Articles | Volume 26, issue 22
https://doi.org/10.5194/hess-26-5933-2022
https://doi.org/10.5194/hess-26-5933-2022
Research article
 | 
25 Nov 2022
Research article |  | 25 Nov 2022

Monitoring the extreme flood events in the Yangtze River basin based on GRACE and GRACE-FO satellite data

Jingkai Xie, Yue-Ping Xu, Hongjie Yu, Yan Huang, and Yuxue Guo

Related authors

AI-based techniques for multi-step streamflow forecasts: application for multi-objective reservoir operation optimization and performance assessment
Yuxue Guo, Xinting Yu, Yue-Ping Xu, Hao Chen, Haiting Gu, and Jingkai Xie
Hydrol. Earth Syst. Sci., 25, 5951–5979, https://doi.org/10.5194/hess-25-5951-2021,https://doi.org/10.5194/hess-25-5951-2021, 2021
Short summary

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Remote Sensing and GIS
Pairing remote sensing and clustering in landscape hydrology for large-scale change identification: an application to the subarctic watershed of the George River (Nunavik, Canada)
Eliot Sicaud, Daniel Fortier, Jean-Pierre Dedieu, and Jan Franssen
Hydrol. Earth Syst. Sci., 28, 65–86, https://doi.org/10.5194/hess-28-65-2024,https://doi.org/10.5194/hess-28-65-2024, 2024
Short summary
Uncertainty assessment of satellite remote-sensing-based evapotranspiration estimates: a systematic review of methods and gaps
Bich Ngoc Tran, Johannes van der Kwast, Solomon Seyoum, Remko Uijlenhoet, Graham Jewitt, and Marloes Mul
Hydrol. Earth Syst. Sci., 27, 4505–4528, https://doi.org/10.5194/hess-27-4505-2023,https://doi.org/10.5194/hess-27-4505-2023, 2023
Short summary
On the time scale of meteorological, soil moisture, and snow drought indices to assess streamflow drought over catchments with different hydrological regime: a case study using a hundred Chilean catchments
Oscar M. Baez-Villanueva, Mauricio Zambrano-Bigiarini, Diego G. Miralles, Hylke E. Beck, Jonatan F. Siegmund, Camila Alvarez-Garreton, Koen Verbist, René Garreaud, Juan Pablo Boisier, and Mauricio Galleguillos
EGUsphere, https://doi.org/10.5194/egusphere-2023-1911,https://doi.org/10.5194/egusphere-2023-1911, 2023
Short summary
Sediment transport in Indian rivers high enough to impact satellite gravimetry
Alexandra Klemme, Thorsten Warneke, Heinrich Bovensmann, Matthias Weigelt, Jürgen Müller, Tim Rixen, Justus Notholt, and Claus Lämmerzahl
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2023-37,https://doi.org/10.5194/hess-2023-37, 2023
Revised manuscript accepted for HESS
Short summary
Predicting soil moisture conditions across a heterogeneous boreal catchment using terrain indices
Johannes Larson, William Lidberg, Anneli M. Ågren, and Hjalmar Laudon
Hydrol. Earth Syst. Sci., 26, 4837–4851, https://doi.org/10.5194/hess-26-4837-2022,https://doi.org/10.5194/hess-26-4837-2022, 2022
Short summary

Cited articles

Abhishek, Kinouchi, T., and Sayama, T.: A comprehensive assessment of water storage dynamics and hydroclimatic extremes in the Chao Phraya River Basin during 2002–2020, J. Hydrol., 603, 126868, https://doi.org/10.1016/j.jhydrol.2021.126868, 2021. 
Abhishek, Kinouchi, T., Abolafia-Rosenzweig, R., and Ito, M.: Water Budget Closure in the Upper Chao Phraya River Basin, Thailand Using Multisource Data, Remote Sens., 14, 173, https://doi.org/10.3390/rs14010173, 2022. 
Ahmed, M., Aqnouy, M., and Messari, J. S. E.: Sustainability of Morocco's groundwater resources in response to natural and anthropogenic forces, J. Hydrol., 603, 126866, https://doi.org/10.1016/j.jhydrol.2021.126866, 2021. 
Bai, P., Liu, X., and Xie, J.: Simulating runoff under changing climatic conditions: A comparison of the long short-term memory network with two conceptual hydrologic models, J. Hydrol., 592, 125779, https://doi.org/10.1016/j.jhydrol.2020.125779, 2021. 
Beaudoing, H. and Rodell, M.: NASA/GSFC/HSL, GLDAS Noah Land Surface Model L4 3 hourly 0.25 × 0.25 degree V2.1, Greenbelt, Maryland, USA, Goddard Earth Sciences Data and Information Services Center (GES DISC) [data set], https://doi.org/10.5067/E7TYRXPJKWOQ, 2020. 
Download
Short summary
Monitoring extreme flood events has long been a hot topic for hydrologists and decision makers around the world. In this study, we propose a new index incorporating satellite observations combined with meteorological data to monitor extreme flood events at sub-monthly timescales for the Yangtze River basin (YRB), China. The conclusions drawn from this study provide important implications for flood hazard prevention and water resource management over this region.