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Abstract. The estimation of rainfall depth–duration–
frequency (DDF) curves is necessary for the design of sev-
eral water systems and protection works. These curves are
typically estimated from observed locations, but due to dif-
ferent sources of uncertainties, the risk may be underesti-
mated. Therefore, it becomes crucial to quantify the uncer-
tainty ranges of such curves. For this purpose, the propa-
gation of different uncertainty sources in the regionalisation
of the DDF curves for Germany is investigated. Annual ex-
tremes are extracted at each location for different durations
(from 5 min up to 7 d), and local extreme value analysis is
performed according to Koutsoyiannis et al. (1998). Follow-
ing this analysis, five parameters are obtained for each sta-
tion, from which four are interpolated using external drift
kriging, while one is kept constant over the whole region.
Finally, quantiles are derived for each location, duration and
given return period. Through a non-parametric bootstrap and
geostatistical spatial simulations, the uncertainty is estimated
in terms of precision (width of 95% confidence interval) and
accuracy (expected error) for three different components of
the regionalisation: (i) local estimation of parameters, (ii)
variogram estimation and (iii) spatial estimation of param-
eters. First, two methods were tested for their suitability
in generating multiple equiprobable spatial simulations: se-
quential Gaussian simulations (SGSs) and simulated anneal-
ing (SA) simulations. Between the two, SGS proved to be
more accurate and was chosen for the uncertainty estimation
from spatial simulations. Next, 100 realisations were run at
each component of the regionalisation procedure to investi-
gate their impact on the final regionalisation of parameters
and DDF curves, and later combined simulations were per-
formed to propagate the uncertainty from the main compo-

nents to the final DDF curves. It was found that spatial es-
timation is the major uncertainty component in the chosen
regionalisation procedure, followed by the local estimation
of rainfall extremes. In particular, the variogram uncertainty
had very little effect on the overall estimation of DDF curves.
We conclude that the best way to estimate the total uncer-
tainty consisted of a combination between local resampling
and spatial simulations, which resulted in more precise es-
timation at long observation locations and a decline in pre-
cision at unobserved locations according to the distance and
density of the observations in the vicinity. Through this com-
bination, the total uncertainty was simulated by 10 000 runs
in Germany, and it indicated that, depending on the location
and duration level, tolerance ranges from ± 10 %–30 % for
low-return periods (lower than 10 years) and from ± 15 %–
60 % for high-return periods (higher than 10 years) should be
expected, with the very short durations (5 min) being more
uncertain than long durations.

1 Introduction

Design precipitation volumes at different duration and fre-
quencies, also known as depth–duration–frequency (DDF)
curves, are necessary for the design of many water-related
systems and facilities. These curves are typically generated
by fitting a theoretical distribution to the rainfall extremes
(either annual extremes (AMS) or extremes above a thresh-
old (POT)) derived for specific duration intervals at observed
locations. Mostly, a generalised extreme value distribution
with three parameters (location, scale and shape) is preferred
for such applications (Koutsoyiannis, 2004a, b). An adjust-
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ment of the rainfall extremes over different duration inter-
vals is also considered either before fitting the theoretical
distribution (as in Koutsoyiannis et al., 1998) or after (as in
Fischer and Schumann, 2018). As the fitted theoretical dis-
tribution can be used to describe the DDF values only at
observed locations, regionalisation techniques are applied to
estimate these distributions at unobserved locations. The es-
timation of a regional distribution based on the index method
as proposed by Hosking and Wallis (1997) is one of the most
used methods in the literature (Burn, 2014; Forestieri et al.,
2018; Perica et al., 2019), followed by the kriging interpola-
tion of the parameters describing these theoretical distribu-
tions (Ceresetti et al., 2012; Shehu et al., 2023; Uboldi et al.,
2014).

Nevertheless, the procedure for the derivation of DDF
curves is subjected to different sources of uncertainty which
can affect the confidence level of the estimated design val-
ues. Such sources of uncertainties include measurement er-
rors, choice of distribution, short observation length, non-
representativeness of point measurements for the spatial de-
pendency of extremes and instationarity due to the climate
change (Marra et al., 2019a). So far, for DDF curves in Ger-
many there has been no objective quantification of the un-
certainty but only approximative guessed tolerance ranges
between 10 %–20 % (depending on the return period) that
should account for the measurement errors, uncertainties in
the extreme value estimation and regionalisation, and for the
climate variability (Junghänel et al., 2022). The tolerance
ranges are kept constant throughout duration levels and lo-
cations; nevertheless, such tolerance ranges are expected to
be higher for very short observations and high-return peri-
ods (Poschlod, 2021) especially for short durations and drier
climate (Marra et al., 2017). Therefore, there is a need to per-
form different simulations in order to quantify the tolerance
ranges (uncertainty) dependent on duration, location and re-
turn period. In this paper, the focus is on developing a frame-
work that accounts for uncertainties due to short observation
lengths and non-representativeness of point measurements
for spatial dependencies of extremes. Once a framework is
developed, it can be used to investigate the role of distribu-
tion choice as in Miniussi and Marra (2021) or the role of
future climate as in Poschlod (2021).

In the literature, parametric or non-parametric bootstrap-
ping resampling techniques are used to quantify tolerance
ranges of DDF curves. Overeem et al. (2008) were one of the
first to include the uncertainty of such curves by including
only the uncertainty of generalised extreme value (GEV) pa-
rameters estimated by a regional bootstrap procedure (sam-
ple variability). In their study, extremes from a homogeneous
region were pooled together to estimate regional probability
distribution, which resulted in a narrower uncertainty range
at observed locations. Overeem et al. (2009) proposed a boot-
strapping technique where the same years for all the observed
points were resampled together in order to maintain the spa-
tial dependency of the extremes. Uboldi et al. (2014) went

a step further and accounted spatial dependency when per-
forming the bootstrapping for each location: extremes from
near observations have a higher probability to be resampled
at a specific location than the ones from far away. Typically,
the bootstrapping procedures are implemented together with
the index-based regionalisation as proposed by Hosking and
Wallis (1997). Examples in the literature of such applications
are for instance in Burn (2014) and Requena et al. (2019)
in Canada where the uncertainty is computed from the con-
fidence intervals of a parametric bootstrap procedure or in
Chaudhuri and Sharma (2020), Notaro et al. (2015), Tfwala
et al. (2017) and Van de Vyver (2015) where a Bayesian
framework is employed to estimate the uncertainty of DDF
curves at different duration levels. Mostly, the uncertainty is
derived from bootstrap procedure where the 95 % or 90 %
confidence interval width is used as a measure of precision:
the lower the confidence interval width, the more precise the
estimates are. However, the spatial structure of uncertain-
ties is not well considered in the index-based regionalisa-
tion: first, no uncertainty of the index itself is considered and
propagated, and second, there is no measure of how uncer-
tain the locations further away from observations are. There-
fore, local resampling of extreme values (to account for sam-
ple variability) is not enough to describe the spatial structure
of uncertainty; instead, spatial simulations are needed. Alter-
natively, remote sensing data, i.e. satellites or weather radar
data, provide spatially continuous indirect measurements of
rainfall intensities or volumes (Marra et al., 2019a). How-
ever, their shortcomings are related to the short available
dataset, the inability of the remote sensing dataset to capture
accurately intensities, and the lack of a true observed dataset
to validate the methods applied. While remote sensing pro-
vides a valuable tool and more research is performed in tack-
ling better the uncertainties, at the moment, DDF curves from
station observations still represent the standard procedure,
and hence, a method to estimate the spatial structure of un-
certainties based on these observations is required.

In kriging, when regionalising from point values, the vari-
ance of the estimations can be used as a measure of the uncer-
tainty for unobserved locations. This estimation can either be
parametric (multi-Gaussian process) or non-parametric (in-
dicator kriging). It is widely accepted that the kriging sys-
tem can capture only the local uncertainty (providing infor-
mation at one location at a time conditioned to other obser-
vations in the vicinity) and not the spatial one (providing a
measure of uncertainty about the unsampled values taken al-
together in space rather than one by one), the estimated un-
certainty is dependable on the data configuration rather than
on the value itself, and lastly it fails to preserve the high spa-
tial variability of the target variable (Cinnirella et al., 2005;
Deutsch and Journel, 1998; Goovaerts, 1999a, 2001; Lin and
Chang, 2000). As stated in Liao et al. (2016), the spatial
uncertainty is more important (bigger) than the local uncer-
tainty. Therefore, solutions for the estimation of the spatial
uncertainties in geostatistics are stochastic simulations with
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equiprobable realisation of the target variable in space. The
main assumption of the stochastic simulations is the genera-
tion of equiprobable realisations in space while maintaining
certain global statistics of the target variable, for instance,
the histogram of the observed values and the semi-variogram
(herein referred to as variogram for simplicity), which de-
scribes the spatial dependency of the variable variance on
the distance between the observations. The stochastic sim-
ulations present a trade-off: on the one hand, they provide
more spatial variable fields than kriging (which is known
for its smoothing properties), and on the other hand, because
the goal is to maintain the global statistics, they may suffer
from larger errors at the local scale. Another advantage of
stochastic simulations is the ability to directly compute the
confidence intervals for the target variable, while in kriging
interpolation, the confidence intervals are computed from the
kriging variance assuming a normal distribution of the errors.

Examples of different stochastic simulations are the se-
quential Gaussian simulations (SGSs) (Cinnirella et al.,
2005; Emery, 2010; Ersoy and Yünsel, 2009; Gyasi-Agyei
and Pegram, 2014; Jang, 2015; Jang and Huang, 2017; Liao
et al., 2016; Poggio et al., 2010; Ribeiro and Pereira, 2018;
Szatmári and Pásztor, 2019; Varouchakis, 2021; Yang et al.,
2018), sequential indicator simulations (SISs) (Bastante
et al., 2008; Goovaerts, 1999b; Luca et al., 2007), simulated
annealing (SA) (Goovaerts, 2000; Hofmann et al., 2010; Lin
and Chang, 2000) and turning bands (TBs) (Namysłowska-
Wilczyńska, 2015). As seen, the most preferred stochastic
simulation in the literature is the SGS, due to its simplicity,
followed by the SIS and then by SA. Alternatively a stochas-
tic random mixing (as stated in Bárdossy and Hörning, 2016)
with spatial dependency modelled by copulas (Haese et al.,
2017) or a collocated co-kriging simulation (Bourennane
et al., 2007) can also be applied. However, geostatistical sim-
ulations remain the preferred choice in the literature for es-
timating spatial uncertainty, although the main application is
in the geosciences field, with very few applications in rain-
fall modelling, and to the authors’ knowledge, no application
in the regionalisation of extreme design rainfall. Therefore,
geostatistics becomes a useful tool to estimate and analyse
the estimation of DDF uncertainties at observed and unob-
served locations. The question of which stochastic simulation
is more appropriate for extreme design rainfall is naturally
raised.

As stated, because of its simplicity, the SGS is a very pop-
ular method in estimating spatial uncertainty in geostatistics.
In the SGS approach, each simulation is considered a realisa-
tion of the multivariate Gaussian process; hence, it is strictly
required for the target variable to be multivariate normal. As
discussed in Deutsch and Journel (1998), the testing of the
multivariate normality is a difficult task, which, depending
on the case at hand, can be very time and computationally
expensive and hence is not usually tested. Typically, studies
in literature include a transformation to normal distribution
in order to ensure that the target variable is at least univariate

normal. Another disadvantage of the normalisation needed
for the SGS application is that the upper and lower tail of
the transformed variable will cause an under/overestimation
of these values, and hence, an extrapolation to lower and up-
per bounds is required. Contrary to the SGS, the sequential
indicator simulations (SISs) do not need a prior assumption
on the multivariate normality of the target variable, and it
is more suitable for observed values that do not exhibit bi-
variate normal properties. The SIS is a conditional simula-
tion based on the indicator kriging theory, which provides
the probability that a location has to exceed a certain thresh-
old. The number of thresholds considered should be more
than 5 but lower than 15 as suggested by Luca et al. (2007).
For each of the selected thresholds, a variogram is fitted to
the portion of the data following under this threshold, and
it is used for the sequential simulation. A disadvantage of
the SIS is that, if many threshold classes are presented, order
relationship problems will arise on the obtained realisations
(Deutsch and Journel, 1998; Journel and Posa, 1990), which
are more emphasised if empty thresholds are included (Luca
et al., 2007). Another disadvantage of the SIS is that mainly
it has been used together with simple and ordinary kriging
theory (Deutsch and Journel, 1998; Journel and Posa, 1990),
and no application of the SIS in an external drift or universal
kriging has been reported (to authors knowledge) in the liter-
ature. Alternative to the SGS and SIS stochastic simulations,
the simulated annealing (SA) can be also implemented to al-
ternate and generate conditional images of a continuous tar-
get variable. The main idea in the implementation of the SA
is a numerical algorithm which continuously perturbs an im-
age until an objective criterion is reached. The optimisation
function can include only one criterion (typically the global
statistics) or multiple criteria depending on the application at
hand. For instance, Goovaerts (2000) included three criteria:
the local estimation of the variable, the observed histogram
and the variogram. The advantage of the SA is that no prior
assumption of the normality is required (as the observed his-
togram is reproduced) and that it allows a degree of flexibility
for realisations that does not exactly match the objective cri-
teria. On the other hand, the disadvantages of the SA include
the prior selection of the objective criteria carefully and, de-
pending on the application, the high computational time.

In our previous study, Shehu et al. (2023) investigated dif-
ferent methods and datasets in Germany for the local estima-
tion of the DDFs from station data and different regionalisa-
tion methods for the estimation of the DDFs at ungauged lo-
cations. The study revealed that kriging interpolation of long
observation records (more than 40 years) with a denser net-
work of short observations as an external drift delivered the
best cross-validation results for return periods higher than
10 years. Therefore, apart from the stochastic simulations
that account for the spatial uncertainty, more simulations are
needed to tackle other sources of uncertainties for the esti-
mation of DDF curves, such as sample variability, variogram
estimation and the combination with an external drift. For
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this purpose, the SGS and SA will be implemented and in-
vestigated for their suitability in generating spatial simula-
tions for DDF curves. Once a best method is chosen for this
purpose, different experiments are conducted based on non-
parametric bootstrapping techniques to investigate how each
of the uncertainty components is propagated into the final
DDF curves and if some components are more dominant than
others. Lastly, based on the most important components, a
framework for estimating the total uncertainty in regionalised
DDF curves (both at observed and unobserved locations) is
proposed.

The paper is organised as follows: first, in Sect. 2, the data
and methods for the estimation and regionalisation of DDF
curves are explained (Sect. 2.1 and 2.2), followed by the nec-
essary transformation to normality in Sect. 2.3 and testing
the bi-Gaussian conditions in Sect. 2.4. Then, an introduc-
tion to the main uncertainty sources considered here is given
in Sect. 3, and the main methods to tackle each of the un-
certainty sources are given in Sect. 3.1 to 3.3. An overview
of the experiments and how the uncertainty is measured in
terms of both accuracy and precision is described in Sect. 3.4.
The results are summarised in Sect. 4, where first a compar-
ison of the two spatial simulations techniques is investigated
(Sect. 4.1) and later uncertainty results of different experi-
ments for unobservation locations and for the whole German
region are shown respectively in Sect. 4.2 and 4.3. Lastly,
conclusions and the best framework to tackle uncertainties
for DDF curves in Germany are discussed in Sect. 5.

2 Study area and data processing

The investigation is carried out for Germany, as shown in
Fig. 1, together with the two rainfall measuring networks
from the German Weather Service (DWD) used for the un-
certainty analysis. They are grouped in LSs (long recording
stations) – tipping bucket sensors with 1 min temporal res-
olution, 0.1 mm accuracy, 2 % uncertainty and observation
lengths from 40–80 years, and in SSs (short recording sta-
tions) – digital sensors with 1 min temporal resolution, 0.01
accuracy, 0.02–0.04 mm uncertainty and observation length
from 10–35 years. An overview of the data from these two
networks is given in Shehu et al. (2023). For both networks,
the 1 min time steps are aggregated to 5 min, and then the
annual maximum series (AMS) is extracted for each station
for 12 durations levels from 5 min to 7 d. To avoid the un-
derestimation of the rainfall depth due to fixed accumulation
periods of 5, 10 and 15 min, correction factors of 1.14, 1.07
and 1.04 were used for the AMS of these durations accord-
ing to the regulations in DWA-531 (DWA, 2012). Next, as
described in Shehu et al. (2023), a jump elimination accord-
ing to sensor changes is performed as by DVWK (1999), in
order to ensure the stationarity of AMS at most stations for
different duration levels.

Figure 1. The distribution and location of the two rainfall networks
used for the uncertainty analysis of depth–duration–frequency
curves in Germany, where LS represents the long and SS the short
recording stations. DEM is short for digital elevation model (m)
from SRTM (NASA Shuttle Radar Topography Mission, 2013).

2.1 Extreme value analysis

The local rainfall extreme value statistics describing the DDF
curves for each station are derived in two steps. First, the in-
tensities of different duration levels are generalised accord-
ing to the mathematical framework proposed by Koutsoyian-
nis et al. (1998) also illustrated in Eq. (1):

i = id · (d + θ)
η, (1)

where i is the generalised intensity in millimetres per hour,
id is the AMS intensity in millimetres per hour at each du-
ration, d is the duration in hours, and θ and η are the Kout-
soyiannis parameters optimised for each station. The opti-
misation of the Koutsoyiannis parameters is done by min-
imising the Kruskal–Wallis statistic. Second, a generalised
extreme value (GEV) distribution is fitted to the generalised
intensities through the methods of the L moments (Asquith,
2021). The GEV is described by three parameters: location –
µ, scale – σ , and shape – γ (with notation according to Coles,
2001) as given in Eq. (2). For a robust estimation of extreme
values with return periods of 100 years, the shape parameter
was fixed at 0.1. The decision to fix the shape parameter at
0.1 was made based on the existing literature and previous
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analysis we conducted on the dataset in Germany. For more
information regarding the choice of generalisation or shape
parameter, the reader is directed to our previous study (Shehu
et al., 2023). Keeping the shape parameter as fixed can be a
reasonable choice to reduce the high uncertainty that is as-
sociated with the extreme value analysis at single stations.
As shown in Shehu et al. (2023), for a return period higher
than 20 years, the uncertainty from a free-shape parameter
is much higher than the uncertainty from keeping the shape
parameter fixed at 0.1, which will cause the interpolation of
extreme rainfall to be less certain.

F(x;µ,σ,γ )= exp{−[1+ γ · (x+µ)/σ ]−1/γ
},γ = 0. (2)

Finally, the local statistics of each station are described by
five parameters: three from the GEV distribution (µ, σ , γ )
and two from the intensity generalisation over all durations
(θ , η). Since the shape parameter is fixed at 0.1, only four
parameters are regionalised independently from one another
using kriging.

2.2 Direct regionalisation (interpolation)

Here a spherical variogram is employed to describe the incre-
ment of the variance between any two points of observation
situated at a specific distance h, as per Eq. (3). The param-
eters of the variogram are estimated by the methods of least
squares and human supervision.

γ (h)= c0+ c ·

(
3h
2a
−
h3

2a3

)
for h≤ a and

γ (h)= c for h= a, (3)

where c0 is the nugget, c the sill and a the range of the var-
iogram. Once the theoretical variogram is known, it can be
used as a basis for regionalising the statistical properties on a
5×5 km grid. The regionalisation (or the interpolation) with
kriging is done in two steps, by considering independently
the short (SS) and long (LS) recording stations. First, each
of the SS parameters is interpolated with ordinary kriging
(herein referred to as OK[SS]) based on the theoretical var-
iogram of the SS dataset. Second, each parameter derived
from the LS dataset is interpolated with external drift kriging
KED[LS|SS] based on the theoretical variogram of the LS
dataset, whereas the OK[SS] serves as an external drift. The
reason for this two-step procedure is that the short recording
stations have an inadequate length for estimating extremes
of a high-return period but still provide useful information
about the spatial trends. For more information regarding the
choice of this spatial regionalisation, the reader is directed to
our previous study (Shehu et al., 2023).

2.3 Data transformation

A requirement for the spatial simulations (sequential Gaus-
sian simulation – SGS) is that the target variable to be in-
terpolated (in this case each of the four parameters) should

follow a normal distribution. Following the quantile–quantile
plot, with sample vs. normal quantiles, illustrated in Fig. 2,
it is clear that the datasets (both LS and SS) are not nor-
mally distributed, as the extremes (both lower and upper tail)
deviate clearly from the normal distribution (the continu-
ous dashed lines). Therefore, in case of a sequential Gaus-
sian simulation (SGS) for assessing the spatial uncertainty, a
transformation to normality is required. Deutsch and Journel
(1998) propose a normal score transformation based on the
empirical probabilities (Weibull plot position) as indicated in
Eq. (4).

F(x)′ = 1−
k

(n+ 1)
and xnorm =G

−1(F (x)′), (4)

where F(x)′ is the empirical cumulative distributed function
calculated based on the descending rank k of input data x,
n is the number of available x observations, G−1 is the in-
verse function of the Gaussian distribution, and xnorm is the
normalised input data. Respectively, a back-transformation
algorithm is also available to transform back the dataset
from the normal to its original space. However, the back-
transformation may be problematic, as the tail behaviour will
be underestimated by the normal score and back transforma-
tion. An alternative approach to the normal score transfor-
mation is the fitting of the theoretical cumulative distribution
functions (CDFs) to the original dataset and performing the
transformation from the chosen theoretical CDF to the nor-
mal one. Here, the problem of the choice for tail extrapola-
tion is substituted with the choice of fitting a theoretical CDF.
Through the method of L moments, different theoretical dis-
tributions were fitted to the available datasets, for instance,
the Wakeby distribution (WAK), the Weibull (WEI), the gen-
eralised normal (GNO) and the generalised extreme value
(GEV) probability distribution. For more information about
the CDF and the fitting of the parameters, the reader is di-
rected to Asquith (2021) and Hosking and Wallis (1997). Af-
terwards the Cramer–von Mises goodness of fit test (CSöRgő
and Faraway, 1996) is performed to test whether or not the
observed data belong to the chosen theoretical CDF. The p-
value statistics are used to compare the empirical CDF with
the theoretical one for each dataset in order to select the most
adequate theoretical CDF. The results of the p-value statis-
tics from the Cramer–von Mises test are shown in Table 1,
and they reveal that the parameters of the long recording
stations (LS) are better described by the WAK distribution,
while the parameters of the short recording stations are better
described by the GNO distribution. All the parameters, ex-
cept the θ[SS], exhibit a very large p value (higher than 0.90).
Even though the p value for θ[SS] is 0.24, the null hypoth-
esis that the theoretical distribution describes in the current
dataset can still not be rejected. To keep a consistent choice
between the short and the long dataset, the GNO was chosen
as the best theoretical distribution for the SS and the second
best for LS (shown in bold letters in Table 1).
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Figure 2. Sample quantiles of the four obtained parameters for both long (LS) and short (SS) datasets in comparison with the theoretical
quantiles from the normal distribution. The dashed lines represent the normal quantile lines for a perfect fitting between the sample and the
normal quantiles.

Table 1. p values of Cramer–von Mises test to test if the different
theoretical distribution fits well to the data. The higher the value, the
higher the certainty in accepting the null hypothesis that the chosen
CDF correctly describes the data. The p values of the selected CDF
for the case study are shown in bold letters.

Long stations (LSs) Short stations (SSs)

WAK WEI GNO GEV WAK WEI GNO GEV

µ 0.99 0.8 0.94 0.91 0.77 0.68 0.99 0.99
σ 0.96 0.8 0.9 0.85 0.85 0.39 0.980 0.95
θ 0.91 0.67 0.78 0.76 0.24 0.15 0.24 0.2
η 0.94 0.36 0.36 0.25 0.52 0.83 0.91 0.27

A comparison of these two transformations, normal score
according to Deutsch and Journel (1998) and the quantile–
quantile transformation based on fitted theoretical distribu-
tion, was performed a priori in cross-validation mode for the
SGS runs in ordinary kriging and external drift kriging. The
results of such a comparison favoured the quantile–quantile
transformation based on fitted theoretical distributions.

2.4 Data bi-normality

An additional precondition to run the SGS and assess the
spatial uncertainty is the multivariate normality. However as
stated in Deutsch and Journel (1998), the data for checking
multivariate normality (the trivariate, quadrivariate and so
on) are hardly enough to allow the interference of the corre-
sponding experimental multivariate frequencies. Thus, they
suggest that if the bivariate normality conditions are not vio-
lated, one can continue with the SGS experiments. Here the
bivariate normality is tested by comparing empirical indica-
tor variograms of the normalised parameter sets with the re-
spective ones from a bi-Gaussian random function that shares
the same variogram with the normalised parameter sets. First,
a theoretical variogram is fitted to the normalised observed
variograms from dataset LS and SS (separately). Next the an-
alytical relation given at Deutsch and Journel (1998) linking
the covariance CY (h) with any normal bivariate CDF value

(with mean 0 and standard deviation 1) is illustrated as

Prob{Y (u)≤ yp Y (u+h)≤ yp} =

p2
+

1
2π
·

arcsinCγ (h)∫
0

exp

(
−

yp
2

1+ sinθ

)
dθ, (5)

where yp in the normal p quantile of the normal bivariate
CDF, and the CY (h) is the correlogram obtained from the
normalised LS and SS dataset. For a given threshold yp, the
bivariate probability will be

Prob{Y (u)≤ yp,Y (u+h)≤ yp} =

E{I (u;p) · I (u+h;p)} = p− γI (h;p), (6)

with I (u;p) equal to 1 for Y (u)≤ yp or equal to 0 if oth-
erwise, and γI (h;p) is the indicator variogram for the p
quantile (corresponding to threshold yp) of the normal bivari-
ate CDF. Three thresholds were chosen for the computation
of the indicator variograms that correspond to 0.25, 0.5 and
0.75 percentiles. Based on Eq. (6), the generation of the bi-
Gaussian functions was performed of each set of data inde-
pendently (short and long) with the GSLIB package. Lastly,
the sample indicator variograms for the three thresholds are
computed from the observed normalised datasets. The check
consists of comparing the empirical indicator variogram and
the theoretical indication variogram from the normal bivari-
ate CDF.

The obtained indicator variograms are shown in Fig. 3 for
the empirical dataset (in points) and for the bi-Gaussian func-
tions (in solid lines) of the two datasets (short and long).
From Fig. 3 it is visible that the bi-Gaussian indicator var-
iograms well described the empirical datasets for most of
the cases. For instance, the θ and η parameters show a good
agreement for the two types of indicator variograms. For
the µ and σ parameters, the agreement is better for the
high thresholds than for the low one (0.25 percentile), where
mainly the LS dataset differs more with the bi-Gaussian indi-
cator variogram than the SS dataset. To a certain degree this
is expected, as the LS dataset is much smaller than the SS
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Figure 3. Experimental indicator variograms for the two datasets (SS in light blue, LS in dark blue) for the four parameters and their
respective fits of the bi-Gaussian model-derived theoretical curves (shown respectively in solid lines).

dataset. Overall, the bi-Gaussian indicator variograms match
well with the empirical ones, and the bivariate normality con-
ditions are not violated. Hence, the SGS can be used for spa-
tial simulation of the parameter sets.

3 Methods for uncertainty estimation

The regionalisation of the four parameters describing the
rainfall extreme value statistics is performed using kriging
as the best regionalisation method from Shehu et al. (2023).
The regionalisation is done primarily with the LS data and
using the interpolation of SS parameters as an external drift.
In this procedure, there are several sources of uncertainty that
one should consider for the overall uncertainty, as illustrated
in Fig. 4, which are respectively:

– Sample uncertainty in estimating local extreme value
statistics (four parameters is herein referred to as the
local uncertainty.

– The uncertainty in the external drift originates from the
uncertainty in the estimation of the variogram based on

the SS stations, from the uncertainty in the regionalisa-
tion of the SS statistics. Here, only the latter is consid-
ered, as previous work revealed that this is more relevant
than the former.

– The uncertainty in the regionalisation of the LS statis-
tics originates from the estimated variogram from LS
stations and the uncertainty of the spatial regionalisa-
tion (herein referred to as spatial uncertainty).

Overall, the methodologies to tackle these uncertainties can
be categorised in three main groups: the local estimation,
the variogram estimation and the spatial simulation (as il-
lustrated in the blocks in Fig. 4). The methodology for un-
certainty estimation in each block is discussed accordingly
in the following sections.

3.1 Local non-parametric bootstrap

A non-parametric bootstrap approach is implemented in or-
der to quantify the sample uncertainty of the local rainfall
extreme value statistics. This means that for each station, the
AMS is resampled with replacement for the same length of
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Figure 4. The main uncertainty sources in the regionalisation of the
rainfall statistics for Germany for the selected methodology. Arrows
indicate the calculation flow, and the blocks on the right represent
the three main methodologies to tackle the uncertainty at each com-
ponent.

observations, and the local statistics are then derived based
on the methodology explained in Sect. 2.1. This resampling
procedure is run 100 times for each location (either LS or
SS), and for each time, the parameters describing the local
extreme value statistics are calculated. The resampled pa-
rameter sets are then used as input for the rest of the region-
alisation approach to first investigate the effect of the local
uncertainty on the regionalisation output (results shown in
Sect. 4.2) or their impact on the overall uncertainty of region-
alised DDF curves in Germany (results shown in Sect. 4.3).

3.2 Variogram simulations

A non-parametric bootstrap is implemented in the variogram
uncertainty, with the precondition that the spatial dependency
between stations is maintained. The whole station dataset
(both short and long recordings) is grouped together, from
which 133 stations are sampled randomly 100 times. Only
133 values from all the stations were sampled here, to address
the uncertainty in computing the variogram from a small
dataset that corresponds with the number of the long record-
ing stations that were used to compute the variogram for the
KED interpolation. For each of the sample, first the empirical
variogram is calculated and then a theoretical spherical one
is fitted automatically. Such sampling of variograms is indi-
rectly accounting the low station density and the short obser-
vation length for the final interpolation of KED[LS|SS]. The
obtained variogram simulations are shown in Fig. 5. For each
of the estimated variogram, the kriging interpolation is per-
formed and in the end its effect on the final regionalisation
output is discussed in Sect. 4.2.

3.3 Spatial simulations

The uncertainty in the spatial regionalisation is assessed by
generating 100 equiprobable realisations of the normalised
parameter sets, where each realisation is honouring the

global statistics of the parameter (the spatial mean value and
the variogram). Here a conditional simulation is performed,
where these 100 realisations share not only global statistics
but also a set of observed values at certain locations. In other
words, for the known locations where there are observations,
either the nodes are not resampled (as in the case of simu-
lated annealing) or the nodes are allowed to vary according
to the variogram nugget when compared to the observations
(as in the case of the sequential Gaussian simulation). The
spatial simulations are conditioned to the location of the 133
long recording stations (LS), since they are the main input
for the regionalisation and are considered the ground truth.

3.3.1 Sequential Gaussian simulation (SGS)

The sequential Gaussian simulation (SGS) is the most
straightforward algorithm for generating such an equiprob-
able realisation, and it is proven to be more robust than other
algorithms (Pebesma and Wesseling, 1998). An overview of
this procedure, where a normal continuous variable z(u) is
modelled by a Gaussian stationary random function Z(u), is
described as follows (Deutsch and Journel, 1998):

1. A random path is defined that visits each node of the
Germany grid (at 5× 5 km spatial resolution) once. At
each node u, fix the neighbouring conditional locations
(either SS for OK[SS] and LS for KED[LS|SS]) and
their observed values z, and the previously simulated z
values at the grid node.

2. Do either ordinary kriging with the normalised short
recording stations (OK[SS]) or kriging with exter-
nal drift with the normalised long recording stations
(KED[LS|SS]) using the respective variograms to esti-
mate the global statistics (mean as per Eq. 7, and vari-
ance as per Eq. 8) of the conditional cumulative distri-
bution function (CCDF) at the random function Z(u) at
the location u.

µ(u)=

n∑
i=1

λi ·Z(ui), (7)

σ 2(u)= C(0)−
n∑
i=1

λi ·C(u− ui), (8)

where λi is the weight as estimated by ordinary krig-
ing for OK[SS] and kriging with external drift for
KED[LS|SS], Z(ui) is the conditional value of the tar-
get variable at the ui location, with i corresponding to
conditional values in the neighbourhood (within a max-
imum radius of 300 km and within the range of 12 to
24), C(0) is the variance and C(u− ui) the covariance
of the normalised dataset.

3. Draw randomly a value from this CCDF as z′(u), and
add this simulated value to the conditional dataset.

4. Proceed to the next node until all nodes are simulated.
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Figure 5. One hundred variogram realisations obtained from bootstrapping (shown in grey lines) the station datasets, the empirical variograms
as observed by the normalised LS (in dark blue points) and SS database (in light blue points), and the respective fitted theoretical spherical
variograms used for the interpolation.

The gstat package available in R is used to generate such
realisations both for the ordinary kriging interpolation of the
SS database (OK[SS]) and for the external drift kriging inter-
polation of the LS database (KED[LS|SS]) (Pebesma, 2004).
Note that the spatial simulations are always performed on
the normal space (normal transformation of the dataset). For
the simulation of the KED[LS|SS], both the input dataset LS
and the external drift OK[SS] are also in the normal space. A
back-transform to the original space is done after each spatial
simulation only for the final product KED[LS|SS].

3.3.2 Simulated annealing (SA) simulations

Simulated annealing is an alternative method for generat-
ing conditional stochastic images. New images are created
by randomly selected values from the observed histograms,
such that global statistics like variogram, marginal distribu-
tion and correlation to a secondary variable are maintained.
Unlike the SGS method, no prior assumption of normality is
needed, and hence the observed data (with no prior transfor-
mation) can be directly used. An overview of this procedure
is found in Deutsch and Journel (1998) and also explained
shortly below:

1. An initial image is randomly created by the observed
histogram. For nodes where data are observed, the ran-
dom values are substituted by the observed ones. Thus,
the observed values are exactly reproduced. This image
matches the observed histogram and conditional data
but not the observed variogram.

2. An objective function is calculated, and a conditional
simulation is reached when the objective function is as
close as possible to zero. For generation of the external
drift spatial information (OK[SS]), only the variogram
is used as part of the objective function, while for the
final parameter estimation (KED[LS|SS]), additionally

the correlation with the external drift is preserved.

OFOK[SS] = w1 ·
∑
h

[γ ′(h)− γ (h)]2

γ (h)2
, and

OFKED[LS|SS] = w1 ·
∑
h

γ ′(h)− γ (h)]2

γ (h)2

+w2 · (ρ
′
− ρ)2, (9)

where γ ′(h) is the simulated variogram, γ (h) is the ob-
served variogram, ρ′ is the simulated correlation, ρ is
the observed correlation with the external drift, and w1
and w2 are weights for the two components (both equal
to 5).

3. If the value of the objective function is not reached, a
new image is created by randomly swapping values of
pair nodes (not conditioned nodes), and the objective
function in recalculated.

4. If the new objective function is better than the previous
one (closer to zero), then the swap is accepted; if not, the
swap is accepted based on an exponential probability
distribution. The parameter of the exponential probabil-
ity distribution is equal to the temperature in simulated
annealing.

Probaccept =

{
1, if OFnew ≤ OFold

e
(OFold−OFnew)

t , if OFnew ≤ OFold,
(10)

where Probaccept is the acceptance probability distribu-
tion, t is the temperature (which decreases with each
iteration), OFnew is the new objective function obtained
by swapping a pair of values and OFold is the previous
objective function value. The higher the temperature,
the higher the probability to select such unfavourable
swaps.

5. Redo steps 3 and 4 until a maximum number of swaps is
reached or if a maximum number of accepted swaps is
reached. If this is the case, the temperature t is reduced
by a multiplicative factor � (here as 0.1).

https://doi.org/10.5194/hess-27-2075-2023 Hydrol. Earth Syst. Sci., 27, 2075–2097, 2023



2084 B. Shehu and U. Haberlandt: Uncertainty estimation of depth–duration–frequency curves

Figure 6. Different experiments run for the propagation of the uncertainty. The bold red letters indicate the source of uncertainty investigated
for each experiment and how it propagates throughout the regionalisation procedure (in dashed arrows). The number of arrows in experiment
5 indicate different uncertainty sources combined.

6. Redo steps 3, 4 and 5 until convergence is reached or
if the maximum number of possible swaps is reached S
times. The simulation is then completed, and the image
is frozen.

The GSLIB programme from Deutsch and Journel (1998)
was employed to generate 100 random realisation fields for
both the external drift and the interpolation. Note two main
differences of the SA with SGS: (i) no data transformation
and back transformation is required, and (ii) by fixing a seed
number, the random path in SGS is same for all the param-
eters, while for the SA the random path for each parameter
depends on how fast the optimum criteria is reached.

3.4 Uncertainty estimation and propagation

Based on several simulations, the uncertainty is evaluated
only at the locations on the long recording stations (LS) –
in total 133 stations. Different experiments are conducted in
order to investigate first how the sources of uncertainty are
propagating to the final regionalisation of the four parameters
(experiments 1–4), and how the main sources of uncertainty
are interacting with each other to produce the total uncer-
tainty (experiment 5). An overview of these experiments and
the sources of uncertainty they consider is given in Fig. 6
and in Table 2. Note that in experiment 5, two uncertainty
sources are combined: the local uncertainty from the sam-
pling of rainfall extreme value statistics and the spatial un-
certainty from KED[LS|SS] simulations. This means that in
experiment 5 for each realisation of the local statistics, both
variograms of LS and SS are recalculated, the OK[SS] is de-
rived and respectively 100 KED[LS|SS] simulations are gen-
erated, concluding thus in a total of 10 000 simulations. The
bootstrapping of the variograms (VAR[LS|SS]) is left out-
side of this experiment, because as it is shown in Sect. 4.2,
it does not have a major impact on the regionalisation out-
put. Moreover, as the variograms are re-estimated, different
variograms are also modelled, including the variogram un-
certainty indirectly. Here only the combination of local and
spatial uncertainty at KED[LS|SS] simulations is included as

prior work revealed that this produces the highest uncertainty
in terms of precision. For each of these experiments, the final
regionalisation step of the four parameters (KED[LS|SS]) is
run on a cross-validation mode, which means that each of the
LS station is left step-wise outside of the database, and the
remaining database is used to estimate this LS location. The
simulations at the LS stations are then used as a basis for the
uncertainty estimation of each parameter separately, and for
the final rainfall depth (RD) obtained at specific return peri-
ods (T1a, T10a and T100a) and 12 duration intervals (5, 10,
15, 30, 60, 120, 360, 720, 1440, 2880, 7340 and 10 080 min).
For each LS location, the uncertainty is estimated based on
the experiment simulations using the following criteria:

Normalised 95 % confidence interval width.

nCI95width [%] = 100 ·
(x97.5 %− x2.5 %)

x
, (11)

where x represents the simulations of the target variable at a
specific location, x97.5 % and x2.5 % are the respective 97.5 %
and 2.5 % quantiles of the x simulations, and x is the ex-
pected value of x from the simulations of an experiment.
The normalised 95 % confidence interval width (nCI95width)
is a measure of spatial simulations precision: the smaller the
value, the more robust or precise the estimation method for x
is.

Average error over all simulations.

bias[%] = 100 ·

∑nsim
sim=1

(xsim−xobs)
xobs

nsim
, (12)

where x represents the simulation of the target variable at
a specific location from the random simulation sim, xobs is
the local observed target variable at the specific location, and
nsim represents the total number of simulations for each ex-
periment. The average error over all the simulations mea-
sures the accuracy of the realisation compared to local input
data. When rainfall depth (RD) is the target variable, one can
go one step further and measure how well the realisations
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Table 2. The description of the uncertainty propagation for each
of the experiments shown in Fig. 6, and the number of realisations
considered for each experiment.

Exp. Explanation No. of
realisations

1 For each local resampled extreme value
statistic, the regionalisation procedure
is run.

100

2 For each variogram estimated from the
LS and SS database, the regionalisation
procedure is run.

100

3 For each spatial realisation of the
OK[SS], the regionalisation procedure
is run.

100

4 For each spatial realisation of the
KED[LS|SS], the regionalisation pro-
cedure is run.

100

5 For each local resampled extreme
value statistic and spatial realisation of
KED[LS|SS], the regionalisation pro-
cedure is run.

10 000

capture the monotonic increase of the RD at different dura-
tion intervals for specific return periods, which corresponds
to the evaluation criteria in estimating the best regionalisa-
tion method for Germany in our previous study (Shehu et al.,
2023).

Percentage RMSE. RMSEst,T[a][%]

= 100 ·

√
1
D

∑D
d=1(RDregio,d −RDlocal,d)2

RDlocal
, (13)

where T[a] and st are the respective selected return period
and LS location, RDregio corresponds to the regionalised
rainfall depth (with KED[LS|SS]), RDlocal is the locally de-
rived rainfall depth from the normalised GEV function (from
Eqs. 1 and 2), the RDlocal is the mean local rainfall depth
over all duration levels, and d is an index indicating the it-
eration from the first to D = 12th duration interval. Through
Eqs. (12) and (13) and the cross-validation mode, it is possi-
ble to compare the performance of the simulations with the
direct regionalisation (i.e. interpolation) from Shehu et al.
(2023), in order to investigate if the simulation methods are
appropriate.

4 Results and discussion

4.1 Comparison of different models in modelling
spatial uncertainty

Before analysing the propagation of different uncertainty
sources, the best method for computing the spatial uncer-
tainty is investigated. As discussed in Sect. 3.3, two methods
are employed for the generation of 100 equiprobable realisa-
tions both for the drift information (OK) and the interpola-
tion of the long recording stations with external drift kriging
(KED): the sequential Gaussian simulation (SGS) is method
1 and the simulated annealing (SA) is method 2. Figure 7
illustrates the parameter precision (nCI95width , %) and accu-
racy (bias, %) of these 100 simulations calculated in cross-
validation mode for each of the long recording locations (in
total 133) for both methods. Note that the transformation to
normality is required only for the SGS and not the SA simu-
lations, as the SA simulations are performed based on ob-
served histograms. The main differences between the two
simulation methods are seen in the precision obtained from
the 100 realisations (nCI95width – upper row), where the re-
alisations from the SA approach are more precise than the
ones from the SGS approach. The difference in the preci-
sion is much higher in the KED[LS|SS] than for the OK[SS]
for all the four parameters. In terms of parameter accuracy,
both methods have similar performance for both OK[SS]
and KED[LS|SS], with SA having slightly higher errors than
the SGS and direct regionalisation (i.e. interpolation) perfor-
mance (particularly for the µ and θ parameters). Overall, it
seems that the SA is more precise than the SGS; neverthe-
less, as the focus is on depth–duration–frequency curves, the
methods should also be compared in their ability to estimate
the DDF curves. For this purpose, for each cross-validation
location, the RMSE (%) was first calculated as per Eq. (13)
for each simulation, and then the median over the 100 simula-
tions was obtained. The median RMSE (%) performance for
different return periods for both methods is shown in Fig. 8.
The median RMSE (%) performance obtained by the SGS
method seems to be in accordance with the performance of
the direct regionalisation (interpolation) for both OK[SS] and
KED[LS|SS]. In contrast, the RMSE (%) performance from
the SA simulations is slightly worse than the direct region-
alisation for OK[SS] and much worse for the KED[LS|SS]
over all return periods (median up to 5 %–8 % higher). Even
though the SA produces more precise simulations of param-
eters, it fails to maintain the interrelationship between the
parameters, causing lower accuracy in the DDF estimation.
The SGS, on the other hand, keeps the same level of accu-
racy like the direct regionalisation (interpolation) but with a
lower precision. Since the aim is to keep accuracy as in the
direct regionalisation (interpolation), SGS was chosen as a
more suitable method to model the spatial uncertainty. Also,
since the SGS produces a higher range of simulations, the es-

https://doi.org/10.5194/hess-27-2075-2023 Hydrol. Earth Syst. Sci., 27, 2075–2097, 2023



2086 B. Shehu and U. Haberlandt: Uncertainty estimation of depth–duration–frequency curves

Figure 7. The precision (nCI95width, %) and accuracy (bias, %) of two different spatial simulations methods (1 – SGS and 2 – SA) for
the drift regionalisation (O) and final regionalisation (K) of the four parameters. The boxplots illustrate the performance over the 133 LS
locations. The background shades in the lower row illustrate the accuracy of the direct regionalisation (i.e. interpolation) of observed local
statistics in a cross-validation mode, where the red dash indicates the median accuracy over all stations, the blue region is the interquartile
range (IQR) of all stations, the light blue region is the 95 % and 5 % quantiles, and the dashed grey lines are the maximum and minimum
performance over all stations.

Figure 8. The accuracy (RMSE, %) of two different spatial simulations methods (1 – SGS and 2 – SA) for the drift regionalisation (O) and
the final regionalisation (K) of the depth–duration–frequency curves. The boxplots illustrate the median RMSE over the 133 LS locations.
The background shades illustrate the accuracy of the direct regionalisation (i.e. interpolation) of observed local statistics in a cross-validation
mode, where the red dash indicates the median accuracy over all stations, the blue region is the interquartile range (IQR) of all stations, the
light blue region is the 95 % and 5 % quantiles, and the dashed grey lines are the maximum and minimum performance over all stations.

timated precision, in the end, is more conservative than the
SA procedure.

4.2 Effect of different uncertainty components for the
estimation of the DDF curves at ungauged locations

Experiments 1 to 4 were conducted in order to investigate
the uncertainty propagation from each component of region-
alisation to the final parameter and DDF values, while Ex-
periment 5 considers a propagation of the two main uncer-
tainty sources interacting in the final regionalisation of the
extremes. The parameter uncertainty is calculated from the

number of simulations given in Table 2 for each experiment
and is illustrated in Fig. 9, where the upper rows represent the
precision (nCI95width, %), while the lower rows are the ac-
curacy (bias, %) of estimated parameters in cross-validation
mode. Figure 10 illustrates the DDF uncertainty at duration
levels from 5 min up to 7 d for three return periods 1, 10 and
100 years: precision (nCI95width, %) shown in the upper row
and accuracy (RMSE, %) in the lower row. The accuracy of
the simulations is compared with the direct regionalisation
(i.e. interpolation) of the observed parameter sets (see cap-
tion for more details). It is worth mentioning that the differ-
ence between the different component simulations (experi-
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Figure 9. The obtained precision (first row – nCI95width, %) and accuracy (lower row – bias, %) from propagating the multiple realisations
at different components of the regionalisation procedure to the final parameter sets. The background shades in the lower row illustrate the
accuracy of the direct regionalisation (i.e. interpolation) of observed local statistics also computed in a cross-validation mode, where the red
dash indicates the median accuracy over all stations, the blue region is the interquartile range (IQR) of all stations, the light blue region is the
95 % and 5 % quantiles, and the dashed grey lines are the maximum and minimum performance over all stations.

Figure 10. The obtained precision (a–c: nCI95width, %) and accuracy (d–f: RMSE, %) from propagating the multiple realisations at each
component of the regionalisation procedure to the final DDF values. The background shades in (d), (e) and (f) illustrate the accuracy of the
direct regionalisation (i.e. interpolation) of observed local statistics also computed in a cross-validation mode, where the red dash indicates
the median accuracy over all stations, the blue region is the interquartile range (IQR) of all stations, the light blue region is the 95 % and 5 %
quantiles, and the dashed grey lines are the maximum and minimum performance over all stations.
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Figure 11. Upper row – empirical CDF simulated from exp. 5 (in grey) and from observed parameter values (in red) over the 133 locations;
lower row – observed correlations calculated in space between pairs of LS parameters (shown in red dots) and the respective correlations
from 100 KED[LS|SS] simulations (shown in the grey boxplots).

ments 1 to 4) is visible only at the precision of the simula-
tions and not at the accuracy. As illustrated by Fig. 9 (lower
row) and Fig. 10 (lower row), the accuracy in estimating the
parameters (bias, %) and the DDF values (RMSE, %) does
not change considerably from one experiment to the other.
Also, when comparing the boxplots with the performance ob-
tained from the direct regionalisation (interpolation – shown
with the background colours), the same accuracy more or less
is observed. Therefore, the analysis will be focused on the
variation of precision (nCI95width, %) according to different
sources of uncertainty. Regarding the parameter uncertainty
as shown in Fig. 9, the spatial KED[LS|SS] simulations (exp.
4) represent the highest source of uncertainties for all the pa-
rameters: the nCI95width, %, ranges from 18 % for the η pa-
rameter, between 40 %–50 % for the two GEV parameters µ
and σ , and up to 250 % for the θ parameter. The parame-
ters vary greatly in space, and that is why when sampling
from space (spatial simulations), the prediction intervals are
higher than for the bootstrapping case (or the other cases).
For all the parameters, the nCI95width of the KED[LS|SS]
simulations is at least 3 times higher than the nCI95width of
the other uncertainty sources, concluding that the spatial sim-
ulations add the biggest uncertainty to the regionalisation.
Second to the KED[LS|SS] simulations is the resampling of
local statistics (exp. 1) and the OK[SS] simulations (exp. 3),
which seem to produce similar levels of nCI95width for most
parameters ranging from 10 % for the location µ, 90 % for
the θ and only 8 % for the η parameter. Only for the scale

GEV parameter (σ ) is the nCI95width from the local statis-
tics resampling higher (≈ 20%) than the one from OK[SS]
(≈ 15%). It is interesting to see that the obtained nCI95width
from the variogram bootstrapping (exp. 2) is lower than 5 %
for almost all parameters (except the θ parameter which is
lower than 20 %). This suggests that the variability between
interpolated fields with different variograms reproduces very
similar spatial parameters, even though the variograms dif-
fer greatly in terms of nugget, sill and range (see Fig. 5).
The same behaviour is also seen in estimated DDF curves
for different return periods (Fig. 10 – upper row), where the
variability as exhibited by the variogram bootstrapping (exp.
2) is very low (less than 10 %) compared to the other simu-
lations and is also constant over the duration levels. On the
other hand, the simulations from both local resampling (exp.
1) and OK[SS] simulations (exp. 2) exhibit similar patterns
of nCI95width for the selected DDF curves (Fig. 10 – upper
row). Unlike the nCI95width exhibited in the parameter simu-
lations, here the difference between these two components is
more visible, as the nCI95width produced by the local resam-
pling (exp. 1) is 1 %–5 % higher than the one produced by
the OK[SS] simulations (exp. 3). As also seen in Fig. 10 (up-
per row), the nCI95width from the KED[LS|SS] (exp. 4) is the
highest compared to the other components, emphasising that
the spatial uncertainty of the KED[LS|SS] is the main source
of uncertainty when regionalising the DDF curves. Also, un-
like the other types of uncertainties (exp. 1 to 3), the spatial
uncertainty from the KED[LS|SS] depends greatly on the du-
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ration level, with nCI95width values of short-duration inter-
vals (from 5 min up to 2 h) being considerably higher than
the other experiments (reaching values of 40 % on average).
Moreover, exp. 4 boxplots are much wider than exp. 1 to 3,
suggesting that the spatial uncertainty is highly dependent
on the location. The high uncertainty values in terms of pre-
cision for exp. 4 come with the cost of slightly increased er-
ror in RMSE (Fig. 10 -lower row), where the median RMSE
values are 1 %–2 % higher than those of the direct region-
alisation but still within the interquartile range (IQR) of the
direct regionalisation performance. So far, experiments 1 to
4 have considered the propagation of singular uncertainty
sources to the final regionalisation of parameters and DDF
curves in Germany. Experiment 5 considers a propagation
of the two main uncertainty sources interacting together in
the final regionalisation of the DDF curves. As stated before,
the most important sources are the local estimation of rain-
fall extreme statistics and the spatial uncertainty in region-
alisation (KED[LS|SS]). As the variogram and the external
drift is calculated for each local resampling dataset, the un-
certainty of variogram and external drift is already included
in the propagation of uncertainty from local resampling to
spatial simulations. For each of the two components, 100 re-
alisations are run, resulting in a total of 10 000 simulations.
Overall, the final and total uncertainty from exp. 5 follows a
similar pattern to the uncertainty from KED[LS|SS] simula-
tions, but due to the local uncertainties, it manifests higher
values of nCI95width and RMSE (as seen in Figs. 9 and 10).
The variation of the total nCI95width for almost all parame-
ters is 10 %–20 % higher than those of exp. 4, with the GEV
parameters reaching values of 50 % (µ) to 70 % (σ ), the θ
parameter up to 270 % and the η parameter up to 20 %. Con-
sequently, the variation of the total nCI95width over the du-
ration levels is between 35 %–50 % for return periods 1 and
10 years and between 40 %–80 % for return period of 100
years. As with the KED[LS|SS] simulations (exp. 4), the du-
rations shorter than 120 min and the ones longer than 3 d ex-
hibit higher nCI95width values, with the durations from 6–
48 h having the highest precision (lowest nCI95width values).
Another property seen from experiment 5 is that the variation
in space (the wideness of boxplots) is narrower than in exp.
4 for most of the durations, suggesting that the final spatial
uncertainty is more constant in space (inheriting a property
from local uncertainty – exp. 1). In terms of accuracy, the
RMSE (%) has been increased on average with 3 % for 1-
year return period, and to 4 %–5 % for 10–100-year return
periods, differing slightly from the direct regionalisation (i.e.
interpolation) performance but still within the interquartile
range (IQR) of the direct regionalisation. Some outliers are
present in the accuracy plot (lower row in Fig. 10); however,
except for one location, these outliers are within the max-
imum RMSE manifested by the direct regionalisation. The
behaviour of these outliers emerges both from parameter out-
liers and from looking at the quantiles. They are present in
locations where parameters are considerably different from

the neighbour long observations (as in the case of singular
stations in the Black Forest or the Alps), or where a parame-
ter outlier is located (as in the case of Münster where a very
rare extreme event in 2014 causes a high value for the scale σ
parameter) and is not geographically clustered. Since the me-
dian of the simulations from experiment 5 increases slightly
the RMSE (%) but still within the IQR of the direct regional-
isation, the simulations can be used to quantify the total un-
certainty range for the regionalisation of the depth–duration–
frequency curves. In this context, the nCI95width (%) values
in Fig. 10 can be divided by 2, to show the tolerance range
above or below the predicted values at each node from the
direct regionalisation. For instance, if at a specific location,
for a duration of 5 min and return period of 100 years, the
simulated nCI95width (%) is 40 %, this means that the region-
alised rainfall depth at this location varies with ±20 % of its
mean value. A parabolic relationship is visible for experi-
ments 1–3, with lower nCI95width values at the mid-duration
levels (1 and 2 h) and increasing values at lower and longer
durations. This parabolic behaviour over the different dura-
tion levels is attributed to the Koutsoyiannis framework for
generalising the intensities over all durations by the two pa-
rameters θ and η. A particular behaviour is the variation of
the nCI95width over the DDF values from the KED[LS|SS]
simulations (exp. 4), which is also inherited at the final un-
certainty computation (exp. 5). The behaviour exhibited by
KED[LS|SS] simulations does not follow a parabolic func-
tion as in exp. 1, exp. 2 and exp. 3 but more a sinusoidal one.
This can be attributed to two main reasons: (1) the effect of
the Koutsoyiannis parameters on different durations and (2)
the spatial simulations of the SGS algorithm following the
transformation to normality.

Figure 11 (upper row) illustrates the observed empirical
and simulated CDF from exp. 4 for each parameter extracted
from the LS dataset. Overall, the simulated CDFs agree well
with the observed CDFs; however, the tails might diverge
slightly. This is particularly true for the lower tail of the θ
and η parameters and the upper tail of the σ parameter. This
occurs as the transformation is done on a continuous CDF,
a GNO is first fitted to the data, and based on the GNO
CDF, the transformation is performed. Nevertheless, this is
not negative, as like this, values outside the observed range
are simulated; hence, higher or lower values can be simu-
lated as well. As stated in Marra et al. (2019a), the rain-
fall stations will not capture the maximum intensities of a
storm, and thus, it is almost certain that they do not represent
the high possible intensities. Therefore, generating higher or
lower parameter values than observed is crucial in the gener-
ation of stochastic simulations. Figure 11 (lower row) illus-
trates the correlation between pairs of LS parameters (shown
in red dots) and the corresponding correlations obtained from
the 100 KED[LS|SS] simulations run in the cross-validation
mode. For the µ–σ pair, the observed correlation is well cap-
tured, as it coincides with the median of the simulations.
To a certain degree, this is also true for the θ–η pair. The
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Figure 12. Examples of DDF estimates from observed data and predicted by simulations of exps. 4 and 5 in cross-validation mode as median
over all simulations and as 95 % tolerance ranges from all simulations. (a), (b) and (c) for return period T = 1 years; (d), (e) and (f) for
T = 10 years; and (g), (h) and (i) for return period T = 100 years. Three stations are shown here are K000830 located in the German Alps,
KO00490 location in Lower Saxony and KO00550 located in the Black Forest.

main differences are in the relationships between the GEV
and Koutsoyiannis parameters, where the simulated corre-
lation is much higher than observed. In particular, the cor-
relation between µ, σ and θ is higher than the correlation
between µ, σ and η. This explains why the precision of the
KED[LS|SS] has a sinusoidal behaviour. The fluctuation of
the θ parameter affects the uncertainty of the short durations
(mainly from 5 to 60 min), while the fluctuation of the η pa-
rameter affects the uncertainty at short (5–30 min) and very
long durations (12 h to 7 d). Since the θ parameter is highly
correlated with the µ and σ parameters, its fluctuations will
result in a smaller uncertainty than the η fluctuations, re-
sulting in a slight increase of precision between the dura-
tion of 5–30 min. In KOSTRA2010R, which provides design

storms for Germany, no objective uncertainty analysis was
performed to give the confidence intervals between 10 %–
20 % and hence should not be directly compared with the
objective uncertainty estimation performed here. The total
uncertainty considered here (from exp. 5) depends not only
on the return period but also on the duration level. The re-
sults from Fig. 10 can be used to determine the tolerance
above (+) and below (−) the median for the 95 % confidence
level. This will result in a median uncertainty range from
± 15 %–25 % for low-return periods (lower than 10 years)
and from ± 20 %–40 % for high-return periods (higher than
10 years). Moreover, the short durations (5 min to 2 h) are in
general 20 %–30 % more uncertain than the longer durations
(6 h–1 d). The behaviour exhibited here is also in accordance
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with other studies (for instance Marra et al., 2017) where the
shorter-duration intervals are more uncertain than the ones
of 1 d. In this section, we compare the uncertainty estima-
tion from two experiments 4 and 5, to see how they are dis-
tinguished from one another. Uncertainty from experiment
1 is left out, not only to keep the graphics simple for visu-
alisation, but also because it is much narrower than for the
other two experiments and it is enclosed in exp. 5. Examples
of depth–duration–frequency curves and tolerance ranges for
three stations and three return periods (T = 1, 10 and 100
years) are illustrated in Fig. 12 for three methods: only spa-
tial KED[LS|SS] simulations (from exp. 4) in blue, local and
spatial simulations (from exp. 5) in orange, and local derived
DDF curves in the dashed black line. Note that the results
shown here are also obtained in cross-validation mode, which
of course overestimates the overall uncertainty at these loca-
tions. The first station KO00830 is located in Oberstdorf (a
town in the Allgäu Alps of Germany), the second KO000490
in Soltau, Lower Saxony, and the third KO00550 in Em-
mendingen in the Black Forest region. These three stations
were selected as representative of different regions and be-
haviours. Over all the stations, the tolerance range computed
by the two experiments is wider at short-duration intervals.
This is true for all return periods, but the tolerance ranges get
wider with the increasing return period. As seen from first
row, the expected rainfall depth in the German Alps is much
higher than the two others, followed by the station in Soltau
and the one in the Black Forest. Because of the low station
density in the Alp region, the tolerance range is wider than in
other locations. Overall the two products are similar to each
other, with the main difference present mainly at the dura-
tions from 6 to 12 h, where exp. 5 exhibits wider tolerance
ranges. Regarding the median estimation of DDF from both
experiments, the main difference is seen in the Alps, where
exp. 5 agrees better with the observed values. Lastly, we rec-
ommend quantifying the uncertainty based on exp. 5, since
the tolerance ranges better represent the duration levels from
6–12 h and its median matches better with the observation.

4.3 Spatial structure of uncertainty for the whole of
Germany

Spatial maps of precision were generated for three experi-
ments (exps. 1, 4 and 5), by using the whole dataset, in order
to investigate the spatial distribution of the precision when
generating the DDF curves for Germany. The precision in
terms of nCI95width, %, for the four parameters describing
the extreme value statistics is given in Fig. 13. It can be
seen that the different sources of uncertainties exhibit differ-
ent precision over Germany. For instance, a propagation of
the local uncertainty (exp. 1 showed at the first row) causes
less precision at observed locations (shown in black) than
at the unobserved location. This is because the resampling
of the target network (LS) proves more uncertainty than re-
sampling the external drift network (SS). Therefore, uncer-

tainty estimated from exp. 1 is not enough to capture the spa-
tial structure of the uncertainties. On the other hand, exp. 4
shows a clear spatial structure for uncertainty (mainly for
three parameters σ , θ and η), with the north-west and south
of Germany having higher uncertainty ranges. This follows
the precipitation regime and the station density in Germany;
the south parts record higher precipitation amounts because
of the German Alps (so it is a region with clearly different
behaviour than the rest of Germany), while the north-west
has a lower station density for both the LS and SS datasets in
comparison with the rest of Germany. The uncertainty range
at two parameters µ and σ increases with 30 %–40 % for the
whole of Germany when combining the local and spatial un-
certainty (exp. 5) in comparison to only spatial uncertainty
(exp. 4). The uncertainty at the parameters θ and η remains
more or less at similar levels, with similar spatial patterns.
Thus, including the local uncertainty mainly influences the
parameters of the GEV distributions. It is interesting to see
in exp. 5 that, at the location of the long recording stations
(shown in black squares), the uncertainty of the parameters
µ and σ is much lower than for the rest of the regions. This
is an expected behaviour, as observed locations should be
more certain than unobserved ones, and as the station den-
sity decreases, the uncertainty increases. This behaviour, not
seen in other experiments, seems to be captured quite well
by exp. 5. This is particularly true for the GEV parameters,
while the Koutsoyiannis parameters show an additional spa-
tial variability of uncertainty that follows the main elevation
features in Germany (represented by the external drift), with
the north-west and south of Germany having higher uncer-
tainty ranges. Another interesting point is the high uncer-
tainty associated with the σ parameter by exp. 5 in Münster
(shown in a red circle), which is also visible in exp. 1. The
high uncertainty of the scale parameters comes mainly from
the local resampling bootstrap. As discussed in Shehu et al.
(2023), a very rare extreme event was recorded in 2014 in
Münster, which affects the extreme value analysis consider-
ably. Thus, the integration of the local uncertainty becomes
mandatory to estimate the uncertainty when including these
rare events (with a very high-return period) in the estimation
of DDF curves for design purposes.

Figure 14 illustrates the spatial distribution of uncertainty
(computed here in terms of the precision of nCI95width,
%) for the durations 5 min, 1 h, 1 d and return period of
100 years: upper row – only from local uncertainty (exp. 1),
second row – only from spatial uncertainty (exp. 4) and lower
row – from both local and spatial uncertainty (exp. 5). The
uncertainty ranges exhibited by exp. 1 (only considering the
local uncertainty) are very similar throughout all three dura-
tions and maintain similar spatial structure as with the pa-
rameter uncertainty in Fig. 13. Here, the difference between
observed and unobserved locations is small, and, following
the parameter precision, the observed locations have higher
uncertainty that the unobserved ones (on average 15 %–20 %
higher nCI95width values). In exp. 4, there is a clear differ-
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Figure 13. The precision (nCI95width, %) in estimating the four parameters for the whole of Germany with all available data for two
experiments: upper row – results obtained from the propagation of 100 local resampled data to the final regionalisation (exp. 1), middle row
– results obtained from 100 spatial simulations of KED[LS|SS] (exp. 4), and lower row – results obtained from 10 000 local resampling and
spatial simulations of KED[LS|SS] (exp. 5). The black squares indicate the locations of LS, while the black lines illustrate the boundaries of
German federal states. Note that the ranges for the legend colourschange for each experiment in order to emphasise the spatial structure of
each experiment.

ence between the uncertainties of different durations, where
the uncertainty of very short and very long durations (5 min
and 1 d) is governed by the spatial structure of θ and η pa-
rameters. The uncertainty of 1 h durations is more or less uni-
formly distributed, but with the north-west region exhibiting
higher uncertainties than the rest of Germany. In exp. 5, the
uncertainty for 5 min durations has been increased consider-
ably when including the local uncertainty (from 20 %–55 %
in exp. 4 to 80 %–100 %). The uncertainty of 1 h durations
exhibits similar patterns but is increased slightly from 45 %
to 55 % in exp. 5. For 1 d duration, the uncertainty ranges are
also increased by exp. 5, with values higher at the southern

part of Germany (where the German Alps are located) and
at the northern part of Germany near to the North Sea. The
extreme event at Münster influences the uncertainty of all
durations but has a higher impact of short durations. Based
on such propagation of uncertainty, tolerance ranges between
± 30 %–60 % should be expected in Germany for 5 min du-
ration intervals, ± 15 %–45 % for 1 h durations and ± 20 %–
50 % for 1 d durations. Overall, the combination of local re-
sampling with geostatistical spatial simulations provides the
best method for the assessment of uncertainty in regionali-
sation DDF curves in Germany. First, and most importantly,
the precision of these curves is higher at the location of long
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Figure 14. The precision (nCI95width, %) in estimation rainfall depth at different durations and the 100-year return period for the whole of
Germany with all available data for three experiments: (a–c) results obtained from the propagation of 100 local resampled data to the final
regionalisation (exp. 1), (d–f) results obtained from 100 spatial simulations of KED[LS|SS] (exp. 4), (g–i) results obtained from 10 000 local
resampling and spatial simulations of KED[LS|SS] (exp. 5). The black squares indicate the locations of LS, while the black lines illustrate
the boundaries of German federal states. Note that the ranges for the legend colours change for each experiment in order to emphasise the
spatial structure of each experiment.

recording stations and decreases in ungauged locations ac-
cording to the distance from the long observations and the
density of the observations in the vicinity.

5 Conclusions

In Shehu et al. (2023), a regionalisation based on exter-
nal drift kriging was employed to calculate depth–duration–
frequency (DDF) curves in Germany. Based on these results,
an uncertainty analysis was conducted here to estimate the
precision of the obtained regionalised DDF curves in Ger-
many. For this purpose, many simulations were performed
at the main components of the regionalisation procedure: lo-

cal estimation of the extreme statistics (by non-parametric
bootstrapping), spatial dependency (by variogram bootstrap-
ping) of short and long recording stations statistics, the ex-
ternal drift information (by sequential Gaussian simulations)
and the interpolation (also with sequential Gaussian simula-
tions). Four different experiments were run in order to esti-
mate how the uncertainty at each component propagates to
the final regionalisation of the DDF curves, and a last exper-
iment was performed by combing the uncertainty of the two
main components in order to assess the total uncertainty. The
uncertainty, in terms of precision, was evaluated at each long
recording station location (in cross-validation mode) based
on the obtained 95 % confidence interval from different sim-
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ulations. The conclusions from this investigation are sum-
marised below:

– A comparison with simulated annealing showed that the
SGS is better suited for the study at hand, as it shows
higher accuracy by capturing better the interrelationship
between the parameters (despite of the data transforma-
tion). Further works may include a new SA algorithm
that models the four parameters together in space in or-
der to keep the interrelationship between them. A fu-
ture improved SA algorithm may have the potential to
decrease the overall uncertainty ranges of DDF curves
further on.

– The uncertainty from the variograms that describes the
spatial dependencies within the short and long observa-
tion datasets does not seem to influence much the final
regionalisation of parameters and hence the estimation
of the DDF curves. Therefore, it was neglected for the
total uncertainty propagation. On the other hand, the un-
certainty from the regionalisation of the long observa-
tions is the biggest source of uncertainty, followed by
the local estimation of extremes and by the drift estima-
tion from short observation. A bootstrapping technique
that combines the local estimation of extremes with dif-
ferent spatial simulations of the long observations pro-
vided the highest uncertainty and was used to quantify
the total uncertainty.

– The total uncertainty obtained here mainly follows
the behaviour of the spatial uncertainty but is slightly
higher, as it is influenced by the local uncertainty. How-
ever, unlike the spatial uncertainty, the total uncertainty
is influenced by the very rare extreme events and also
considers them for the computation of tolerance ranges.
Moreover, by combining local resampling with spatial
simulations, the modelled uncertainty exhibits valid be-
haviour: at observed locations, the precision is higher,
and it decreases at unobserved locations according to
the distance from the observed and the density of the
observed locations in the vicinity. For very short and
very long durations, uncertainty ranges are also depen-
dent on different climatological regions in Germany.

– From 10 000 simulations, it is concluded that the dura-
tions shorter than 2 h exhibit a larger uncertainty than
longer durations, which of course is increasing with
the return period considered. Depending on the loca-
tion and duration, tolerance ranges from ± 10 %–30 %
for low-return periods (lower than 10 years) and from
± 15 %–60 % for high-return periods (higher than 10
years) should be expected.

– For the proposed methodology, the uncertainty varia-
tion in space (for most locations) seems to be smaller
(≈ 10 %–20 %) than the variation across different dura-
tions (up to 30 %). On the other hand, the uncertainty

variation due to the return periods is low, approximately
5 % to 10 %. The only exception is at Münster, where a
very rare extreme event has been observed and causes
high uncertainty ranges for the extreme values in the
vicinity. Events such at the one in Münster influence
the DDF curves considerably, and hence more research
should be done in order to investigate how to treat them
when the focus is on DDF curves for return periods up
to 100 years.

Overall, the combination of local resampling with geostatis-
tical spatial simulations provides a very suitable method for
the assessment of uncertainty in regionalisation DDF curves.
As shown here, considering only local resampling for the
sample variability will underestimate the total uncertainty,
especially at very short-duration intervals and high-return
periods. Therefore, it becomes crucial to also include spa-
tial simulations for the computation of uncertainties. In this
study, the extreme value analysis based on GEV was investi-
gated; nevertheless it would be interesting to see if a metas-
tatistical approach, as proposed by Marra et al. (2019b), can
result in narrower tolerance ranges while keeping a higher
accuracy. So far, only the sample and spatial variability have
been included for the estimation of the uncertainties. Fu-
ture works may also include non-stationarity due to climate
change and the change of uncertainty patterns in the future.
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CSöRgő, S. and Faraway, J. J.: The Exact and Asymptotic
Distributions of Cramér-Von Mises Statistics, J. Roy. Stat.
Soc. B Met., 58, 221–234, https://doi.org/10.1111/j.2517-
6161.1996.tb02077.x, 1996.

Deutsch, C. V. and Journel, A. G.: GSLIB: geostatistical software li-
brary and user’s guide, Second edition, Oxford University Press,
New York, ISBN 0195100158, 1998.

DVWK: Statistische Analyse von Hochwasserabflüssen, Deutscher
Verband für Wasserwirtschaft und Kulturbau, Tech. Rep. H. 251,
Bonn, Germany, p. 62, 1999.

DWA: Arbeitsblatt DWA-A 531: Starkregen in Abhängigkeit von
Wiederkehrzeit und Dauer, DWA Arbeitsgruppe HW 1.1e, Hen-
nef, Deutschland, https://de.dwa.de (last access: 20 March 2022),
2012.

Emery, X.: Multi-gaussian kriging and simulation in the presence of
an uncertain mean value, Stochastic Enviornmental Research and
Risk Assessment, 24, 211–219, https://doi.org/10.1007/s00477-
009-0311-5, 2010.

Ersoy, A. and Yünsel, T. Y.: Assessment of lignite quality
variables: A practical approach with sequential Gaus-
sian simulation, Energ. Source Part A, 31, 175–190,
https://doi.org/10.1080/15567030701522260, 2009.

Fischer, S. and Schumann, A. H.: Berücksichtigung von Starkregen
in der Niederschlagsstatistik, Hydrol. Wasserbewirts., 62, 248–
256, https://doi.org/10.5675/HyWa_2018,4_2, 2018

Forestieri, A., Lo Conti, F., Blenkinsop, S., Cannarozzo, M., Fowler,
H. J., and Noto, L. V.: Regional frequency analysis of ex-
treme rainfall in Sicily (Italy), Int. J. Climatol., 38, e698–e716,
https://doi.org/10.1002/joc.5400, 2018.

German Weather Service: Climate Data Center (CDC), https://
opendata.dwd.de/climate_environment/CDC/, German Weather
Service [data set], last access: 24 May 2023.

Goovaerts, P.: Geostatistical tools for deriving block-averaged val-
ues of environmental attributes, Lect. Notes Comput. Sc., 5, 88–
96, https://doi.org/10.1080/10824009909480518, 1999a.

Goovaerts, P.: Geostatistics in soil science: state-of-the-art and per-
spectives, Geoderma, 89, 1–45, https://doi.org/10.1016/S0016-
7061(98)00078-0, 1999b.

Goovaerts, P.: Estimation or simulation of soil properties? An opti-
mization problem with conflicting criteria, Geoderma, 97, 165–
186, https://doi.org/10.1016/S0016-7061(00)00037-9, 2000.

Goovaerts, P.: Geostatistical modelling of uncertainty in soil
science, Geoderma, 103, 3–26, https://doi.org/10.1016/S0016-
7061(01)00067-2, 2001.

Gyasi-Agyei, Y. and Pegram, G.: Interpolation of daily rainfall net-
works using simulated radar fields for realistic hydrological mod-
elling of spatial rain field ensembles, J. Hydrol., 519, 777–791,
https://doi.org/10.1016/j.jhydrol.2014.08.006, 2014.

Haese, B., Hörning, S., Chwala, C., Bardossy, A., Schalge, B., and
Kunstmann, H.: Stochastic reconstruction and interpolation of
precipitation fields using combined information of commercial
microwave links and rain gauges, Water Resour. Res., 53, 10740–
10756, https://doi.org/10.1002/2017WR021015, 2017.

Hofmann, T., Darsow, A., and Schafmeister, M. T.: Importance of
the nugget effect in variography on modeling zinc leaching from
a contaminated site using simulated annealing, J. Hydrol., 389,
78–89, https://doi.org/10.1016/j.jhydrol.2010.05.024, 2010.

Hosking, J. R. M. and Wallis, J. R.: Regional Fre-
quency Analysis, Cambridge University Press,
https://doi.org/10.1017/CBO9780511529443, 1997.

Jang, C. S.: Geostatistical analysis for spatially characterizing
hydrochemical features of springs in Taiwan, Environ. Earth

https://doi.org/10.5194/hess-27-2075-2023 Hydrol. Earth Syst. Sci., 27, 2075–2097, 2023

https://cran.r-project.org/package=lmomco
https://cran.r-project.org/package=lmomco
https://doi.org/10.1007/s11242-015-0608-4
https://doi.org/10.1016/j.enggeo.2008.01.006
https://doi.org/10.1016/j.ecolmodel.2007.02.034
https://doi.org/10.1002/hyp.10231
https://doi.org/10.5194/nhess-12-3229-2012
https://doi.org/10.5194/nhess-12-3229-2012
https://doi.org/10.1007/s11069-020-04273-5
https://doi.org/10.1016/j.envpol.2004.06.020
https://doi.org/10.1007/978-1-4471-3675-0
https://doi.org/10.1111/j.2517-6161.1996.tb02077.x
https://doi.org/10.1111/j.2517-6161.1996.tb02077.x
https://de.dwa.de
https://doi.org/10.1007/s00477-009-0311-5
https://doi.org/10.1007/s00477-009-0311-5
https://doi.org/10.1080/15567030701522260
https://doi.org/10.5675/HyWa_2018,4_2
https://doi.org/10.1002/joc.5400
https://opendata.dwd.de/climate_environment/CDC/
https://opendata.dwd.de/climate_environment/CDC/
https://doi.org/10.1080/10824009909480518
https://doi.org/10.1016/S0016-7061(98)00078-0
https://doi.org/10.1016/S0016-7061(98)00078-0
https://doi.org/10.1016/S0016-7061(00)00037-9
https://doi.org/10.1016/S0016-7061(01)00067-2
https://doi.org/10.1016/S0016-7061(01)00067-2
https://doi.org/10.1016/j.jhydrol.2014.08.006
https://doi.org/10.1002/2017WR021015
https://doi.org/10.1016/j.jhydrol.2010.05.024
https://doi.org/10.1017/CBO9780511529443


2096 B. Shehu and U. Haberlandt: Uncertainty estimation of depth–duration–frequency curves

Sci., 73, 7517–7531, https://doi.org/10.1007/s12665-014-3924-
z, 2015.

Jang, C. S. and Huang, H. C.: Applying spatial analysis techniques
to assess the suitability of multipurpose uses of spring water in
the Jiaosi Hot Spring Region, Taiwan, Environ. Monit. Assess.,
189, 328, https://doi.org/10.1007/s10661-017-6029-9, 2017.

Journel, A. G. and Posa, D.: Characteristic behavior and order re-
lations for indicator variograms, Math. Geol., 22, 1011–1025,
https://doi.org/10.1007/BF00890121, 1990.

Junghänel, T., Bär, F., Deutschländer, T., Haberlandt, U., Otte, I.,
Shehu, B., Stockel, H., Stricker, K., Thiele, L.-B., and Willems,
W.: Methodische Untersuchungen zur Novellierung der Starkre-
genstatistik für Deutschland (MUNSTAR), Tech. rep., Synthese-
bericht, p. 95, https://www.dwd.de/DE/leistungen/kostra_dwd_
rasterwerte/download/Synthesebericht_MUNSTAR_pdf.pdf?__
blob=publicationFile&v=3 (last access: 24 May 2023), 2022.

Koutsoyiannis, D.: Statistics of extremes and estimation of extreme
rainfall: I. Theoretical investigation, Hydrolog. Sci. J., 49, 575–
590, https://doi.org/10.1623/hysj.49.4.575.54430, 2004a.

Koutsoyiannis, D.: Statistics of extremes and estima-
tion of extreme rainfall: II. Empirical investigation of
long rainfall records, Hydrolog. Sci. J., 49, 591–610,
https://doi.org/10.1623/hysj.49.4.591.54424, 2004b.

Koutsoyiannis, D., Kozonis, D., and Manetas, A.: A math-
ematical framework for studying rainfall intensity-
duration-frequency relationships, J. Hydrol., 206, 118–135,
https://doi.org/10.1016/S0022-1694(98)00097-3, 1998.

Liao, K., Lai, X., Lv, L., and Zhu, Q.: Uncertainty in predicting
the spatial pattern of soil water temporal stability at the hillslope
scale, Soil Res., 54, 739–748, https://doi.org/10.1071/SR15059,
2016.

Lin, Y.-P. and Chang, T.-K.: Simulated annealing and kriging
method for identifying the spatial patterns and variability of
soil heavy metal, J. Environ. Sci. Heal. A, 35, 1089–115,
https://doi.org/10.1080/10934520009377022, 2000.

Luca, C., Si, B. C., and Farrell, R. E.: Assessing spatial distribu-
tion and joint uncertainty of TPH-fractions: Indicator kriging and
sequential indicator simulation, Can. J. Soil Sci., 87, 551–563,
https://doi.org/10.4141/CJSS07003, 2007.

Marra, F., Morin, E., Peleg, N., Mei, Y., and Anagnostou, E. N.:
Intensity–duration–frequency curves from remote sensing rain-
fall estimates: comparing satellite and weather radar over the
eastern Mediterranean, Hydrol. Earth Syst. Sci., 21, 2389–2404,
https://doi.org/10.5194/hess-21-2389-2017, 2017.

Marra, F., Nikolopoulos, E. I., Anagnostou, E. N., Bárdossy, A.,
and Morin, E.: Precipitation frequency analysis from remotely
sensed datasets: A focused review, J. Hydrol., 574, 699–705,
https://doi.org/10.1016/j.jhydrol.2019.04.081, 2019a.

Marra, F., Zoccatelli, D., Armon, M., and Morin, E.: A simpli-
fied MEV formulation to model extremes emerging from mul-
tiple nonstationary underlying processes, Adv. Water Resour.,
127, 280–290, https://doi.org/10.1016/j.advwatres.2019.04.002,
2019b.

Miniussi, A. and Marra, F.: Estimation of extreme daily pre-
cipitation return levels at-site and in ungauged locations us-
ing the simplified MEV approach, J. Hydrol., 603, 126946,
https://doi.org/10.1016/j.jhydrol.2021.126946, 2021.
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