Articles | Volume 27, issue 13
https://doi.org/10.5194/hess-27-2559-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-27-2559-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Validation of precipitation reanalysis products for rainfall-runoff modelling in Slovenia
Marcos Julien Alexopoulos
EMVIS S. A., Consultant Engineers-Environmental Services, Research
Information Technology & Services, 15343 Athens, Greece
Department of Water Resources and Environmental Engineering, School of Civil Engineering, National Technical University of Athens, 15780 Athens, Greece
Hannes Müller-Thomy
CORRESPONDING AUTHOR
Leichtweiß-Institute for Hydraulic Engineering and Water Resources, Division of Hydrology and River Basin Management, Technische Universität Braunschweig, Braunschweig, Germany
Patrick Nistahl
Leichtweiß-Institute for Hydraulic Engineering and Water Resources, Division of Hydrology and River Basin Management, Technische Universität Braunschweig, Braunschweig, Germany
Mojca Šraj
Faculty of Civil and Geodetic Engineering, University of Ljubljana,
Jamova cesta 2, Ljubljana, Slovenia
Nejc Bezak
Faculty of Civil and Geodetic Engineering, University of Ljubljana,
Jamova cesta 2, Ljubljana, Slovenia
Related authors
No articles found.
Francis Matthews, Pasquale Borrelli, Panos Panagos, and Nejc Bezak
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-402, https://doi.org/10.5194/hess-2024-402, 2025
Revised manuscript accepted for HESS
Short summary
Short summary
Rainfall erosivity is the main driver of water-induced soil erosion. A ground radar-based data was used to prepare a rainfall erosivity map of Europe. This study shows that the radar-based data products are a valuable solution for estimating large-scale rainfall erosivity, especially in regions with limited station-based precipitation data. A rainfall erosivity ensemble was derived to give first insights into a future avenue for updatable pan-European rainfall erosivity predictions.
Ralf Loritz, Alexander Dolich, Eduardo Acuña Espinoza, Pia Ebeling, Björn Guse, Jonas Götte, Sibylle K. Hassler, Corina Hauffe, Ingo Heidbüchel, Jens Kiesel, Mirko Mälicke, Hannes Müller-Thomy, Michael Stölzle, and Larisa Tarasova
Earth Syst. Sci. Data, 16, 5625–5642, https://doi.org/10.5194/essd-16-5625-2024, https://doi.org/10.5194/essd-16-5625-2024, 2024
Short summary
Short summary
The CAMELS-DE dataset features data from 1582 streamflow gauges across Germany, with records spanning from 1951 to 2020. This comprehensive dataset, which includes time series of up to 70 years (median 46 years), enables advanced research on water flow and environmental trends and supports the development of hydrological models.
Niklas Ebers, Kai Schröter, and Hannes Müller-Thomy
Nat. Hazards Earth Syst. Sci., 24, 2025–2043, https://doi.org/10.5194/nhess-24-2025-2024, https://doi.org/10.5194/nhess-24-2025-2024, 2024
Short summary
Short summary
Future changes in sub-daily rainfall extreme values are essential in various hydrological fields, but climate scenarios typically offer only daily resolution. One solution is rainfall generation. With a temperature-dependent rainfall generator climate scenario data were disaggregated to 5 min rainfall time series for 45 locations across Germany. The analysis of the future 5 min rainfall time series showed an increase in the rainfall extremes values for rainfall durations of 5 min and 1 h.
Nejc Bezak, Panos Panagos, Leonidas Liakos, and Matjaž Mikoš
Nat. Hazards Earth Syst. Sci., 23, 3885–3893, https://doi.org/10.5194/nhess-23-3885-2023, https://doi.org/10.5194/nhess-23-3885-2023, 2023
Short summary
Short summary
Extreme flooding occurred in Slovenia in August 2023. This brief communication examines the main causes, mechanisms and effects of this event. The flood disaster of August 2023 can be described as relatively extreme and was probably the most extreme flood event in Slovenia in recent decades. The economic damage was large and could amount to well over 5 % of Slovenia's annual gross domestic product; the event also claimed three lives.
Ross Pidoto, Nejc Bezak, Hannes Müller-Thomy, Bora Shehu, Ana Claudia Callau-Beyer, Katarina Zabret, and Uwe Haberlandt
Earth Surf. Dynam., 10, 851–863, https://doi.org/10.5194/esurf-10-851-2022, https://doi.org/10.5194/esurf-10-851-2022, 2022
Short summary
Short summary
Erosion is a threat for soils with rainfall as the driving force. The annual rainfall erosivity factor quantifies rainfall impact by analysing high-resolution rainfall time series (~ 5 min). Due to a lack of measuring stations, alternatives for its estimation are analysed in this study. The best results are obtained for regionalisation of the erosivity factor itself. However, the identified minimum of 60-year time series length suggests using rainfall generators as in this study as well.
Nejc Bezak, Pasquale Borrelli, and Panos Panagos
Hydrol. Earth Syst. Sci., 26, 1907–1924, https://doi.org/10.5194/hess-26-1907-2022, https://doi.org/10.5194/hess-26-1907-2022, 2022
Short summary
Short summary
Rainfall erosivity is one of the main factors in soil erosion. A satellite-based global map of rainfall erosivity was constructed using data with a 30 min time interval. It was shown that the satellite-based precipitation products are an interesting option for estimating rainfall erosivity, especially in regions with limited ground data. However, ground-based high-frequency precipitation measurements are (still) essential for accurate estimates of rainfall erosivity.
Cited articles
Amjad, M., Yilmaz, M. T., Yucel, I., and Yilmaz, K. K.: Performance evaluation of satellite- and model-based precipitation products over varying
climate and complex topography, J. Hydrol., 584, 124707,
https://doi.org/10.1016/J.JHYDROL.2020.124707, 2020.
Andersson, J. C. M., Arheimer, B., Traoré, F., Gustafsson, D., and Ali,
A.: Process refinements improve a hydrological model concept applied to the
Niger River basin, Hydrol. Process., 31, 4540–4554, https://doi.org/10.1002/HYP.11376, 2017.
Beck, H. E., Pan, M., Roy, T., Weedon, G. P., Pappenberger, F., Van Dijk, A.
I. J. M., Huffman, G. J., Adler, R. F., and Wood, E. F.: Daily evaluation of
26 precipitation datasets using Stage-IV gauge-radar data for the CONUS,
Hydrol. Earth Syst. Sci., 23, 207–224, https://doi.org/10.5194/hess-23-207-2019, 2019.
Bezak, N., Cerović, L., and Šraj, M.: Impact of the Mean Daily Air
Temperature Calculation on the Rainfall-Runoff Modelling, Water, 12, 3175, https://doi.org/10.3390/W12113175, 2020.
Bhattacharya, T., Khare, D., and Arora, M.: A case study for the assessment
of the suitability of gridded reanalysis weather data for hydrological
simulation in Beas river basin of North Western Himalaya, Appl. Water Sci.,
9, 1–15, https://doi.org/10.1007/s13201-019-0993-x, 2019.
Bollmeyer, C., Keller, J. D., Ohlwein, C., Wahl, S., Crewell, S., Friederichs, P., Hense, A., Keune, J., Kneifel, S., Pscheidt, I., Redl, S.,
and Steinke, S.: Towards a high-resolution regional reanalysis for the
European CORDEX domain, Q. J. Roy. Meteorol. Soc., 141, 1–15,
https://doi.org/10.1002/qj.2486, 2015.
Bonavita, M., Hólm, E., Isaksen, L., and Fisher, M.: The evolution of
the ECMWF hybrid data assimilation system, Q. J. Roy. Meteorol. Soc., 142,
287–303, https://doi.org/10.1002/qj.2652, 2016.
Castaneda-Gonzalez, M., Poulin, A., Romero-Lopez, R., Arsenault, R., Brissette, F., Chaumont, D., and Paquin, D.: Impacts of Regional Climate Model Spatial Resolution on Summer Flood Simulation, Epic Ser. Eng., 3, 372–380, https://doi.org/10.29007/HD8L, 2018.
Courtier, P., Thépaut, J.-N., and Hollingsworth, A.: A strategy for
operational implementation of 4D-Var, using an incremental approach, Q. J.
Roy. Meteorol. Soc., 120, 1367–1387, https://doi.org/10.1002/qj.49712051912, 1994.
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P.,
Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N.,
Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S.
B., Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P., Köhler, M., Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J.-J., Park, B.-K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J.-N., and Vitart, F.: The ERA-Interim reanalysis: configuration and performance of the data assimilation system, Q. J. Roy. Meteorol. Soc., 137, 553–597, https://doi.org/10.1002/QJ.828, 2011.
de Luis, M., Čufar, K., Saz, M. A., Longares, L. A., Ceglar, A., and
Kajfež-Bogataj, L.: Trends in seasonal precipitation and temperature in
Slovenia during 1951–2007, Reg. Environ. Change, 14, 1801–1810,
https://doi.org/10.1007/S10113-012-0365-7, 2012.
Dolšak, D., Bezak, N., and Šraj, M.: Temporal characteristics of
rainfall events under three climate types in Slovenia, J. Hydrol., 541,
1395–1405, https://doi.org/10.1016/j.jhydrol.2016.08.047, 2016.
DWA-A 531: Starkregen in Abhängigkeit von Wiederkehrzeit und Dauer,
Arbeitsblatt der DWA, Hennef, ISBN 978-3-942964-28-9, 2012.
DWD/HErZ: COSMO-REA6, Deutscher Wetterdienst (DWD) and Hans-Ertel Centre for Weather Research (HErZ, University of Bonn, Germany), http://reanalysis.meteo.uni-bonn.de/?COSMO-REA6 (last access: 15 January 2022), 2020.
Feng, K., Hong, Y., Tian, J., Luo, X., and Tang, G.: Evaluating applicability of multi-source precipitation datasets for runoff simulation of small watersheds: a case study in the United, Eur. J. Remote Sens., 54, 372–382, https://doi.org/10.1080/22797254.2020.1819169, 2021.
Fowler, K., Coxon, G., Freer, J., Peel, M., Wagener, T., Western, A., Woods,
R., and Zhang, L.: Simulating Runoff Under Changing Climatic Conditions: A
Framework for Model Improvement, Water Resour. Res., 54, 9812–9832,
https://doi.org/10.1029/2018WR023989, 2018.
Frantar, P. and Hrvatin, M.: Discharge Regimes, in: Water Balance of Slovenia 1971–2000, MOP-ARSO, Ljubljana, 44–50, ISBN 978-961-6024-38-9, 2008.
Frantar, P., Dolinar, M., and Kurnik, B.: Water balance of Slovenia 1971–2000, IOP Conf. Ser. Earth Environ. Sci., 4, 012020,
https://doi.org/10.1088/1755-1307/4/1/012020, 2008.
Gebremichael, G. G., Hossain, F., Erickson, T., Gao, H., and Hopson, T.:
Evaluation of the performance of precipitation products for hydrological
modeling over the Upper Blue Nile Basin, J. Hydrol., 550, 406–418, https://doi.org/10.1016/j.jhydrol.2017.05.021, 2017.
Gelaro, R., McCarty, W., Suárez, M. J., Todling, R., Molod, A., Takacs,
L., Randles, C. A., Darmenov, A., Bosilovich, M. G., Reichle, R., Wargan, K., Coy, L., Cullather, R., Draper, C., Akella, S., Buchard, V., Conaty, A., da Silva, A. M., Gu, W., Kim, G.-K., Koster, R., Lucchesi, R., Merkova, D.,
Nielsen, J. E., Partyka, G., Pawson, S., Putman, W., Rienecker, M., Schubert, S. D., Sienkiewicz, M., and Zhao, B.: The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2), J. Climate, 30, 5419–5454, https://doi.org/10.1175/JCLI-D-16-0758.1, 2017.
Ghodichore, N., Vinnarasi, R., Dhanya, C. T., and Roy, S. B.: Reliability of
reanalyses products in simulating precipitation and temperature characteristics over India, J. Earth Syst. Sci., 127, 2279–2299, https://doi.org/10.1007/s12040-018-1024-2, 2018.
Gu, L., Yin, J., Wang, S., Chen, J., Qin, H., Yan, X., He, S., and Zhao, T.: How well do the multi-satellite and atmospheric reanalysis products perform in hydrological modelling, J. Hydrol., 617, 128920, https://doi.org/10.1016/j.jhydrol.2022.128920, 2023.
Gupta, H. V., Kling, H., Yilmaz, K. K., and Martinez, G. F.: Decomposition
of the mean squared error and NSE performance criteria: Implications for
improving hydrological modelling, J. Hydrol., 377, 80–91,
https://doi.org/10.1016/J.JHYDROL.2009.08.003, 2009.
Hafizi, H. and Sorman, A. A.: Assessment of Satellite and Reanalysis Precipitation Products for Rainfall–Runoff Modelling in a Mountainous Basin, Environ. Sci. Proc., 8, 25, https://doi.org/10.3390/ecas2021-10345, 2021.
Hénin, R., Liberato, M. L. R., Ramos, A. M., and Gouveia, C. M.: Assessing the Use of Satellite-Based Estimates and High-Resolution Precipitation Datasets for the Study of Extreme Precipitation Events over the Iberian Peninsula, Wate, 10, 1688, https://doi.org/10.3390/W10111688, 2018.
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A.,
Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D.,
Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P.,
Biavati, G., Bidlot, J., Bonavita, M., Chiara, G. De, Dahlgren, P., Dee, D.,
Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer,
A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková,
M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., Rosnay, P.
de, Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.-N.: The ERA5
global reanalysis, Q. J. Roy. Meteorol. Soc., 146, 1999–2049,
https://doi.org/10.1002/QJ.3803, 2020.
Hsu, K., Gao, X., Sorooshian, S., and V Gupta, H.: Precipitation Estimation
from Remotely Sensed Information Using Artificial Neural Networks, J. Appl.
Meteorol. Clim., 36, 1176–1190, 1997.
Huffman, G. J., Adler, R. F., Bolvin, D. T., Gu, G., Nelkin, E. J., Bowman,
K. P., Hong, Y., Stocker, E. F., and Wolff, D. B.: The TRMM Multisatellite
Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor
precipitation estimates at fine scales, J. Hydrometeorol., 8, 38–55,
https://doi.org/10.1175/JHM560.1, 2007.
Islam, M. A. and Cartwright, N.: Evaluation of climate reanalysis and
space-borne precipitation products over Bangladesh, Hydrolog. Sci. J., 65,
1112–1128, https://doi.org/10.1080/02626667.2020.1730845, 2020.
Jiang, Q., Li, W., Fan, Z., He, X., Sun, W., Chen, S., Wen, J., Gao, J., and
Wang, J.: Evaluation of the ERA5 reanalysis precipitation dataset over Chinese Mainland, Elsevier B.V., 125660 pp., https://doi.org/10.1016/j.jhydrol.2020.125660, 2021.
Khan, W., Khan, A., Khan, A. U., Khan, M., Khan, F. A., and Badrashi, Y. I.:
Evaluation of hydrological modeling using climatic station and gridded precipitation dataset, Mausam, 71, 717–728, 2020.
Kling, H., Fuchs, M., and Paulin, M.: Runoff conditions in the upper Danube
basin under an ensemble of climate change scenarios, J. Hydrol., 424–425,
264–277, https://doi.org/10.1016/J.JHYDROL.2012.01.011, 2012.
Knoben, W. J. M., Freer, J. E., and Woods, R. A.: Technical note: Inherent benchmark or not? Comparing Nash–Sutcliffe and Kling–Gupta efficiency scores, Hydrol. Earth Syst. Sci., 23, 4323–4331, https://doi.org/10.5194/hess-23-4323-2019, 2019.
Kobayashi, S., Ota, Y., Harada, Y., Ebita, A., Moriya, M., Onoda, H., Onogi,
K., Kamahori, H., Kobayashi, C., Endo, H., Miyaoka, K., and Takahashi, K.:
The JRA-55 Reanalysis: General Specifications and Basic Characteristics, J.
Meteorol. Soc. Jpn. Ser II, 93, 5–48, https://doi.org/10.2151/JMSJ.2015-001, 2015.
Koohi, S., Azizian, A., and Brocca, L.: Calibration of a Distributed Hydrological Model (VIC-3L) based on Global Water Resources Reanalysis Datasets, Water Resour. Manage., 36, 1287–1306, 2022.
Koskinen, M., Tahvanainen, T., Sarkkola, S., Menberu, M. W., Laurén, A.,
Sallantaus, T., Marttila, H., Ronkanen, A. K., Parviainen, M., Tolvanen, A.,
Koivusalo, H., and Nieminen, M.: Restoration of nutrient-rich forestry-drained peatlands poses a risk for high exports of dissolved organic carbon, nitrogen, and phosphorus, Sci. Total Environ., 586, 858–869, https://doi.org/10.1016/J.SCITOTENV.2017.02.065, 2017.
Krklec, K., Domínguez-Villar, D., and Lojen, S.: The impact of moisture sources on the oxygen isotope composition of precipitation at a continental site in central Europe, J. Hydrol., 561, 810–821, 2018.
Lauri, H., Räsänen, T. A., and Kummu, M.: Using Reanalysis and
Remotely Sensed Temperature and Precipitation Data for Hydrological Modeling
in Monsoon Climate: Mekong River Case Study, J. Hydrometeorol., 15, 1532–1545, https://doi.org/10.1175/jhm-d-13-084.1, 2014.
Lavtar, K., Bezak, N., and Šraj, M.: Rainfall-runoff modeling of the
nested non-homogeneous sava river sub-catchments in Slovenia, Water, 12, 128, https://doi.org/10.3390/w12010128, 2020.
Mahto, S. S. and Mishra, V.: Does ERA-5 Outperform Other Reanalysis Products
for Hydrologic Applications in India?, J. Geophys. Res.-Atmos., 124, 9423–9441, https://doi.org/10.1029/2019JD031155, 2019.
Marques, C. A. F., Rocha, A., Corte-Real, J., Castanheira, J. M., Ferreira,
J., and Melo-Gonçalves, P.: Global atmospheric energetics from NCEP –
Reanalysis 2 and ECMWF-ERA40 reanalysis, Int. J. Climatol., 29, 159–174,
https://doi.org/10.1002/JOC.1704, 2009.
Meng, X., Wang, H., and Chen, J.: Profound Impacts of the China Meteorological Assimilation Driving Datasets for the SWAT Model (CMADS),
Water, 11, 832, https://doi.org/10.3390/W11040832, 2019.
Michel, C.: Hydrologie appliquée aux petits bassins ruraux, in: Hydrol.
Handb., CEMAGREF, https://infodoc.agroparistech.fr/index.php?lvl=notice_display&id=119636 (last access: 19 September 2022), 1991.
Mikoš, M., Auflič, M. J., Jež, J., and Bezak, N.: Rock Frost
Weathering and Rockfall Activity Assessment in Slovenia, in: 5th ReSyLAB, Faculty of Civil Engineering, University of Rijeka, 23–26 March 2023, Rijeka, Croatia, ISBN 978-953-6953-55-4, ISBN 978-953-6953-56-1 (eBook), https://5resylab.uniri.hr/wp-content/uploads/2022/04/2_Proceedings-of-the-5th-ReSyLAB.pdf (last access: 15 April 2022), 2022.
Müller-Thomy, H.: Improving the autocorrelation in disaggregated time
series for urban hydrological applications, in: 11th Workshop on Precipitation in Urban Areas (UrbanRain18), edited by: Peleg, N. and Molnar,
P., 5–7 December 2018, Pontresina, Switzerland, 75–76,
https://doi.org/10.3929/ethz-b-000347485, 2019.
Müller-Thomy, H.: Temporal rainfall disaggregation using a micro-canonical cascade model: possibilities to improve the autocorrelation,
Hydrol. Earth Syst. Sci., 24, 169–188, https://doi.org/10.5194/hess-24-169-2020, 2020.
Muñoz Sabater, J.: ERA5-Land hourly data from 1950 to present, Copernicus Climate Change Service (C3S) Climate Data Store (CDS) [data set], https://doi.org/10.24381/cds.e2161bac, 2019.
Muñoz-Sabater, J., Dutra, E., Agustí-Panareda, A., Albergel, C.,
Arduini, G., Balsamo, G., Boussetta, S., Choulga, M., Harrigan, S., Hersbach, H., Martens, B., Miralles, D. G., Piles, M., Rodríguez-Fernández, N. J., Zsoter, E., Buontempo, C., and Thépaut, J. N.: ERA5-Land: A state-of-the-art global reanalysis dataset for land applications, Earth Syst. Sci. Data, 13, 4349–4383, https://doi.org/10.5194/essd-13-4349-2021, 2021.
Nash, J. E. and Sutcliffe, J. V.: River flow forecasting through conceptual
models part I – A discussion of principles, J. Hydrol., 10, 282–290,
https://doi.org/10.1016/0022-1694(70)90255-6, 1970.
Nogueira, M.: Inter-comparison of ERA-5, ERA-interim and GPCP rainfall over
the last 40 years: Process-based analysis of systematic and random differences, J. Hydrol., 583, 124632, https://doi.org/10.1016/J.JHYDROL.2020.124632, 2020.
Onogi, K., Tsutsui, J., Koide, H., Sakamoto, M., Kobayashi, S., Hatsushika,
H., Matsumoto, T., Yamazaki, N., Kamahori, H., Takahashi, K., Kadokura, S.,
Wada, K., Kato, K., Oyama, R., Ose, T., Mannoji, N., and Taira, R.: The JRA-25 Reanalysis, J. Meteorol. Soc. Jpn. Ser. II, 85, 369–432,
https://doi.org/10.2151/JMSJ.85.369, 2007.
Oudin, L., Hervieu, F., Michel, C., Perrin, C., Andréassian, V., Anctil,
F., and Loumagne, C.: Which potential evapotranspiration input for a lumped
rainfall–runoff model?: Part 2 – Towards a simple and efficient potential
evapotranspiration model for rainfall–runoff modelling, J. Hydrol., 303,
290–306, https://doi.org/10.1016/J.JHYDROL.2004.08.026, 2005.
Ougahi, J. H. and Mahmood, S. A.: Evaluation of satellite-based and reanalysis precipitation datasets by hydrologic simulation in the Chenab river basin, J. Water Clim. Change, 13, 1563–1582, https://doi.org/10.2166/WCC.2022.410, 2022.
Perrin, C.: Vers une amélioration d'un modèle global pluie-débit
au travers d'une approche comparative, La Houille Blanche, 88, 84–91,
https://doi.org/10.1051/lhb/2002089, 2002.
Perrin, C., Michel, C., and Andréassian, V.: Improvement of a parsimonious model for streamflow simulation, J. Hydrol., 279, 275–289,
https://doi.org/10.1016/S0022-1694(03)00225-7, 2003.
Pohle, I., Niebisch, M., Müller, H., Schümberg, S., Zha, T., Maurer, T., and Hinz, C.: Coupling Poisson rectangular pulse and multiplicative
micro-canonical random cascade models to generate sub-daily precipitation time series, J. Hydrol., 562, 50–70, 2018.
Rienecker, M. M., Suarez, M. J., Gelaro, R., Todling, R., Bacmeister, J., Liu, E., Bosilovich, M. G., Schubert, S. D., Takacs, L., Kim, G.-K., Bloom, S., Chen, J., Collins, D., Conaty, A., Silva, A. da, Gu, W., Joiner, J., Koster, R. D., Lucchesi, R., Molod, A., Owens, T., Pawson, S., Pegion, P.,
Redder, C. R., Reichle, R., Robertson, F. R., Ruddick, A. G., Sienkiewicz, M., and Woollen, J.: MERRA: NASA's Modern-Era Retrospective Analysis for Research and Applications, J. Climate, 24, 3624–3648,
https://doi.org/10.1175/JCLI-D-11-00015.1, 2011.
Ruane, A. C., Goldberg, R., and Chryssanthacopoulos, J.: Climate forcing
datasets for agricultural modeling: Merged products for gap-filling and
historical climate series estimation, Agr. Forest Meteorol., 200, 233–248,
https://doi.org/10.1016/J.AGRFORMET.2014.09.016, 2015.
Saddique, N., Muzammil, M., Jahangir, I., Sarwar, A., Ahmed, E., Aslam, R. A., and Bernhofer, C.: Hydrological evaluation of 14 satellite-based, gauge-based and reanalysis precipitation products in a data-scarce mountainous catchment, Hydrolog. Sci. J., 67, 436–450,
https://doi.org/10.1080/02626667.2021.2022152, 2022.
Saha, S., Moorthi, S., Pan, H.-L., Wu, X., Wang, J., Nadiga, S., Tripp, P.,
Kistler, R., Woollen, J., Behringer, D., Liu, H., Stokes, D., Grumbine, R.,
Gayno, G., Wang, J., Hou, Y.-T., Chuang, H., Juang, H.-M. H., Sela, J.,
Iredell, M., Treadon, R., Kleist, D., Van Delst, P., Keyser, D., Derber, J.,
Ek, M., Meng, J., Wei, H., Yang, R., Lord, S., van den Dool, H., Kumar, A.,
Wang, W., Long, C., Chelliah, M., Xue, Y., Huang, B., Schemm, J.-K., Ebisuzaki, W., Lin, R., Xie, P., Chen, M., Zhou, S., Higgins, W., Zou,
C.-Z., Liu, Q., Chen, Y., Han, Y., Cucurull, L., Reynolds, R. W., Rutledge,
G., and Goldberg, M.: The NCEP Climate Forecast System Reanalysis, B. Am.
Meteorol. Soc., 91, 1015–1058, https://doi.org/10.1175/2010BAMS3001.1, 2010.
Saha, S., Moorthi, S., Wu, X., Wang, J., Nadiga, S., Tripp, P., Behringer,
D., Hou, Y.-T., Chuang, H., Iredell, M., Ek, M., Meng, J., Yang, R., Mendez,
M. P., van den Dool, H., Zhang, Q., Wang, W., Chen, M., and Becker, E.: The
NCEP Climate Forecast System Version 2, J. Climate, 27, 2185–2208,
https://doi.org/10.1175/JCLI-D-12-00823.1, 2014.
Sharifi, E., Eitzinger, J., and Dorigo, W.: Performance of the State-Of-The-Art Gridded Precipitation Products over Mountainous Terrain: A
Regional Study over Austria, Remote Sens, 11, 2018, https://doi.org/10.3390/RS11172018, 2019.
Siqueira, V. A., Paiva, R. C. D., Fleischmann, A. S., Fan, F. M., Ruhoff, A.
L., Pontes, P. R. M., Paris, A., Calmant, S., and Collischonn, W.: Toward
continental hydrologic-hydrodynamic modeling in South America, Hydrol. Earth
Syst. Sci., 22, 4815–4842, https://doi.org/10.5194/hess-22-4815-2018, 2018.
Sorooshian, S., Hsu, K. L., Gao, X., Gupta, H. V., Imam, B., and Braithwaite, D.: Evaluation of PERSIANN system satellite-based estimates of tropical rainfall, B. Am. Meteorol. Soc., 81, 2035–2046, https://doi.org/10.1175/1520-0477(2000)081<2035:EOPSSE>2.3.CO;2, 2000.
Stephan, K., Klink, S., and Schraff, C.: Assimilation of radar-derived rain
rates into the convective-scale model COSMO-DE at DWD, Q. J. Roy. Meteorol.
Soc., 134, 1315–1326, https://doi.org/10.1002/qj.269, 2008.
Valery, A.: Modélisation précipitations – débit sous influence
nivale Elaboration d'un module neige et évaluation sur 380 bassins
versants, 405 pp., 187–215, https://hal.inrae.fr/tel-02594605 (last access: 7 November 2022), 2010.
Valéry, A., Andréassian, V., and Perrin, C.: “As simple as possible
but not simpler”: What is useful in a temperature-based snow-accounting
routine? Part 1 – Comparison of six snow accounting routines on 380 catchments, J. Hydrol., 517, 1166–1175, https://doi.org/10.1016/j.jhydrol.2014.04.059, 2014a.
Valéry, A., Andréassian, V., and Perrin, C.: “As simple as possible
but not simpler”: What is useful in a temperature-based snow-accounting
routine? Part 2 – Sensitivity analysis of the Cemaneige snow accounting
routine on 380 catchments, J. Hydrol., 517, 1176–1187,
https://doi.org/10.1016/j.jhydrol.2014.04.058, 2014b.
Vousdoukas, M. I., Voukouvalas, E., Annunziato, A., Giardino, A., and Feyen,
L.: Projections of extreme storm surge levels along Europe, Clim. Dynam., 47,
3171–3190, https://doi.org/10.1007/S00382-016-3019-5, 2016.
Vreča, P., Bronić, I. K., Horvatinčić, N., and Barešić, J.: Isotopic characteristics of precipitation in Slovenia
and Croatia: Comparison of continental and maritime stations, J. Hydrol., 330, 457–469, https://doi.org/10.1016/J.JHYDROL.2006.04.005, 2006.
Wang, N., Liu, W., Sun, F., Yao, Z., Wang, H., and Liu, W.: Evaluating
satellite-based and reanalysis precipitation datasets with gauge-observed
data and hydrological modeling in the Xihe River Basin, China, Atmos. Res.,
234, 104746, https://doi.org/10.1016/j.atmosres.2019.104746, 2020.
Xu, X., Frey, S. K., Boluwade, A., Erler, A. R., Khader, O., Lapen, D. R., and Sudicky, E.: Evaluation of variability among different precipitation
products in the Northern Great Plains, J. Hydrol. Reg. Stud., 24,
100608, https://doi.org/10.1016/J.EJRH.2019.100608, 2019.
Yatagai, A., Arakawa, O., Kamiguchi, K., Kawamoto, H., Nodzu, M. I., and
Hamada, A.: A 44-year daily gridded precipitation dataset for Asia based on
a dense network of rain gauges, Sci. Online Lett. Atmos., 5, 137–140,
https://doi.org/10.2151/SOLA.2009-035, 2009.
Yatagai, A., Kamiguchi, K., Arakawa, O., Hamada, A., Yasutomi, N., and Kitoh, A.: APHRODITE: constructing a long-term daily gridded precipitation dataset for Asia based on a dense network of rain gauges, B. Am. Meteorol. Soc., 93, 1401–1415, https://doi.org/10.1175/BAMS-D-11-00122.1, 2012.
Short summary
For rainfall-runoff simulation of a certain area, hydrological models are used, which requires precipitation data and temperature data as input. Since these are often not available as observations, we have tested simulation results from atmospheric models. ERA5-Land and COSMO-REA6 were tested for Slovenian catchments. Both lead to good simulations results. Their usage enables the use of rainfall-runoff simulation in unobserved catchments as a requisite for, e.g., flood protection measures.
For rainfall-runoff simulation of a certain area, hydrological models are used, which requires...