Articles | Volume 27, issue 10
https://doi.org/10.5194/hess-27-2075-2023
https://doi.org/10.5194/hess-27-2075-2023
Research article
 | 
01 Jun 2023
Research article |  | 01 Jun 2023

Uncertainty estimation of regionalised depth–duration–frequency curves in Germany

Bora Shehu and Uwe Haberlandt

Related authors

Flood frequency analysis using mean daily flows vs. instantaneous peak flows
Anne Bartens, Bora Shehu, and Uwe Haberlandt
Hydrol. Earth Syst. Sci., 28, 1687–1709, https://doi.org/10.5194/hess-28-1687-2024,https://doi.org/10.5194/hess-28-1687-2024, 2024
Short summary
Regionalisation of rainfall depth–duration–frequency curves with different data types in Germany
Bora Shehu, Winfried Willems, Henrike Stockel, Luisa-Bianca Thiele, and Uwe Haberlandt
Hydrol. Earth Syst. Sci., 27, 1109–1132, https://doi.org/10.5194/hess-27-1109-2023,https://doi.org/10.5194/hess-27-1109-2023, 2023
Short summary
Comparison of rainfall generators with regionalisation for the estimation of rainfall erosivity at ungauged sites
Ross Pidoto, Nejc Bezak, Hannes Müller-Thomy, Bora Shehu, Ana Claudia Callau-Beyer, Katarina Zabret, and Uwe Haberlandt
Earth Surf. Dynam., 10, 851–863, https://doi.org/10.5194/esurf-10-851-2022,https://doi.org/10.5194/esurf-10-851-2022, 2022
Short summary
Improving radar-based rainfall nowcasting by a nearest-neighbour approach – Part 1: Storm characteristics
Bora Shehu and Uwe Haberlandt
Hydrol. Earth Syst. Sci., 26, 1631–1658, https://doi.org/10.5194/hess-26-1631-2022,https://doi.org/10.5194/hess-26-1631-2022, 2022
Short summary

Related subject area

Subject: Engineering Hydrology | Techniques and Approaches: Stochastic approaches
FarmCan: a physical, statistical, and machine learning model to forecast crop water deficit for farms
Sara Sadri, James S. Famiglietti, Ming Pan, Hylke E. Beck, Aaron Berg, and Eric F. Wood
Hydrol. Earth Syst. Sci., 26, 5373–5390, https://doi.org/10.5194/hess-26-5373-2022,https://doi.org/10.5194/hess-26-5373-2022, 2022
Short summary
Identifying sensitivities in flood frequency analyses using a stochastic hydrologic modeling system
Andrew J. Newman, Amanda G. Stone, Manabendra Saharia, Kathleen D. Holman, Nans Addor, and Martyn P. Clark
Hydrol. Earth Syst. Sci., 25, 5603–5621, https://doi.org/10.5194/hess-25-5603-2021,https://doi.org/10.5194/hess-25-5603-2021, 2021
Short summary
Characteristics and process controls of statistical flood moments in Europe – a data-based analysis
David Lun, Alberto Viglione, Miriam Bertola, Jürgen Komma, Juraj Parajka, Peter Valent, and Günter Blöschl
Hydrol. Earth Syst. Sci., 25, 5535–5560, https://doi.org/10.5194/hess-25-5535-2021,https://doi.org/10.5194/hess-25-5535-2021, 2021
Short summary
Objective functions for information-theoretical monitoring network design: what is “optimal”?
Hossein Foroozand and Steven V. Weijs
Hydrol. Earth Syst. Sci., 25, 831–850, https://doi.org/10.5194/hess-25-831-2021,https://doi.org/10.5194/hess-25-831-2021, 2021
Short summary
Stochastic simulation of streamflow and spatial extremes: a continuous, wavelet-based approach
Manuela I. Brunner and Eric Gilleland
Hydrol. Earth Syst. Sci., 24, 3967–3982, https://doi.org/10.5194/hess-24-3967-2020,https://doi.org/10.5194/hess-24-3967-2020, 2020
Short summary

Cited articles

Asquith, W. H.: Lmomco–L-moments, censored L-moments, trimmed L-moments, L-comoments, and many distributions: R package version 2.3.7, August May 3, 2021, https://cran.r-project.org/package=lmomco, last access: 30 August 2021. a, b
Bárdossy, A. and Hörning, S.: Random Mixing: An Approach to Inverse Modeling for Groundwater Flow and Transport Problems, Transport Porous Med., 114, 241–259, https://doi.org/10.1007/s11242-015-0608-4, 2016. a
Bastante, F. G., Ordóñez, C., Taboada, J., and Matías, J. M.: Comparison of indicator kriging, conditional indicator simulation and multiple-point statistics used to model slate deposits, Eng. Geol., 98, 50–59, https://doi.org/10.1016/j.enggeo.2008.01.006, 2008. a
Bourennane, H., King, D., Couturier, A., Nicoullaud, B., Mary, B., and Richard, G.: Uncertainty assessment of soil water content spatial patterns using geostatistical simulations: An emperical comparison of a simulation accounting for single attribute and a simulation accounting for secondary information, Ecol. Model., 205, 323–335, https://doi.org/10.1016/j.ecolmodel.2007.02.034, 2007. a
Burn, D. H.: A framework for regional estimation of intensity-duration-frequency (IDF) curves, Hydrol. Process., 28, 4209–4218, https://doi.org/10.1002/hyp.10231, 2014. a, b
Download
Short summary
Design rainfall volumes at different duration and frequencies are necessary for the planning of water-related systems and facilities. As the procedure for deriving these values is subjected to different sources of uncertainty, here we explore different methods to estimate how precise these values are for different duration, locations and frequencies in Germany. Combining local and spatial simulations, we estimate tolerance ranges from approx. 10–60% for design rainfall volumes in Germany.