Articles | Volume 26, issue 3
https://doi.org/10.5194/hess-26-689-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-26-689-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Compound flood impact forecasting: integrating fluvial and flash flood impact assessments into a unified system
Josias Láng-Ritter
CORRESPONDING AUTHOR
Center of Applied Research in Hydrometeorology, Universitat Politècnica de Catalunya, BarcelonaTech, Jordi Girona 1-3 (C4-S1), 08034 Barcelona, Spain
Water and Development Research Group, Aalto University, Tietotie 1E, 02150 Espoo, Finland
Marc Berenguer
Center of Applied Research in Hydrometeorology, Universitat Politècnica de Catalunya, BarcelonaTech, Jordi Girona 1-3 (C4-S1), 08034 Barcelona, Spain
Francesco Dottori
European Commission, Joint Research Centre, Space, Security and Migration Directorate, Via E. Fermi 2749, 21027 Ispra, Italy
Milan Kalas
Freelance consultant, Sladkovicova 228/8, 01401 Bytca, Slovakia
Daniel Sempere-Torres
Center of Applied Research in Hydrometeorology, Universitat Politècnica de Catalunya, BarcelonaTech, Jordi Girona 1-3 (C4-S1), 08034 Barcelona, Spain
Related authors
No articles found.
Joy Ommer, Milan Kalas, Jessica Neumann, Sophie Blackburn, and Hannah L. Cloke
Nat. Hazards Earth Syst. Sci., 25, 2929–2938, https://doi.org/10.5194/nhess-25-2929-2025, https://doi.org/10.5194/nhess-25-2929-2025, 2025
Short summary
Short summary
What do we regret about our disaster preparedness? This paper explores the regrets of 438 citizens who were affected by flooding in Germany in 2021. It shows that regret can primarily be associated with inaction (instead of actions), which contrasts with psychological studies from fields other than disaster science. The findings of this study suggest that the no-regret approach could be a suitable framework for moving towards longer-term disaster preparedness to reduce future regrets.
Dominik Paprotny, Belinda Rhein, Michalis I. Vousdoukas, Paweł Terefenko, Francesco Dottori, Simon Treu, Jakub Śledziowski, Luc Feyen, and Heidi Kreibich
Hydrol. Earth Syst. Sci., 28, 3983–4010, https://doi.org/10.5194/hess-28-3983-2024, https://doi.org/10.5194/hess-28-3983-2024, 2024
Short summary
Short summary
Long-term trends in flood losses are regulated by multiple factors, including climate variation, population and economic growth, land-use transitions, reservoir construction, and flood risk reduction measures. Here, we reconstruct the factual circumstances in which almost 15 000 potential riverine, coastal and compound floods in Europe occurred between 1950 and 2020. About 10 % of those events are reported to have caused significant socioeconomic impacts.
Joy Ommer, Jessica Neumann, Milan Kalas, Sophie Blackburn, and Hannah L. Cloke
Nat. Hazards Earth Syst. Sci., 24, 2633–2646, https://doi.org/10.5194/nhess-24-2633-2024, https://doi.org/10.5194/nhess-24-2633-2024, 2024
Short summary
Short summary
What’s the worst that could happen? Recent floods are often claimed to be beyond our imagination. Imagination is the picturing of a situation in our mind and the emotions that we connect with this situation. But why is this important for disasters? This survey found that when we cannot imagine a devastating flood, we are not preparing in advance. Severe-weather forecasts and warnings need to advance in order to trigger our imagination of what might happen and enable us to start preparing.
Lorenzo Alfieri, Andrea Libertino, Lorenzo Campo, Francesco Dottori, Simone Gabellani, Tatiana Ghizzoni, Alessandro Masoero, Lauro Rossi, Roberto Rudari, Nicola Testa, Eva Trasforini, Ahmed Amdihun, Jully Ouma, Luca Rossi, Yves Tramblay, Huan Wu, and Marco Massabò
Nat. Hazards Earth Syst. Sci., 24, 199–224, https://doi.org/10.5194/nhess-24-199-2024, https://doi.org/10.5194/nhess-24-199-2024, 2024
Short summary
Short summary
This work describes Flood-PROOFS East Africa, an impact-based flood forecasting system for the Greater Horn of Africa. It is based on hydrological simulations, inundation mapping, and estimation of population and assets exposed to upcoming river floods. The system supports duty officers in African institutions in the daily monitoring of hydro-meteorological disasters. A first evaluation shows the system performance for the catastrophic floods in the Nile River basin in summer 2020.
Francesco Dottori, Lorenzo Alfieri, Alessandra Bianchi, Jon Skoien, and Peter Salamon
Earth Syst. Sci. Data, 14, 1549–1569, https://doi.org/10.5194/essd-14-1549-2022, https://doi.org/10.5194/essd-14-1549-2022, 2022
Short summary
Short summary
We present a set of hazard maps for river flooding for Europe and the Mediterranean basin. The maps depict inundation extent and depth for flood probabilities for up to 1-in-500-year flood hazards and are based on hydrological and hydrodynamic models driven by observed climatology. The maps can identify two-thirds of the flood extent reported by official flood maps, with increasing skill for higher-magnitude floods. The maps are used for evaluating present and future impacts of river floods.
Kees C. H. van Ginkel, Francesco Dottori, Lorenzo Alfieri, Luc Feyen, and Elco E. Koks
Nat. Hazards Earth Syst. Sci., 21, 1011–1027, https://doi.org/10.5194/nhess-21-1011-2021, https://doi.org/10.5194/nhess-21-1011-2021, 2021
Short summary
Short summary
This study presents a state-of-the-art approach to assess flood damage for each unique road segment in Europe. We find a mean total flood risk of EUR 230 million per year for all individual road segments combined. We identify flood hotspots in the Alps, along the Sava River, and on the Scandinavian Peninsula. To achieve this, we propose a new set of damage curves for roads and challenge the community to validate and improve these. Analysis of network effects can be easily added to our analysis.
Cited articles
Aldridge, T., Gunawan, O., Moore, R. J., Cole, S. J., and Price, D.: A surface
water flooding impact library for flood risk assessment, E3S Web Conf., 7, 18006, https://doi.org/10.1051/e3sconf/20160718006, 2016. a
Alfieri, L., Salamon, P., Pappenberger, F., Wetterhall, F., and Thielen, J.:
Operational early warning systems for water-related hazards in Europe,
Environ. Sci. Policy, 21, 35–49,
https://doi.org/10.1016/j.envsci.2012.01.008, 2012. a
Alfieri, L., Berenguer, M., Knechtl, V., Liechti, K., Sempere-Torres, D., and
Zappa, M.: Flash Flood Forecasting Based on Rainfall Thresholds, in:
Handbook of Hydrometeorological Ensemble Forecasting, edited by: Duan, Q., Pappenberger, F., Wood, A., Cloke, H. L., and Schaake, J. C.,
Springer Berlin Heidelberg, Berlin, Heidelberg, 1223–1260,
https://doi.org/10.1007/978-3-642-39925-1_49, 2019. a
AON: Global Catastrophe Recap – September 2019, Tech. rep., AON,
available at: http://thoughtleadership.aon.com/Documents/20191009_analytics-if-september-global-recap.pdf (last access: 2 February 2022),
2019. a
Apel, H., Martínez Trepat, O., Hung, N. N., Chinh, D. T., Merz, B., and Dung, N. V.: Combined fluvial and pluvial urban flood hazard analysis: concept development and application to Can Tho city, Mekong Delta, Vietnam, Nat. Hazards Earth Syst. Sci., 16, 941–961, https://doi.org/10.5194/nhess-16-941-2016, 2016. a, b
Arbáizar-Barrios, F.: Episodio de Inundaciones en la Región de
Murcia, 11–15 Septemer 2019, available at:
https://www.miteco.gob.es/es/agua/formacion/presentacion-18-jornada-implantacion-pgris-lecciones-aprendidas-inundaciones2019_regmurcia_tcm30-503800.pdf (last access: 2 February 2022),
2019. a, b
Basher, R.: Global early warning systems for natural hazards: systematic and
people-centred, Philos. T. R. Soc. A, 365, 2167–2182,
https://doi.org/10.1098/rsta.2006.1819, 2006. a
Bates, P. D., Quinn, N., Sampson, C., Smith, A., Wing, O., Sosa, J., Savage,
J., Olcese, G., Neal, J., Schumann, G., Giustarini, L., Coxon, G., Porter,
J. R., Amodeo, M. F., Chu, Z., Lewis‐Gruss, S., Freeman, N. B., Houser, T.,
Delgado, M., Hamidi, A., Bolliger, I., McCusker, K., Emanuel, K., Ferreira,
C. M., Khalid, A., Haigh, I. D., Couasnon, A., Kopp, R., Hsiang, S., and
Krajewski, W. F.: Combined Modeling of US Fluvial, Pluvial, and Coastal
Flood Hazard Under Current and Future Climates, Water Resour. Res.,
57, e2020WR02867, https://doi.org/10.1029/2020wr028673, 2021. a
Bevington, J., Hankin, B., Berry, R., Gubbin, A., Lowis, A., Pinnell, M.,
Revilla-Romero, B., Shelton, K., and Wood, E.: Flood Foresight: Global Flood
Impact Forecasting, EGU General Assembly 2019, Geophysical Research Abstracts, 21,
Abstract number EGU2019-15430, available at:
https://meetingorganizer.copernicus.org/EGU2019/EGU2019-15430.pdf
(last access: 2 February 2022), 2019. a
Bolle, A., Das Neves, L., Smets, S., Mollaert, J., and Buitrago, S.: An
impact-oriented Early Warning and Bayesian-based Decision Support System for
flood risks in Zeebrugge harbour, Coast. Eng., 134, 191–202,
https://doi.org/10.1016/j.coastaleng.2017.10.006, 2018. a
Brown, E., Bachmann, D., Cranston, M., De Leeuw, A., Boelee, L., Diermanse,
F., Eilander, D., De Bruijn, K., Weerts, A., Hazlewood, C., and Beckers,
J.: Methods and tools to support real time risk-based flood forecasting – A
UK pilot application, E3S Web Conf., 7, 18019, https://doi.org/10.1051/e3sconf/20160718019, 2016. a
Camus, P., Haigh, I. D., Nasr, A. A., Wahl, T., Darby, S. E., and Nicholls, R. J.: Regional analysis of multivariate compound coastal flooding potential around Europe and environs: sensitivity analysis and spatial patterns, Nat. Hazards Earth Syst. Sci., 21, 2021–2040, https://doi.org/10.5194/nhess-21-2021-2021, 2021. a
Cassiraga, E., Gómez-Hernández, J. J., Berenguer, M.,
Sempere-Torres, D., and Rodrigo-Ilarri, J.: Spatiotemporal Precipitation
Estimation from Rain Gauges and Meteorological Radar Using Geostatistics,
Math. Geosci., 53, 499–516, https://doi.org/10.1007/s11004-020-09882-1, 2020. a
Chen, A. S., Djordjevic, S., Leandro, J., and Savic, D. A.: An analysis of the
combined consequences of pluvial and fluvial flooding, Water Sci.
Technol., 62, 1491–1498, https://doi.org/10.2166/wst.2010.486, 2010. a, b
CHS: Marco físico, available at:
https://www.chsegura.es/es/cuenca/caracterizacion/marco-fisico/ (last access: 2 February 2022),
2020a. a
CHS: Listado de embalses, available at:
https://www.chsegura.es/es/cuenca/infraestructuras/embalses/listado-de-embalses/ (last access: 2 February 2022),
2020b. a
Cloke, H. L. and Pappenberger, F.: Ensemble flood forecasting: A review,
J. Hydrol., 375, 613–626, https://doi.org/10.1016/j.jhydrol.2009.06.005,
2009. a
Cole, S. J., Moore, R. J., Wells, S. C., and Mattingley, P. S.: Real-time
forecasts of flood hazard and impact: some UK experiences, E3S Web
Conf., 7, 18015,
https://doi.org/10.1051/e3sconf/20160718015,
2016. a
Corral, C., Velasco, D., Forcadell, D., Sempere-Torres, D., and Velasco, E.:
Advances in radar-based flood warning systems. The EHIMI system and the
experience in the Besòs flash-flood pilot basin, in: Flood risk
management: research and practice, edited by: Samuels, P., Huntington, S., Allsop, W., and Harrop, J., Taylor and Francis Group, p. 309, ISBN 9780203883020, 2009. a, b
Corral, C., Berenguer, M., Sempere-Torres, D., Poletti, L., Silvestro, F., and
Rebora, N.: Comparison of two early warning systems for regional flash flood
hazard forecasting, J. Hydrol., 572, 603–619,
https://doi.org/10.1016/j.jhydrol.2019.03.026, 2019. a, b, c, d
Couasnon, A., Eilander, D., Muis, S., Veldkamp, T. I. E., Haigh, I. D., Wahl, T., Winsemius, H. C., and Ward, P. J.: Measuring compound flood potential from river discharge and storm surge extremes at the global scale, Nat. Hazards Earth Syst. Sci., 20, 489–504, https://doi.org/10.5194/nhess-20-489-2020, 2020. a
CRED: Natural Disasters 2018, Tech. rep., Centre for Research on the
Epidemiology of Disasters, Brussels, Belgium, available at:
https://www.cred.be/natural-disasters-2018 (last access: 2 February 2022), 2019. a
Croux, C. and Dehon, C.: Influence functions of the Spearman and Kendall
correlation measures, Stat. Method. Appl., 19, 497–515,
https://doi.org/10.1007/s10260-010-0142-z, 2010. a, b
Dale, M., Wicks, J., Mylne, K., Pappenberger, F., Laeger, S., and Taylor, S.:
Probabilistic flood forecasting and decision-making: An innovative
risk-based approach, Nat. Hazards, 70, 159–172,
https://doi.org/10.1007/s11069-012-0483-z, 2014. a
Dottori, F., Szewczyk, W., Ciscar, J. C., Zhao, F., Alfieri, L., Hirabayashi,
Y., Bianchi, A., Mongelli, I., Frieler, K., Betts, R. A., and Feyen, L.:
Increased human and economic losses from river flooding with anthropogenic
warming, Nat. Clim. Change, 8, 781–786, https://doi.org/10.1038/s41558-018-0257-z, 2018. a
Dottori, F., Alfieri, L., Bianchi, A., Skoien, J., and Salamon, P.: A new dataset of river flood hazard maps for Europe and the Mediterranean Basin region, Earth Syst. Sci. Data Discuss. [preprint], https://doi.org/10.5194/essd-2020-313, in review, 2021. a, b, c
European Commission: Directive 2007/60/EC of the European Parliament and of
the Council of 23 October 2007 on the Assessment and Management of Flood
Risks, Tech. rep., The European Parliament and the Council of the European
Union, available at: http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32007L0060 (last access: 2 February 2022), 2007. a, b, c
Fernández-Montblanc, T., Vousdoukas, M. I., Ciavola, P., Voukouvalas, E.,
Mentaschi, L., Breyiannis, G., Feyen, L., and Salamon, P.: Towards robust
pan-European storm surge forecasting, Ocean Model., 133, 129–144,
https://doi.org/10.1016/j.ocemod.2018.12.001, 2019. a
Ferreira, O., Viavattene, C., Jiménez, J. A., Bolle, A., das Neves, L.,
Plomaritis, T. A., McCall, R., and van Dongeren, A. R.: Storm-induced risk
assessment: Evaluation of two tools at the regional and hotspot scale,
Coast. Eng., 134, 241–253, https://doi.org/10.1016/j.coastaleng.2017.10.005,
2018. a
Ferreira, R. N.: Cut-Off Lows and Extreme Precipitation in Eastern Spain:
Current and Future Climate, Atmosphere, 12, 835, https://doi.org/10.3390/atmos12070835,
2021. a
Freire, S., Halkia, M., and Pesaresi, M.: GHS population grid, derived from
EUROSTAT census data (2011) and ESM R2016, European Commission, Joint
Research Centre (JRC) [data set], available at:
http://data.europa.eu/89h/jrc-ghsl-ghs_pop_eurostat_europe_r2016a (last access: 2 February 2022),
2016. a, b, c
García, L., Bermejo, J., Sánchez, J., and Guerrero, J.: Dana 2019
y aspectos relativos a la estimación y tratamiento del riesgo asociado
a inundaciones, in: Riesgo de inundación en España:
análisis y soluciones para la generación de territorios
resilientes, Universidad de Alicante, 143–166, available at:
https://dialnet.unirioja.es/servlet/articulo?codigo=7578902 (last access: 2 February 2022),
2020. a
Georgakakos, K. P.: On the Design of National, Real-Time Warning Systems with
Capability for Site-Specific, Flash-Flood Forecasts, B.
Am. Meteorol. Soc., 67, 1233–1239,
https://doi.org/10.1175/1520-0477(1986)067<1233:OTDONR>2.0.CO;2, 1986. a
Goldscheider, N., Chen, Z., Auler, A. S., Bakalowicz, M., Broda, S., Drew, D.,
Hartmann, J., Jiang, G., Moosdorf, N., Stevanovic, Z., Veni, G., and De,
C. Z.: Global distribution of carbonate rocks and karst water resources,
Hydrogeol. J., 28, 1661–1677,
https://doi.org/10.1007/s10040-020-02139-5, 2020. a
Guimarães Nobre, G., Moel, H., Giuliani, M., Bischiniotis, K., Aerts,
J. C., and Ward, P. J.: What Will the Weather Do? Forecasting Flood Losses
Based on Oscillation Indices, Earth's Future, 8, e2019EF001450, https://doi.org/10.1029/2019EF001450,
2020. a
Hapuarachchi, H. A. P., Wang, Q. J., and Pagano, T. C.: A review of advances
in flash flood forecasting, Hydrol. Process., 25, 2771–2784,
https://doi.org/10.1002/hyp.8040, 2011. a
Harley, M. D., Valentini, A., Armaroli, C., Perini, L., Calabrese, L., and Ciavola, P.: Can an early-warning system help minimize the impacts of coastal storms? A case study of the 2012 Halloween storm, northern Italy, Nat. Hazards Earth Syst. Sci., 16, 209–222, https://doi.org/10.5194/nhess-16-209-2016, 2016. a
Hartmann, A., Goldscheider, N., Wagener, T., Lange, J., and Weiler, M.: Karst
water resources in a changing world: Review of hydrological modeling
approaches, Rev. Geophys., 52, 218–242, https://doi.org/10.1002/2013RG000443,
2014. a
Henonin, J., Russo, B., Mark, O., and Gourbesville, P.: Real-time urban flood
forecasting and modelling – a state of the art, J. Hydroinform.,
15, 717–736, https://doi.org/10.2166/hydro.2013.132, 2013. a
Hofmann, J. and Schüttrumpf, H.: Risk-Based Early Warning System for
Pluvial Flash Floods: Approaches and Foundations, Geosciences, 9, 127,
https://doi.org/10.3390/geosciences9030127, 2019. a
Huizinga, J., de Moel, H., and Szewczyk, W.: Global flood depth-damage
functions: Methodology and the Database with Guidelines, Tech. rep., Joint
Research Centre (JRC), https://doi.org/10.2760/16510, 2017. a, b
IPCC: Managing the Risks of Extreme Events and Disasters to Advance Climate
Change Adaptation. A Special Report of Working Groups I and II of the
Intergovernmental Panel on Climate Change, edited by: Field, C. B., Barros, V., Stocker, T. F., Qin, D., Dokken, D. J., Ebi, K. L., Mastrandrea, M. D., Mach, K. J., Plattner, G.-K., Allen, S. K.,
Tignor, M., and Midgley, P. M., Cambridge University Press,
Cambridge, UK, and New York, USA, ISBN 978-1-107-02506-6, 2018. a, b
Jain, S. K., Mani, P., Jain, S. K., Prakash, P., Singh, V. P., Tullos, D.,
Kumar, S., Agarwal, S. P., and Dimri, A. P.: A Brief review of flood
forecasting techniques and their applications, International Journal of
River Basin Management, 16, 329–344, https://doi.org/10.1080/15715124.2017.1411920,
2018. a
Javelle, P., Organde, D., Demargne, J., Saint-Martin, C., de Saint-Aubin, C.,
Garandeau, L., and Janet, B.: Setting up a French national flash flood
warning system for ungauged catchments based on the AIGA method, E3S Web Conf., 7, 18010, https://doi.org/10.1051/e3sconf/20160718010, 2016. a
Kirpich, Z.: Time of concentration of small agricultural watersheds, Civil
Eng. 10, 362, 1940. a
Kohno, N., Dube, S. K., Entel, M., Fakhruddin, S., Greenslade, D., Leroux,
M.-D., Rhome, J., and Thuy, N. B.: Recent Progress in Storm Surge
Forecasting, Tropical Cyclone Research and Review, 7, 128–139,
https://doi.org/10.6057/2018TCRR02.04, 2018. a
Le Bihan, G., Payrastre, O., Gaume, E., Moncoulon, D., and Pons, F.: The challenge of forecasting impacts of flash floods: test of a simplified hydraulic approach and validation based on insurance claim data, Hydrol. Earth Syst. Sci., 21, 5911–5928, https://doi.org/10.5194/hess-21-5911-2017, 2017. a
Martín León, F.: Las gotas frías/DANAs: ideas y conceptos
básicos, Tech. rep., INSTITUTO NACIONAL DE METEOROLOGÍA, Madrid, ISBN 84-8320-247-6,
2003. a
Mazzetti, C. and Harrigan, S.: What's new in EFAS 4.0?, available at:
https://www.efas.eu/sites/default/files/AM/AM2020/EFAS_AM_2020_2_What is new in EFAS4.pdf (last access: 2 February 2022), 2020. a
Merz, B., Kuhlicke, C., Kunz, M., Pittore, M., Babeyko, A., Bresch, D. N., V
Domeisen, D. I., Feser, F., Koszalka, I., Kreibich, H., Pantillon, F.,
Parolai, S., Pinto, J. G., Punge, H.-J., Rivalta, E., Schröter, K.,
Strehlow, K., Weisse, R., and Wurpts, A.: Impact Forecasting to Support
Emergency Management of Natural Hazards, Rev. Geophys., 58, e2020RG000704,
https://doi.org/10.1029/2020RG000704, 2020. a, b, c, d
Munich Re: Flood risk: Underestimated natural hazards, available at:
https://www.munichre.com/en/risks/natural-disasters-losses-are-trending-upwards/floods-and-flash-floods-underestimated-natural-hazards.html (last access: 2 February 2022),
2020. a
Nazemi, A. and Wheater, H. S.: On inclusion of water resource management in Earth system models – Part 2: Representation of water supply and allocation and opportunities for improved modeling, Hydrol. Earth Syst. Sci., 19, 63–90, https://doi.org/10.5194/hess-19-63-2015, 2015. a
Niemi, T., Baugh, C., Berenguer, M., Berruezo, A., Leinonen, M., von Lerber, A., Park, S., Prudhomme, C., Pulkkinen, S., and Ritvanen, J.: Advanced Tools for pro-Active Management of Impacts and Risks Induced by Convective Weather, Heavy Rain and Flash floods in Europe – TAMIR project, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-8194, https://doi.org/10.5194/egusphere-egu21-8194, 2021. a
Pappenberger, F., Cloke, H. L., Parker, D. J., Wetterhall, F., Richardson,
D. S., and Thielen, J.: The monetary benefit of early flood warnings in
Europe, Environ. Sci. Policy, 51, 278–291,
https://doi.org/10.1016/j.envsci.2015.04.016, 2015. a
Park, S., Berenguer, M., and Sempere-Torres, D.: Long-term analysis of
gauge-adjusted radar rainfall accumulations at European scale, J.
Hydrol., 573, 768–777,
https://doi.org/10.1016/j.jhydrol.2019.03.093, 2019. a
Rebora, N., Vicente, C., De Ferrari, R., Cangros, A., Sutanto, S., van Lanen,
H. A., Karvonen, M., Von Lerber, A., Bergman, T., Peter, A., Moy, J. S.,
Botey, P., Torres, R. M., and Santiago, A.: ANYWHERE Project Deliverable
6.5: Final report compiling the results of the A4EU in each pilot site,
Tech. rep., available at:
http://www.anywhere-h2020.eu/wp-content/uploads/docs/D6.5_submitted.pdf (last access: 2 February 2022),
2019. a
Ritter, J., Corzo, G., Solomatine, D., and Angarita, H.: Multiobjective Direct
Policy Search Using Physically Based Operating Rules in Multireservoir
Systems, J. Water Res. Pl., 146, 05020002,
https://doi.org/10.1061/(ASCE)WR.1943-5452.0001159, 2020b. a
Ritter, J., Berenguer, M., Park, S., and Sempere-Torres, D.: Real-time
Assessment of Flash Flood Impacts at pan-European scale: The ReAFFINE
method, J. Hydrol., 603, 127022,
https://doi.org/10.1016/j.jhydrol.2021.127022, 2021a. a, b
Ritter, J., Berenguer, M., Park, S., and Sempere-Torres, D.: Rapid flash flood impact assessments at different spatial scales, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-14444, https://doi.org/10.5194/egusphere-egu21-14444, 2021b. a, b
Roo, A. P. J. D., Wesseling, C. G., and Deursen, W. P. A. V.: Physically based
river basin modelling within a GIS: the LISFLOOD model, Hydrol.
Process., 14, 1981–1992,
https://doi.org/10.1002/1099-1085(20000815/30)14:11/12<1981::AID-HYP49>3.0.CO;2-F,
2000. a
Rözer, V., Peche, A., Berkhahn, S., Feng, Y., Fuchs, L., Graf, T.,
Haberlandt, U., Kreibich, H., Sämann, R., Sester, M., Shehu, B., Wahl,
J., and Neuweiler, I.: Impact‐Based Forecasting for Pluvial Floods,
Earth's Future, 9, 2020EF001851, https://doi.org/10.1029/2020EF001851, 2021. a
Saint-Martin, C., Fouchier, C., Javelle, P., Douvinet, J., and Vinet, F.:
Assessing the exposure to floods to estimate the risk of flood-related
damage in French Mediterranean basins, E3S Web Conf., 7,
04013, https://doi.org/10.1051/e3sconf/20160704013, 2016. a
Saltikoff, E., Haase, G., Delobbe, L., Gaussiat, N., Martet, M., Idziorek, D.,
Leijnse, H., Novák, P., Lukach, M., and Stephan, K.: OPERA the radar
project, Atmosphere, 10, 320, https://doi.org/10.3390/atmos10060320, 2019. a
Santiago-Collazo, F. L., Bilskie, M. V., and Hagen, S. C.: A comprehensive
review of compound inundation models in low-gradient coastal watersheds,
Environ. Modell. Softw., 119, 166–181,
https://doi.org/10.1016/j.envsoft.2019.06.002, 2019. a, b
Silvestro, F., Rossi, L., Campo, L., Parodi, A., Fiori, E., Rudari, R., and
Ferraris, L.: Impact-based flash-flood forecasting system: Sensitivity to
high resolution numerical weather prediction systems and soil moisture,
J. Hydrol., 572, 388–402, https://doi.org/10.1016/j.jhydrol.2019.02.055,
2019. a
Speight, L., Cole, S. J., Moore, R. J., Pierce, C., Wright, B., Golding, B.,
Cranston, M., Tavendale, A., Dhondia, J., and Ghimire, S.: Developing
surface water flood forecasting capabilities in Scotland: an operational
pilot for the 2014 Commonwealth Games in Glasgow, J. Flood Risk
Manag., 11, S884–S901, https://doi.org/10.1111/jfr3.12281, 2018. a
Titley, H. A., Cloke, H. L., Harrigan, S., Pappenberger, F., Prudhomme, C.,
Robbins, J. C., Stephens, E. M., and Zsoter, E.: Key factors influencing the
severity of fluvial flood hazard from tropical cyclones, J.
Hydrometeorol., 22, 1801–1817, https://doi.org/10.1175/jhm-d-20-0250.1, 2021. a
UNISDR: Developing Early Warning Systems: A checklist. The conclusions of the
third international conference on early warning, Tech. rep., United Nations
International Strategy for Disaster Reduction, Bonn, Germany, available at: https://www.unisdr.org/2006/ppew/info-resources/ewc3/checklist/English.pdf (last access: 2 February 2022), 2006. a
UNISDR: Global Assessment Report on Disaster Risk Reduction. Making
Development Sustainable: The Future of Disaster Risk Management, Tech. rep.,
United Nations International Strategy for Disaster Risk Reduction,
available at: https://www.preventionweb.net/english/hyogo/gar/2015/en/gar-pdf/GAR2015_EN.pdf (last access: 2 February 2022), 2015a. a
UNISDR: Sendai Framework for Disaster Risk Reduction 2015–2030, Tech. rep.,
United Nations Office for Disaster Risk Reduction, available at: https://www.undrr.org/publication/sendai-framework-disaster-risk-reduction-2015-2030
(last access: 2 February 2022),
2015b. a
Van Der Knijff, J. M., Younis, J., and De Roo, A. P. J.: LISFLOOD: a
GIS‐based distributed model for river basin scale water balance and flood
simulation, International Journal of Geographical Information Science, 24,
189–212, https://doi.org/10.1080/13658810802549154, 2010. a
Vaz, N.: Visualizing the Impacts of NWS Coastal Flood Forecasts using NWS
Impacts Catalogs and NOAA Coastal Inundation Viewer, available at:
https://www.weather.gov/media/okx/coastalflood/Understanding Coastal Impacts.pdf (last access: 2 February 2022), 2017.
a
Velasco-Forero, C. A., Sempere-Torres, D., Cassiraga, E. F., and
Gómez-Hernández, J. J.: A non-parametric automatic blending
methodology to estimate rainfall fields from rain gauge and radar data,
Adv. Water Resour., 32, 986–1002,
https://doi.org/10.1016/j.advwatres.2008.10.004, 2009. a
Versini, P.-A., Gaume, E., and Andrieu, H.: Application of a distributed hydrological model to the design of a road inundation warning system for flash flood prone areas, Nat. Hazards Earth Syst. Sci., 10, 805–817, https://doi.org/10.5194/nhess-10-805-2010, 2010. a
Wahl, T., Jain, S., Bender, J., Meyers, S. D., and Luther, M. E.: Increasing
risk of compound flooding from storm surge and rainfall for major US cities,
Nat. Clim. Change, 5, 1093–1097, https://doi.org/10.1038/nclimate2736, 2015. a, b
WMO: Guidelines on the Definition and Monitoring of Extreme Weather and
Climate Events – Final draft, Tech. rep., World Meteorological Organiation, available at:
https://ane4bf-datap1.s3-eu-west-1.amazonaws.com/wmocms/s3fs-public/event/related_docs/DraftversionoftheGuidelinesonthe DefinitionandMonitoringofExtremeWeatherandClimateEvents.pdf?h2Kr0f7dXp6CXZzoclQYveoEQ9FNoO5r (last access: 2 February 2022),
2018a. a
WMO: Multi-hazard Early Warning Systems: A Checklist. Outcome of the first
Multi-hazard Early Warning Conference, Tech. rep., World Meteorological
Organization, Cancún, Mexico, available at: https://library.wmo.int/doc_num.php?explnum_id=4463 (last access: 2 February 2022), 2018b. a
World Bank: Natural hazards, unnatural disasters: the economics of
effective prevention, World Bank, available at: https://openknowledge.worldbank.org/handle/10986/2512 (last access: 2 February 2022), 2010. a
Zanchetta, A. D. and Coulibaly, P.: Recent advances in real-time pluvial flash
flood forecasting, Water (Switzerland), 12, 570, https://doi.org/10.3390/w12020570,
2020. a
Zscheischler, J., Martius, O., Westra, S., Bevacqua, E., Raymond, C., Horton, R., van den Hurk, B., AghaKouchak, A., Jézéquel, A., Mahecha, M., Maraun, D., Ramos, A., Ridder, N., Thiery, W., and Vignotto, E.: A typology of compound weather and climate events, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8572, https://doi.org/10.5194/egusphere-egu2020-8572, 2020. a
Short summary
During flood events, emergency managers such as civil protection authorities rely on flood forecasts to make informed decisions. In the current practice, they monitor several separate forecasts, each one of them covering a different type of flooding. This can be time-consuming and confusing, ultimately compromising the effectiveness of the emergency response. This work illustrates how the automatic combination of flood type-specific impact forecasts can improve decision support systems.
During flood events, emergency managers such as civil protection authorities rely on flood...