Le Moine, N., Mathevet, T., and Andréassian, V.:
A downward structural sensitivity analysis of hydrological models to improve
low-flow simulation, J. Hydrol, 411, 66–76, https://doi.org/10.1016/j.jhydrol.2011.09.034, 2011. a
Ramos, M. H., van Andel, S. J., and Pappenberger, F.: Do probabilistic
forecasts lead to better decisions?, Hydrol. Earth Syst. Sci., 17, 2219–2232, https://doi.org/10.5194/hess-17-2219-2013, 2013. a
R Core Team: R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria,
https://www.R-project.org/, last access: 20 July 2023. a
Riboust, P., Thirel, G., Moine, N. L., and Ribstein, P.: Revisiting a Simple Degree-Day Model for Integrating Satellite Data: Implementation of Swe-Sca Hystereses, J. Hydrol. Hydromech., 67, 70–81, https://doi.org/10.2478/johh-2018-0004, 2019. a, b
Richmond, B., Aspinwall, D., Vescuso, P., Peterson, S., and High Performance
Systems, Inc.: STELLA, High Performance, Lyme, NH, OCLC: 14639320,
https://www.iseesystems.com (last access: 1 August 2023), 1985. a
Roux, Q. and Brigode, P.: How long would we have to wait before (re)filling the Malpasset dam reservoir? An example of a teaching project done using R and airGR modeling packages, https://hal.science/hal-03020769 (last access: 20 July 2023), 2018. a
Sanchez, C. A., Ruddell, B. L., Schiesser, R., and Merwade, V.: Enhancing the
T-shaped learning profile when teaching hydrology using data, modeling, and
visualization activities, Hydrol. Earth Syst. Sci., 20, 1289–1299, https://doi.org/10.5194/hess-20-1289-2016, 2016. a
Santos, L., Thirel, G., and Perrin, C.: Technical note: Pitfalls in using
log-transformed flows within the KGE criterion, Hydrol. Earth Syst. Sci., 22, 4583–4591, https://doi.org/10.5194/hess-22-4583-2018, 2018. a
Seibert, J. and Vis, M. J. P.: Teaching hydrological modeling with a
user-friendly catchment-runoff-model software package, Hydrol. Earth Syst. Sci., 16, 3315–3325, https://doi.org/10.5194/hess-16-3315-2012, 2012. a
Seibert, J., Uhlenbrook, S., and Wagener, T.: Preface “Hydrology education in a changing world”, Hydrol. Earth Syst. Sci., 17, 1393–1399,
https://doi.org/10.5194/hess-17-1393-2013, 2013. a
Shmueli, G.: To Explain or to Predict?, Stat. Sci., 25, 289–310, https://doi.org/10.1214/10-STS330, 2010. a
Slater, L. J., Thirel, G., Harrigan, S., Delaigue, O., Hurley, A., Khouakhi, A., Prosdocimi, I., Vitolo, C., and Smith, K.: Using R in hydrology: a review of recent developments and future directions, Hydrol. Earth Syst. Sci., 23, 2939–2963, https://doi.org/10.5194/hess-23-2939-2019, 2019.
a, b, c
Tarboton, D., Idaszak, R., Horsburgh, J., Heard, J., Ames, D., Goodall, J.,
Band, L., Merwade, V., Couch, A., Arrigo, J., Hooper, R., Valentine, D., and
Maidment, D.: HydroShare: Advancing Collaboration through Hydrologic
Data and Model Sharing, in:7th International Congress on Environmental Modelling and Software - San Diego, California, USA, 15–19 June 2014,
https://scholarsarchive.byu.edu/iemssconference/2014/Stream-A/7 (last access: 20 July 2023), 2014. a
Toum, E., Masiokas, M. H., Villalba, R., Pitte, P., and Ruiz, L.: The
HBV.IANIGLA Hydrological Model, R J., 13, 378–395, 2021. a
Valéry, A., Andréassian, V., and Perrin, C.: `As simple as possible but not simpler': what is useful in a temperature-based snow-accounting routine? Part 2 – Sensitivity analysis of the Cemaneige snow accounting routine on 380 catchments, J. Hydrol., 517, 1176–1187, https://doi.org/10.1016/j.jhydrol.2014.04.058, 2014. a, b
Vanderkam, D., Allaire, J., Owen, J., Gromer, D., and Thieurmel, B.: dygraphs: Interface to 'Dygraphs' Interactive Time Series Charting Library,
R package version 1.1.1.6, https://CRAN.R-project.org/package=dygraphs
(last access: 20 July 2023), 2018. a
Vidal, J., Martin, E., Franchistéguy, L., Baillon, M., and Soubeyroux, J.: A
50-year high-resolution atmospheric reanalysis over France with the
Safran system, Int. J. Climatol., 30, 1627–1644,
https://doi.org/10.1002/joc.2003, 2010. a
Wi, S., Ray, P., Demaria, E. M. C., Steinschneider, S., and Brown, C.: A
user-friendly software package for VIC hydrologic model development, Environ. Model. Softw., 98, 35–53, https://doi.org/10.1016/j.envsoft.2017.09.006, 2017. a
Zimmerman, W. B. J.: Multiphysics Modeling with Finite Element Methods, in: vol. 18 of eries on Stability, Vibration and Control of
Systems, Series A, World Scientific, https://doi.org/10.1142/6141, 2006. a
Zipper, S., Albers, S., and Prosdocimi, I.: CRAN Task View: Hydrological Data and Modeling, https://cran.r-project.org/view=Hydrology (last access: 1 August 2023), 2022. a
Short summary
Teaching hydrological modeling is an important, but difficult, matter. It requires appropriate tools and teaching material. In this article, we present the airGRteaching package, which is an open-source software tool relying on widely used hydrological models. This tool proposes an interface and numerous hydrological modeling exercises representing a wide range of hydrological applications. We show how this tool can be applied to simple but real-life cases.
Teaching hydrological modeling is an important, but difficult, matter. It requires appropriate...