Articles | Volume 27, issue 5
https://doi.org/10.5194/hess-27-1133-2023
https://doi.org/10.5194/hess-27-1133-2023
Research article
 | 
15 Mar 2023
Research article |  | 15 Mar 2023

How well does a convection-permitting regional climate model represent the reverse orographic effect of extreme hourly precipitation?

Eleonora Dallan, Francesco Marra, Giorgia Fosser, Marco Marani, Giuseppe Formetta, Christoph Schär, and Marco Borga

Related authors

Brief communication: Threshold not probability. The conceptual difference between ID thresholds for landslide initiation and IDF curves
Francesco Marra, Eleonora Dallan, Marco Borga, Roberto Greco, and Thom Bogaard
EGUsphere, https://doi.org/10.5194/egusphere-2025-3378,https://doi.org/10.5194/egusphere-2025-3378, 2025
Short summary
Brief communication: Enhanced representation of the power spectra of wind speed in Convection-Permitting Models
Nathalia Correa-Sánchez, Xiaoli Guo Larsén, Giorgia Fosser, Eleonora Dallan, Marco Borga, and Francesco Marra
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-111,https://doi.org/10.5194/wes-2025-111, 2025
Preprint under review for WES
Short summary

Cited articles

Adinolfi, M., Raffa, M., Reder, A., and Mercogliano, P.: Evaluation and Expected Changes of Summer Precipitation at Convection Permitting Scale with COSMO-CLM over Alpine Space, Atmosphere,, 12, 54, https://doi.org/10.3390/atmos12010054, 2020. 
Allamano, P., Claps, P., Laio, F., and Thea, C.: A data-based assessment of the dependence of short-duration precipitation on elevation, Phys. Chem. Earth Pt. A/B/C, 3, 635–641, 2009. 
Amponsah, W., Dallan, E., Nikolopoulos, E. I., and Marra, F.: Climatic and topographic controls on rainfall extremes and their temporal changes in data-sparse tropical regions, J. Hydrol., 612, 128090, https://doi.org/10.1016/j.jhydrol.2022.128090, 2022. 
Arakawa, A. and Lamb, V.: Computational design of the basic dynamical processes in the UCLA general circulation model, in: Methods in computational physics: general circulation mod- els of the atmosphere, vol. 17, edited by: Chang, J., Academic Press, New York, 173–265, https://doi.org/10.1016/B978-0-12-460817-7.50009-4, 1970. 
Avanzi, F., De Michele, C., Gabriele, S., Ghezzi, A., and Rosso, R.: Orographic signature on extreme precipitation of short durations, J. Hydrometeorol., 16, 278–294, 2015. 
Download
Short summary
Convection-permitting climate models could represent future changes in extreme short-duration precipitation, which is critical for risk management. We use a non-asymptotic statistical method to estimate extremes from 10 years of simulations in an orographically complex area. Despite overall good agreement with rain gauges, the observed decrease of hourly extremes with elevation is not fully represented by the model. Climate model adjustment methods should consider the role of orography.
Share