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Abstract. Gravity Recovery and Climate Experiment
(GRACE) and its successor GRACE Follow-on (GRACE-
FO) satellite provide terrestrial water storage anomaly
(TWSA) estimates globally that can be used to monitor
flood in various regions at monthly intervals. However,
the coarse temporal resolution of GRACE and GRACE-
FO satellite data has been limiting their applications at
finer temporal scales. In this study, TWSA estimates have
been reconstructed and then temporally downscaled into
daily values based on three different learning-based models,
namely a multi-layer perceptron (MLP) model, a long-short
term memory (LSTM) model and a multiple linear regres-
sion (MLR) model. Furthermore, a new index incorporat-
ing temporally downscaled TWSA estimates combined with
daily average precipitation anomalies is proposed to moni-
tor the severe flood events at sub-monthly timescales for the
Yangtze River basin (YRB), China. The results indicated that
(1) the MLP model shows the best performance in recon-
structing the monthly TWSA with root mean square error
(RMSE)= 10.9 mm per month and Nash–Sutcliffe efficiency
(NSE)= 0.89 during the validation period; (2) the MLP
model can be useful in temporally downscaling monthly
TWSA estimates into daily values; (3) the proposed normal-
ized daily flood potential index (NDFPI) facilitates robust
and reliable characterization of severe flood events at sub-
monthly timescales; (4) the flood events can be monitored
by the proposed NDFPI earlier than traditional streamflow
observations with respect to the YRB and its individual sub-
basins. All these findings can provide new opportunities for
applying GRACE and GRACE-FO satellite data to investi-
gations of sub-monthly signals and have important implica-
tions for flood hazard prevention and mitigation in the study
region.

1 Introduction

Extreme floods, as one of the most destructive natural haz-
ards, not only cause lots of casualties in China and around
the world, but also have considerable wider and adverse
economic consequences (Dottori et al., 2018). According
to the report published by the United Nations Office for
Disaster Risk Reduction (UNDRR), the total economic
loss induced by floods is up to USD 651 billion worldwide
from 2000 to 2019 (https://www.undrr.org/publication/
human-cost-disasters-overview-last-20-years-2000-2019,
last access: 17 November 2022). Meanwhile, floods are
projected to become more frequent and extreme under global
warming as it can substantially amplify the water-holding
capacity of the air and increase the occurrence of extreme
precipitation events (Slater and Villarini, 2016). Therefore,
monitoring extreme flood events has long been a hot topic
for hydrologists and decision makers around the world
(Tanoue et al., 2020; Tellman et al., 2021).

Contrary to traditionally ground-based observations or hy-
drological models, the launches of Gravity Recovery and
Climate Experiment (GRACE) twin satellites in 2002 and
its successor GRACE Follow-on (GRACE-FO) satellites in
2018 can provide a new methodology for retrieving terres-
trial water storage anomalies (TWSAs) in real time glob-
ally by measuring temporal variations in Earth’s gravity field
(Ahmed et al., 2021; Tapley et al., 2004). The TWSA derived
from GRACE and GRACE-FO satellites comprises all the
surface and subsurface water over land, which can be used
to monitor the hydrologic variations in response to extreme
weather events (Li et al., 2022; Xie et al., 2019a). In this case,
GRACE and GRACE-FO observations have been widely ap-
plied to assess the potential flood risks for a specific region.
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For example, Reager and Famiglietti (2009) proposed a flood
potential index estimated using monthly average precipita-
tion anomalies and GRACE-derived TWSAs to characterize
the potential flood risks from regional to global scales. Xiong
et al. (2021a) developed a novel integrated flood potential
index by linking the flood potential index derived from six
GRACE products based on a copula function, which was fur-
ther used to identify and characterize the floods with different
intensities over the study region. A summary of relevant lit-
erature on detecting extreme flood events using GRACE and
GRACE-FO data has been listed in Table 1.

Previous studies have clearly indicated that the proposed
indices using GRACE and GRACE-FO data can better re-
flect the evolution of flood events than traditional indices,
such as standardized precipitation index (SPI) and standard-
ized precipitation evapotranspiration index (SPEI), because
the GRACE and GRACE-FO observations can measure the
vertically integrated water storage over regions (Yan et al.,
2021; Yin and Park, 2021). However, all these studies mainly
focus on detecting the extreme flood events at monthly in-
tervals, while monitoring the flood events and its hydrolog-
ical impacts at finer temporal scales remains a major chal-
lenge due to the coarse temporal resolution (i.e., monthly)
of GRACE and GRACE-FO data. To date, very few studies
have paid attention to monitor flood events at sub-monthly
timescales using GRACE data. Given the rapid occurrence
and evolution of some extreme events within a short period,
there is a great need to monitor the flood events at a finer
temporal resolution (e.g., day), which has important impli-
cations for better understanding the mechanisms of extreme
flood events in the Yangtze River basin (YRB). Therefore, we
aim to downscale the TWSA estimates derived from GRACE
and GRACE-FO satellite data into daily values and demon-
strate its application to monitor extreme flood events at sub-
monthly timescales for the YRB. The temporally downscaled
TWSA data could be valuable for understanding the effects
of climate change on the hydrological cycle and providing
important implications of flood hazard prevention and water
resource management over this region.

The YRB is one of the most important basins in China
because it can provide freshwater, hydropower, food, and
other ecosystem services for hundreds of millions of people.
Meanwhile, the YRB has been regarded as one of the most
sensitive and vulnerable regions that has suffered from se-
vere floods due to its highly uneven rainfall pattern (Zhang
et al., 2021). During the past decades, increasingly intensi-
fied human activities and climate change have substantially
changed the hydrological cycle in the YRB and thus acceler-
ated the variation of flood characteristics in this region (Fang
et al., 2012; Wang et al., 2011). It has been found that both
the frequency and severity of extreme flood events generally
showed upward trends in the YRB in recent decades, ow-
ing to substantial changes in climate, infrastructure and land
use (Huang et al., 2015; Liu et al., 2019; Yang et al., 2021;
Zhang et al., 2008). For example, in the year 2020, the YRB

experienced one of the most extreme flood events on record.
According to data from the Ministry of Emergency Manage-
ment of the People’s Republic of China, a total of 38.173 mil-
lion people were affected, and 27 000 houses collapsed due
to the 2020 flood, with 56 deaths or disappearances and a
great economic loss of USD 27.68 billion (Jia et al., 2021).

The rest of this paper is mainly organized as follows.
In Sect. 2, descriptions of the study area are presented. In
Sects. 3 and 4, the datasets and methods used in this study
are introduced respectively. In Sect. 5, monthly TWSA esti-
mates obtained from original GRACE and GRACE-FO satel-
lite data are temporally downscaled into individual values
at daily timescales based on the methodology proposed in
this study. Meanwhile, a new index incorporating temporally
downscaled TWSA estimates and daily precipitation is pro-
posed to detect extreme flood events that occurred in the
year 2020 across the YRB and its individual subbasins. Then,
the discussion about the temporally downscaled GRACE and
GRACE-FO satellite data and its capacity to monitor extreme
flood events are presented in Sect. 6. We also explain the rea-
sons why the new proposed index can monitor extreme flood
events across the YRB in this section. Finally, we present a
summary of this study in Sect. 7.

2 Study area

The Yangtze River (also termed as Changjiang River) is the
longest river in China, with a length of about 6300 km. It
originates from the Tanggula Mountains of the Qinghai–
Tibetan Plateau and eventually empties into the estuary of
the East China Sea after spanning 11 provinces in China (Wu
et al., 2022). The YRB (90–122◦ E, 25–35◦ N) has a total
drainage area of 1.81×106 km2, which accounts for approx-
imately 20 % of the total area of the mainland China. The
terrain of the YRB generally decreases from west to east,
with altitudes ranging from −142 to 7143 m above sea level
(shown in Fig. 1). The entire YRB consists of three main
parts, that is, the upper (upstream region above the Yichang
station), the middle (region between the Yichang station and
the Hukou station) and the lower (downstream region below
the Hukou station) subbasins.

The YRB is located in typically subtropical and temperate
climate zones, which is dominated by three types of mon-
soons, namely the Siberian northwest monsoon winds in win-
ter and the Indian southeasterly monsoon winds and the East
Asian monsoon in summer (Kong et al., 2020). According to
observations from meteorological stations, the mean annual
air temperature of this basin ranges from 14.4 to 15.4 ◦C, and
mean annual precipitation ranges from 1049 to 1424 mm dur-
ing 2003–2020. Under the joint effects of monsoon activities
and seasonal motions of subtropical highs, more than 85 %
of the annual precipitation occurs in the wet season from
April to October, which further increases the risks of extreme
floods in the middle and lower reaches of the Yangtze River
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Table 1. A summary of relevant literature on monitoring extreme flood events using GRACE and GRACE-FO data. GRACE: Gravity
Recovery and Climate Experiment mission. GRACE-FO: Gravity Recovery and Climate Experiment Follow-On mission. GLDAS: Global
Land Data Assimilation system. TRMM: Tropical Rainfall Measuring Mission. MODIS: Moderate-Resolution Imaging Spectroradiometer.

Study Study region Source data Period Temporal
resolution

Main contributions

Chen et al. (2010) Amazon
basin

GRACE RL04 data; precipita-
tion

2002 to
2009

Month Measuring large-scale extreme
flood events

Long et al. (2014) Yunnan–
Guizhou
Plateau

GRACE RL05 data; hydrom-
eteorological data

2003 to
2012

Month Evaluating the frequency and sever-
ity of droughts and floods over the
regions

Reager et al. (2014) Mississippi
River basin

GRACE data; GLDAS data;
stream gauge data

2003 to
2011

Month Characterizing regional flood po-
tential and assessing the predispo-
sition of a river basin to flooding

Tangdamrongsub
et al. (2016)

Tonlé Sap
basin

GRACE RL05 data; TRMM;
MODIS; hydrological model

2002 to
2014

Month Quantifying the flood events at both
basin and sub-basin scales

Chen et al. (2018) Liao River
basin

GRACE RL05 data; mete-
orological data; hydrological
model

2002 to
2016

Month Monitoring the drought and flood
patterns based on the total storage
deficit index

Yang et al. (2021) Yangtze
River basin

GRACE and GRACE-FO
RL06 data; meteorological
data; teleconnection indices

2002 to
2018

Month Investigating the flood risk factors
and analyzing the impact of climate
change factors on flood events

Shah and Mishra
(2021)

Indian
subcontinent

GRACE RL06 data;
meteorological data

2002 to
2016

Month Examining the role of changes in
terrestrial water and groundwater
storage on flood potential

This study Yangtze
River basin

GRACE and GRACE-FO
RL06 data; runoff;
meteorological data

2003 to
2020

Day Monitoring the evolution of ex-
treme flood events based on tempo-
rally downscaled GRACE data

Figure 1. Location of the Yangtze River basin (YRB) in China and its topography. Distribution of meteorological stations and hydrological
stations is also shown in this figure. TGR: Three Gorges Reservoir. DEM: digital elevation model.
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(Huang et al., 2015; Yang et al., 2010). Additionally, by the
end of 21st century, projections show a significant upward
trend of the annual precipitation over the YRB according to
the latest study (Yue et al., 2021).

The YRB is one of the most important regions in China
because it accommodates approximately 33 % of China’s to-
tal population (Huang et al., 2021), accounts for over 36 %
China’s total water resources and contributes more than 46 %
of China’s total gross domestic product (GDP) according
to statistics collected by Yangtze River Conservancy Com-
mission of Ministry of Water Resources. The YRB not only
sustains many hydro-electrical industries, such as the Three
Gorges Corporation, but also provides freshwater resources
for neighboring regions to alleviate the pressure of water
scarcity through the South-to-North Water Diversion Project
(Long et al., 2020; Zhang et al., 2021). Furthermore, the YRB
plays a critical role in flood control, crop irrigation, power
generation and ecological conservation (Chao et al., 2021;
L. Wang et al., 2020). More information about the location
and topography of the YRB can be found in Fig. 1.

3 Data

3.1 Terrestrial water storage derived from GRACE
and GRACE-FO satellite data

GRACE and GRACE-FO data can provide global TWSA at
monthly scales. In this study, the average of three types of
GRACE and GRACE-FO solutions is estimated in order to
characterize the variations of TWSA in the YRB and its in-
dividual subbasins during the period of 2003–2020, all of
which are the latest versions of Release Number 06 (RL06).
These products are provided by the Center for Space Re-
search (CSR; at the University of Texas at Austin) (Save
et al., 2016), the Goddard Space Flight Center (GSFC; at
NASA) (Loomis et al., 2019) and the Jet Propulsion Lab-
oratory (JPL; at NASA and California Institute of Technol-
ogy, California) (Landerer et al., 2020) respectively. All these
GRACE and GRACE-FO solutions represented by equiva-
lent water thickness units (mm) are anomalies relative to the
time-mean baseline during January 2004–December 2009. It
should also be noteworthy that GRACE data are not avail-
able in a few months because of the problem of “battery
management”. In addition, there was a gap period for 11
consecutive months from July 2017 to May 2018 between
the GRACE and GRACE-FO satellites. Here we have not
filled the data gaps between the two GRACE satellites with
linear interpolation since it may not fully describe the sea-
sonal variation of TWSA during these missing months. All
these GRACE and GRACE-FO satellite data are available at
https://podaac.jpl.nasa.gov (last access: 17 November 2022).
As documented in previous studies (Long et al., 2014; Xie
et al., 2022), there are slight differences between these three
GRACE and GRACE-FO solutions when estimating the vari-

ation of regional TWSA. The differences between these three
GRACE and GRACE-FO solutions mainly arise from the
processing algorithms or constrained solutions.

3.2 Meteorological data

In this study, daily time series of precipitation and tempera-
ture from 2003–2020 are provided by the China Meteorolog-
ical Administration (CMA) (http://data.cma.cn/, last access:
17 November 2022) with a total of 150 National Meteoro-
logical Observatory stations distributed in the YRB (shown
in Fig. 1). Areal precipitation in the YRB and its individual
subbasins at daily scales can be calculated according to the
Thiessen polygon method. Monthly precipitation for regions
is calculated by summing all daily values of precipitation.
Meanwhile, areal temperature in the YRB and its basins at
daily timescales is calculated by directly averaging the re-
spective daily temperature from all meteorological stations
over regions. Similarly, monthly temperature estimates are
calculated by summing all daily values of temperature.

3.3 In situ streamflow data

From the Yangtze River Conservancy Commission of Min-
istry of Water Resources, daily streamflow observations dur-
ing the period of 2003–2020 can be obtained at the Shigu hy-
drological station, the Yichang hydrological station, the Han-
kou hydrological station and the Datong hydrological station
(shown in Fig. 1). More specifically, the Shigu station rep-
resents the outlet of the source regions of the Yangtze River
basin (SYRB), the Yichang station represents the outlet of the
upper regions of the Yangtze River basin (UYRB), the Han-
kou station represents the outlet of the upper and the middle
regions of the Yangtze River basin (UMYRB), and the Da-
tong station represents the outlet of the entire Yangtze River
basin (YRB). Meanwhile, extreme flood events in the YRB
and its individual subbasins during the study period can be
extracted from daily time series of streamflow observed from
the above hydrological stations (Tarasova et al., 2018). More
details about how the extreme flood events are extracted will
be described in the Sect. 4.4.

3.4 Soil moisture storage

As documented in Xie et al. (2019a), soil moisture stor-
age (SMS), as one of critical components of terrestrial wa-
ter storage, usually shows a significantly positive correla-
tion with variations of regional TWSA. Therefore, in this
study we adopt the SMS (kg m−2) with a spatial resolution
of 0.25◦× 0.25◦ from the Global Land Data Assimilation
System version 2.1 (GLDAS 2.1) Noah land surface model
to estimate their correlations with regional TWSA derived
from the GRACE and GRACE-FO satellite data. This prod-
uct can provide the simulations of SMS at four different
depths of soil layers from 0 to 200 cm, that is, 0–10, 10–40,
40–100 and 100–200 cm depths per 3 h. To keep consistent
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with the TWSA, the original value of SMS should be trans-
ferred into soil moisture storage anomaly (SMSA) values af-
ter subtracting the time-mean baseline during the period of
2004–2009. Furthermore, the temporal resolution of original
SMS derived from GLDAS 2.1 Noah land surface model can
be decreased from 3 h to 1 d and 1-month composite respec-
tively, which is consistent with the methods applied in pre-
vious studies (Mulder et al., 2015; Mohanasundaram et al.,
2021; Syed et al., 2008). An overview of all datasets used in
this study can be found in Table 2.

4 Methods

To better monitor the extreme flood events that occurred in
the YRB, monthly TWSA obtained from original GRACE
and GRACE-FO satellite data are temporally downscaled
into individual values at daily timescales based on the
methodology proposed in this study. A detailed flow dia-
gram of our study is given in Fig. 2, which consists of four
steps. In Step 1, meteorological observations including pre-
cipitation and temperature provided by CMA and the SMSA
derived from the GLDAS 2.1 Noah land surface model are
jointly used as model inputs to establish the relationship
with detrended GRACE and GRACE-FO satellite data. In
Step 2, the relationship between TWSA estimates and all hy-
droclimatic factors at monthly timescales for the YRB can
be built using three different machine-learning-based mod-
els, namely a multi-layer perceptron (MLP) model, a long-
short term memory (LSTM) model and a multiple linear re-
gression (MLR) model respectively. Given that different pe-
riods of data used for training and validation might influ-
ence the performances of each model in simulating TWSA,
a total of three scenarios are therefore designed according
to the way of dividing training periods and validation peri-
ods for each model. After comparing the performances of
each model in simulating monthly TWSA estimates under
all three scenarios, the calibrated parameter sets of the model
with a specific scenario that shows the best performance in
simulating monthly TWSA estimates are identified and re-
tained. In Step 3, daily time series of meteorological obser-
vations and the SMSA from the GLDAS 2.1 Noah land sur-
face model are reselected as model inputs of the relation-
ship established in Step 2, assuming that scaling properties
at the monthly timescales are valid at the daily timescales.
And hence daily TWSA estimates can be temporally down-
scaled from monthly TWSA estimates using the calibrated
model parameter sets that have been identified. In Step 4,
daily time series of TWSA are further applied to monitor the
flood events at sub-monthly timescales for different basins in
the YRB according to the new proposed index.

Specifically, three types of models, namely, the artificial
neural network (ANN), the recurrent neural network (RNN),
and the multiple linear regression (MLR) are used as the sta-
tistical downscaling methods. In order to keep a fair compar-

ison, we will choose identical inputs and outputs in the pro-
cess of training these three models. Furthermore, the GRACE
satellite can provide TWSA estimates under the joint ef-
fects of human activities and climatic variability (Xie et al.,
2019b). As pointed out by previous studies (Humphrey and
Gudmundsson, 2019; Khorrami and Gunduz, 2021; Shah et
al., 2021), long-term changes in TWSA are primarily caused
by frequent human activities such as persistent groundwa-
ter overexploitation and massive construction of large reser-
voirs. For example, the YRB is a typical region strongly in-
fluenced by various human activities, such as the construc-
tion of the Three Gorges Reservoir and intense human water
consumption (Huang et al., 2015; Yao et al., 2021). In this
study, the linear trends have been removed from the original
time series of TWSA in the training and calibration periods
because hydroclimatic factors may not fully simulate these
long-term trends, all of which mainly arise from human ac-
tivities, such as water withdrawals and reservoir operation
over the study region (Rodell et al., 2018). More detailed de-
scriptions about the methods used in this study are given as
follows.

4.1 Multi-layer perceptron neural network (MLP)

The ANN is a black-box model which has the ability to
imitate the thought processes of the human brain and thus
can be applied to deal with complex and nonlinear prob-
lems (Bomers et al., 2019; Boucher et al., 2020; Lecun et al.,
2015; Q. Wang et al., 2020). Among different types of ANNs,
the multi-layer perceptron neural network (MLP) with the
Levenberg–Marquardt back-propagation training algorithm
is the most widely used method as it requires relatively less
time in the process of convergence (Rumelhart et al., 1986;
Xie et al., 2019a). Therefore, a three-layer MLP model and
the logarithmic sigmoid as a transfer function are jointly
used for temporal downscaling in this study, which has been
proved to be effective and reliable in statistical downscal-
ing (Nourani et al., 2018; Sharifi et al., 2019). This MLP
model consists of three parts, namely, an input layer, a hidden
layer and an output layer, all of which finally form a network
through many neurons. Meanwhile, the weights, which are
connections between different neurons, can adjust as learn-
ing proceeds until the most optimum network is derived in
this process (Fig. 3a).

In this study, the variables included in the input layer are
precipitation, temperature and SMS, whereas the variable in-
cluded in the output layer is the detrended TWSA. Based
on trial and error, the most optimal number of hidden neu-
rons is set to five. After minimizing the discrepancy between
the simulated TWSA with the observed results at the output
layer, the most optimal network architecture can finally be
obtained.
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Table 2. An overview of all datasets used in this study.

Data Source Temporal resolution Spatial resolution Time span

Terrestrial water storage anomaly (TWSA) GRACE and GRACE-FO CSR Month 0.5◦ 2002–2020
GRACE and GRACE-FO JPL Month 0.5◦ 2002–2020
GRACE and GRACE-FO GSFC Month 0.5◦ 2002–2020

Soil moisture storage (SMS) GLDAS 2.1 – Noah 3 h 1◦ 2002–2020
Precipitation (P ) CMA Day / 2003–2020
Temperature (T ) CMA Day / 2003–2020
Streamflow In situ Day / 2003–2020

GRACE: Gravity Recovery and Climate Experiment mission. GRACE-FO: Gravity Recovery and Climate Experiment Follow-On mission. CSR: Center for Space Research. JPL: Jet
Propulsion Laboratory. GSFC: Goddard Space Flight Center. GLDAS: Global Land Data Assimilation system. CMA: China Meteorological Administration.

Figure 2. A detailed flow diagram illustrating the temporal downscaling of GRACE-/GRACE-FO-derived TWSA. GRACE: Gravity Recov-
ery and Climate Experiment mission. GRACE-FO: Gravity Recovery and Climate Experiment Follow-On mission. SMSA: soil moisture
storage anomaly. TWSA: terrestrial water storage anomaly. CSR: Center for Space Research. JPL: Jet Propulsion Laboratory. GSFC: God-
dard Space Flight Center. SYRB: source regions of the Yangtze River basin. UYRB: upper regions of the Yangtze River basin. UMYRB:
upper and middle regions of the Yangtze River basin. YRB: Yangtze River basin. MLP: multi-layer perceptron neural network. LSTM: long
short-term memory. MLR: multiple linear regression. NDFPI: normalized daily flood potential index.

4.2 Long short-term memory network (LSTM)

The recurrent neural network (RNN) (Rumelhart et al., 1986)
is a unique type of deep learning algorithm that was devel-
oped to process sequential data and predict future trends.
One of the most dominant features of the RNN layer is a
unique feedback connection which can allow past informa-
tion to continuously affect the current output. The character-
istics of all related time series data can be eventually learned
through this structure. The long short-term memory network
(LSTM) is one of the most representative RNNs as it has a
fabulous memory ability and can effectively avoid the van-
ishing gradient problem existing in other RNNs (Hochreiter
and Schmidhuber, 1997; Guo et al., 2021). Considering the
time series characteristics of meteorological data and TWSA
data, the LSTM model is very suitable as a statistical down-
scaling model for its excellent capacity to process sequence-
to-sequence learning problems.

One typical LSTM model usually consists of three lay-
ers, that is, an input layer, a hidden layer and an output layer
(Fig. 3b). Different from other traditional ANNs, the LSTM
model replaces the hidden block in RNNs with a memory cell
state coupled with three logic gates, that is, the forget gate,
the input gate and the output gate. In the training process, the
memory cell state mainly stores the accumulation of past in-
formation. The input gate determines how much information
of a new input flows into the memory cell state at the cur-
rent time. Then, the useless information in long-term mem-
ory would be forgotten by the forget gate, which determines
how much of the former moment is retained to the current
time. Finally, the output gate determines how much informa-
tion of the memory cell state is used to compute output (Bai
et al., 2021; Wu et al., 2020; Vu et al., 2021).
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Figure 3. Architecture of (a) a typical three-layer multi-layer perceptron (MLP) neural network and (b) a typical long-short time memory
(LSTM) network. 9i denotes the sigmoid transfer function, Wi,j represents connection weights between the input layer and the hidden
layer, Ij,k represent connection weights between the hidden layer and the output layer. xt , ct , and ht represent the standardized input
variable, hidden gate and cell gate at the current time t .

4.3 Multiple linear regression (MLR)

Multiple linear regression (MLR) is a typical statistical ap-
proach that can be applied to establish the relationships be-
tween inputs and outputs (Sousa et al., 2007). This approach
has a wide range of hydrological applications since it can ex-
plain the linkage between various variables well (Lyu et al.,
2021; Ramesh et al., 2020; Sun et al., 2020). Here we assume
that the GRACE-/GRACE-FO-derived TWSA is linearly re-
gressed onto the meteorological variables (i.e., precipitation
and temperature) and the SMS obtained from GLDAS 2.1
simultaneously, that is

y =

3∑
i=1

ai × xi + b, (1)

where y represents TWSA at monthly (or daily) scales; xi

(i = 3) represents three independent inputs including precip-
itation, temperature and SMS at monthly (or daily) scales; ai

represents the corresponding regression coefficients of each
input, which can be calculated by the least-squares regression
method; and b represents a constant offset.

4.4 Flood event selection

A nonparametric algorithm suggested by Tarasova et
al. (2018) is adopted to identify runoff events in this study,
which has been widely applied in many different basins
over the world because of its advantages in identifying flood
events (Fischer et al., 2021; Giani et al., 2022; Lu et al.,

2020; Winter et al., 2022). The brief procedure of this al-
gorithm is described as follows: (1) picking out local minima
within nonoverlapping 5 d windows with respect to the entire
streamflow time series; (2) examining the extracted series of
minima with the goal of finding turning points, all of which
are usually defined as the points that are at least 1.11 times
smaller than their neighboring minima; (3) reconstructing the
base flow hydrograph according to the linear interpolation
between the turning points, which are previously obtained
in Step (2); and (4) screening the streamflow time series to
identify runoff events after the separation of base flow. Tra-
ditionally, a typical runoff event can be characterized by three
main components, namely peak, beginning and end points. A
peak refers to the maximum of streamflow for a specific pe-
riod. The beginning point refers to the closest point in time
when total runoff is equal to base flow before the peak. Sim-
ilarly, the end point denotes the closest point in time when
total runoff is equal to base flow after the peak.

4.5 Daily flood potential index

The flood potential index provides a surrogate measure of
the potential flood risks for a specific region, which can
be obtained from monthly average precipitation anomalies
and GRACE-derived TWSA (Reager and Famiglietti, 2009).
In this study, we further propose a new normalized daily
flood potential index (NDFPI) with reference to Reager and
Famiglietti (2009) and Abhishek et al. (2021). Compared to
the original flood potential index, the NDFPI can not only
provide useful information on the early signs of the region’s
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transition from a normal state to a flood-prone situation,
but also effectively detect the flood events at sub-monthly
timescales, which is calculated via the following steps:

TWSAdef (t)= TWSAmax−TWSA(t − 1), (2)

where TWSAdef(t) (mm) represents the terrestrial water stor-
age deficit for a specific day (t) that is defined as the differ-
ence between the historic storage anomaly time series max-
imum during the entire period (TWSAmax) and the storage
amount from the previous day (TWSA (t − 1)).

Then, the daily flood potential amount (DFPA) is further
calculated as follows:

DFPA(t)= P (t)−TWSAdef (t)

= P (t)− (TWSAmax−TWSA(t − 1)), (3)

where DFPA (t) (mm) represents the daily flood potential
amount for a specific day (t), P(t) (mm) represents the daily
precipitation, and TWSA (t − 1) (mm) represents the TWSA
from the previous day (t − 1).

Finally, we can calculate the normalized daily flood poten-
tial index (NDFPI) from the DFPA with the goal of remov-
ing the effects of hydrological heterogeneity varying from re-
gion to region and the typical difference between the storage
change and precipitation that may not always result in floods
(Reager and Famiglietti, 2009), which can be described as
follows:

NDFPI(t)=
DFPA(t)−DFPAmin

DFPAmax−DFPAmin
, (4)

where DFPAmax and DFPAmin represent the maximum DFPA
and minimum DFPA during the study period respectively.
The NDFPI indicates the corresponding probability of flood
occurrence with a range from 0 to 1. More flooding is likely
to occur when the NDFPI is closer to 1 for a specific region.

4.6 Model test design

Monthly TWSA estimates during the extreme flood events
occurred in the YRB can be reconstructed at regional scales
based on the above three different learning-based models,
namely the MLP model, the LSTM model and the MLR
model. Meanwhile, these three models are further validated
in four different basins covering the upstream to down-
stream parts of the Yangtze River in order to better evalu-
ate their applications. For more detailed information about
all these four different basins, the reader can also refer to
Table S1 in the Supplement. According to previous find-
ings in Liu et al. (2021), different periods of data used for
training (i.e., identification of model parameter sets) and
validation can eventually influence the corresponding per-
formances of a specific model when simulating TWSA.
Therefore, we design a total of three scenarios according
to the way of dividing training periods and validation pe-
riods for a specific model. As shown in Fig. 2, periods of

GRACE data used for training and validation in each exper-
iment are listed, which include (1) Scenario 1, training pe-
riod (January 2003–July 2014, a total of 129 months) and
validation period (August 2014–December 2020, a total of
56 months); (2) Scenario 2, training period (June 2005–
June 2018, a total of 129 months) and validation period
(January 2003–May 2005 and July 2018–December 2020,
a total of 56 months); and (3) Scenario 3: training period
(October 2007–December 2020, a total of 129 months) and
validation period (January 2003–September 2007, a total of
56 months).

Furthermore, three kinds of statistical measures including
the root mean square error (RMSE), correlation coefficient
(r), and Nash–Sutcliffe efficiency coefficient (NSE) are used
in this study as they can jointly measure the matching quality
in terms of both magnitude and phase between the simulated
and the observed time series. These statistical measures are
defined as

RMSE=

√√√√√ N∑
i=1

(xs,i − xo,i)
2

N
, (5)

r =

N∑
i=1

(xs,i − xs,i)(xo,i − xo,i)√
N∑

i=1
(xs,i − xs,i)2×

N∑
i=1

(xo,i − xo,i)2

, (6)

NSE= 1−

N∑
i=1

(xs,i − xo,i)
2

N∑
i=1

(xo,i − xo,i)2

, (7)

where xs,i and xo,i represent the simulated and observed
TWSA in month i, respectively; xs,i and xo,i represent the
average of simulated and observed TWSA series; and N is
the total months of observed (or simulated) TWSA available.

5 Results

5.1 Temporal variation of precipitation, temperature,
SMSA, TWSA and streamflow across the YRB
during 2003–2020

Figure 4 shows the monthly time series of SMSA, TWSA,
streamflow and the main climatic variables including pre-
cipitation and temperature across the YRB during 2003–
2020. The results show that monthly TWSA over the YRB
has a wide range from −58.0 to 130.9 mm during the study
period. Monthly TWSA estimated by three GRACE and
GRACE-FO solutions changes synchronously with precipi-
tation across the entire YRB, showing a significantly posi-
tive correlation between TWSA and precipitation (r = 0.54;
p < 0.01) during the study period. According to the statis-
tics collected by Yangtze River Conservancy Commission

Hydrol. Earth Syst. Sci., 26, 5933–5954, 2022 https://doi.org/10.5194/hess-26-5933-2022



J. Xie et al.: Monitoring the extreme flood events in the Yangtze River basin 5941

of Ministry of Water Resources, the accumulative rainfall
across the entire YRB exceeds 680 mm in summer 2020 from
April to October, which is far more than the mean rain-
fall (approximately 540 mm) during the same period from
2003 to 2019. Accordingly, TWSA reaches its maximum in
July 2020 with an estimate of 130.9 mm during 2003–2020,
reflecting the evolution of TWSA in response to heavy rain-
fall during this period. In addition to precipitation, TWSA is
also highly consistent with temperature over the YRB dur-
ing 2003–2020, showing a positive correlation coefficient of
r = 0.57 (p < 0.01) with monthly temperature.

The GLDAS Noah-derived SMSA and GRACE-/GRACE-
FO-derived TWSA both show a seasonal variation through
the entire study period in the YRB, but there is a significant
difference in the intensity of anomalies between them, es-
pecially in the summer season, as depicted in Fig. 4. This
phenomenon can be explained by the discrepancies resulting
from the components of SMSA and TWSA. Although the
SMSA is an important component of the TWSA for many
regions, the latter usually contains some other components,
such as the anomalies of surface water and groundwater, be-
sides the SMSA (Xie et al., 2021). There is a significant
correlation between the TWSA and SMSA, with a positive
correlation coefficient of r = 0.84 (p < 0.01), both of which
reach maximum and minimum values almost simultaneously.
In general, the TWSA shows a significant correlation with
precipitation, temperature and the SMSA during the study
period, all of which have been therefore selected as the in-
puts applied to simulate the monthly TWSA over different
regions.

5.2 Reconstruction of TWSA by different models

To achieve the temporal downscaling of monthly TWSA
data and fill the missing months for TWSA, we should
firstly build the relationships between GRACE-/GRACE-
FO-derived TWSA and various hydroclimatic factors includ-
ing precipitation, temperature and the SMSA at monthly
timescales. The results of the TWSA are estimated by the
mean value in different regions upstream of the correspond-
ing hydrological stations shown in Fig. 1. In this study,
three different models including MLP, LSTM and MLR are
adopted to reconstruct TWSA for regions. Table 3 shows the
summary of model performances in reconstructing monthly
TWSA across the YRB during the study period. GRACE and
GRACE-FO satellite data used for training (i.e., identifica-
tion of model parameter sets) and validation shown in each
scenario mainly depend on the periods of series of data, as
suggested by Liu et al. (2021). According to Table 3, we
find that all models including the MLP, the LSTM and the
MLR with Scenario 3 show the best performances in sim-
ulating monthly TWSA under all three designed scenarios.
This result indicates that the models with Scenario 3 are rel-
atively superior to the models with the other two scenarios
when simulating TWSA because the data in Scenario 3 con-

tain more extremely high (or low) values during the study
period in the process of training models. Therefore, in the
following sections, we decide to directly divide the training
periods and validation periods of all these models accord-
ing to Scenario 3 (shown in Table 3) when simulating the
monthly TWSA for other regions besides the YRB.

Figure 5 shows the comparison between the monthly
TWSA derived from GRACE and GRACE-FO satellite data
and that simulated by different models for all regions dur-
ing 2003–2020. The corresponding evaluation values are
also presented in this figure. We find that the maximum
NSEs between the GRACE-/GRACE-FO-derived TWSA es-
timates and those simulated by models are 0.68, (Fig. 5a),
0.82 (Fig. 5f), 0.86 (Fig. 5g) and 0.89 (Fig. 5j) during the
validation periods for the SYRB, the UYRB, the UMYRB
and the YRB, respectively. The corresponding RMSEs are
13.2, 13.7, 12.4 and 10.9 mm per month (validation peri-
ods, hereafter) for the SYRB, the UYRB, the UMYRB and
the YRB, respectively. In general, the detrended TWSA es-
timates present consistent values between the observations
and the modeled results from 2003–2020 for most regions
except for the SYRB, as shown in Fig. 5. Compared to the
other regions, all models show a relatively poor performance
in simulating monthly TWSA for the SYRB with NSEs less
than 0.70 during the validation periods, which can be mainly
attributed to the increased uncertainties in precipitation and
temperature induced by the sparse distribution of meteoro-
logical stations over this region (shown in Fig. 1).

We further separately compare the performances of all
models in simulating monthly TWSA for a specific re-
gion. Taking the entire YRB as an example (Fig. 5j–
l), GRACE-/GRACE-FO-derived TWSA estimates show a
RMSE of 10.9 mm per month for the MLP-derived TWSA
estimates, which is lower than that of 15.1 mm per month
for the LSTM-derived TWSA estimates (∼ 39 % difference)
and that of 13.3 mm per month for the MLR-derived TWSA
estimates (∼ 22 % difference). Meanwhile, the NSE shows
similar improvements when applying the MLP model to sim-
ulate the TWSA for the YRB (Fig. 5j–l), which can also be
found in the SYRB (Fig. 5a–c) and the UMYRB (Fig. 5g–
i). In general, the MLP and MLR models achieve high met-
rics (0.81/12.8 and 0.75/14.2 mm per month of NSE/RMSE
on average for all regions) during the validation periods,
both of which are significantly higher than the metrics be-
tween the GRACE-/GRACE-FO-derived TWSA estimates
and that simulated by the LSTM model (0.75/14.7 mm of
NSE/RMSE on average for all regions). For the UYRB
(Fig. 5d–f), the MLP model shows a slightly poorer per-
formance in simulating TWSA in terms of a higher RMSE
(14.7 mm per month) than the LSTM model (14.5 mm per
month; ∼ 1.2 % increase) and the MLR model (13.7 mm per
month;∼ 7.2 % increase). In addition, it seems that the larger
the study region, the higher the correspondence between
the GRACE-/GRACE-FO-derived TWSA estimates and that
simulated by models for the MLP model. This result can be
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Figure 4. Monthly time series of precipitation (P ; mm), temperature (T ; ◦C), terrestrial water storage anomaly (TWSA; mm), soil moisture
storage anomaly (SMSA; mm) and streamflow (×109 m3) across the YRB during 2003–2020. Streamflow data are obtained at the Datong
hydrological station (shown in Fig. 1). YRB: Yangtze River basin.

Table 3. Performances of different models in simulating monthly TWSA across the YRB during 2003–2020.

Scenarios MLP (RMSE/NSE) LSTM (RMSE/NSE) MLR (RMSE/NSE)

Scenario 1 Jan 2003–Jun 2014 (Training) (70 %) 10.71/0.89 12.14/0.86 11.63/0.87
Aug 2014–Dec 2020 (Validation) (30 %) 26.12/0.50 26.62/0.15 24.32/0.57

Scenario 2 Jun 2005–Jun 2018 (Training) (70 %) 13.54/0.84 14.61/0.79 14.33/0.82
Jan 2003–May 2005 and 23.32/0.59 25.42/0.17 20.14/0.70
Jul 2018–Dec 2020 (Validation) (30 %)

Scenario 3 Oct 2007–Dec 2020 (Training) (70 %) 15.76/0.80 17.84/0.68 17.24/0.76
Jan 2003–Sep 2007 (Validation) (30 %) 10.92/0.89 15.12/0.81 13.41/0.84

TWSA: terrestrial water storage anomalies. YRB: Yangtze River basin. MLP: multi-layer perceptron neural network. LSTM: long short-term memory network.
MLR: multiple linear regression. 70 %, 30 % and 100 % represent the corresponding proportions to all samples in the training, the validation and the entire periods
respectively. RMSE and NSE represent the root mean square error (mm per month) and Nash–Sutcliffe efficiency coefficient between the simulated TWSA with the
observed TWSA respectively. Note that the GRACE-/GRACE-FO-derived TWSA in some months is not available due to the problem of battery management.

explained in that the large area for a specific region may
smooth more uncertainties in GRACE signals and meteoro-
logical observations (Long et al., 2015).

Overall, Fig. 5 clearly suggests the MLP model’s supe-
rior performances in simulating the TWSA, with an aver-
age value of NSE of 0.81 and an average value of RMSE
of 12.8 mm per month during the validation periods for
all regions, showing the outstanding capability of the MLP
model in learning the complicated relationships between the
TWSA and hydroclimatic factors. As documented in Shu and
Ouarda (2007), the MLP model can show its unique superior-
ity and great advantages compared with other statistical mod-
els, particularly when explaining the underlying processes
that have complex nonlinear interrelationships. The results
shown in Fig. 5 also indicate that the MLP model can show a
relatively better performance in simulating monthly TWSA
than the LSTM model in this study. As described in Zhang et
al. (2018), one of main drawbacks of the LSTM model is its
complexity compared with the MLP model, which indicates
that the LSTM model may not show better performances in
simulating time series data than other traditional ANN mod-
els in some cases, especially when limited trained data are
available. In addition, the moderate performance of LSTM

model in reconstructing TWSA compared to the MLP model
can be partly attributed to the possibly limited role of the
memory function in the LSTM model (Wei et al., 2021; Yin
et al., 2022), since relations between inputs and the output of
this model (shown in Fig. 4) are pretty direct without many
memory effects. Therefore, in the following discussion, only
the MLP model is applied to further achieve the temporal
downscaling of monthly TWSA data for regions.

5.3 Temporal downscaling of GRACE and GRACE-FO
satellite data

Relationships between monthly TWSA and hydroclimatic
inputs with respect to the entire YRB have been fully estab-
lished, as presented in Sect. 5.2. As documented in Herath et
al. (2016) and Requena et al. (2021), the same scaling prop-
erties have been commonly assumed for baseline and future
periods in temporal downscaling. Therefore, it is reasonable
and acceptable to assume that scaling properties at monthly
timescales are valid at daily timescales in this study (Kumar
et al., 2012). That is, the relationship between temporally
downscaled TWSA and daily hydroclimatic inputs is con-
sistent with that previously established by the downscaling
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Figure 5. Comparison between the monthly TWSA derived from GRCACE/GRACE-FO satellite data (observation) and that simulated by
different models (validation) for (a–c) the SYRB, (d–f) the UYRB, (g–i) the UMYRB and (j–l) the YRB respectively during 2003–2020,
showing statistics of the comparison including root mean square error (RMSE) (mm per month) and Nash–Sutcliffe efficiency (NSE). Note
that TWSAs shown in this figure are detrended because hydroclimatic factors may not fully simulate all the long-term trends. The models
showing the best performance in simulating the TWSA during the validation periods are bold for each region. SYRB: source regions of
Yangtze River basin. UYRB: upper regions of Yangtze River basin. UMYRB: upper and middle regions of Yangtze River basin. YRB:
Yangtze River basin.
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model (e.g., the MLP model) at monthly timescales for a spe-
cific region. By merging the daily hydroclimatic inputs into
the previously established relationships between TWSA es-
timates and hydroclimatic factors based on the MLP model,
we can downscale the TWSA estimates from monthly time
series to daily time series for all regions.

Figure 6 shows daily time series of the TWSA temporally
downscaled by the MLP model for different regions during
2003–2020. It can be seen that the daily TWSA shows sub-
monthly signals in response to changes in hydroclimatic fac-
tors as expected. Both GRACE-/GRACE-FO-derived TWSA
estimates and daily TWSA estimates temporally downscaled
by the MLP model show obvious seasonal cycles and reach
their respective extreme values almost simultaneously. More
specifically, amplitudes of daily TWSA estimates are slightly
higher (or lower) than monthly TWSA estimates in summer
(or winter) seasons from 2003 to 2020. This can be deemed
reasonable because monthly TWSA estimates are defined as
the mean average of daily TWSA estimates for a specific
month. It should also be noted that there are still some dis-
crepancies between temporally downscaled TWSA at sub-
monthly timescales and monthly TWSA estimates derived
from GRACE and GRACE-FO satellite data for the SYRB,
particularly in some extreme low values, which can be at-
tributed to the relatively poor relationship between TWSA
estimates and hydroclimatic factors for this region, as de-
scribed in Fig. 5a. As documented in previous studies (Liu et
al., 2020; Shi et al., 2020), it has long been challenging to ac-
curately perform hydrological simulations across the SYRB
because of the complex hydrological processes in this alpine
basin. For example, parameter settings calibrated by GLDAS
Noah land surface model might not be highly accurate for
SMS simulation across the SYRB because field measure-
ments of SMS in this region are extremely limited. Harsh cli-
matic conditions and limited weather stations can addition-
ally influence the accuracy of meteorological observations
such as precipitation and temperature across the SYRB, es-
pecially for some extreme values. Given the above reasons,
there is a relatively poor relationship between TWSA esti-
mates and hydroclimatic factors across the SYRB based on
the MLP (shown in Fig. 5a). Furthermore, the uncertainties
in the observed precipitation and temperature and SMS de-
rived from the GLDAS Noah land surface model can even-
tually result in some discrepancies between the temporally
downscaled TWSA at sub-monthly timescales and monthly
TWSA estimates derived from GRACE and GRACE-FO
satellite data, as described in Fig. 6a.

5.4 Relation between daily TWSA and streamflow
during flood events

Figures 7 and 8 show the daily TWSA temporally down-
scaled by the MLP model and observed streamflow within
the YRB in 2010 and 2020 when extreme flood events oc-
curred according to the information published by the Yangtze

River Conservancy Commission of Ministry of Water Re-
sources. As described in Figs. 7 and 8, the nonparametric
simple smoothing method introduced in Sect. 4.4 can effec-
tively identify the corresponding flood events that occurred
in each region based solely on the analysis of streamflow
time series. It shows an apparent increase in streamflow from
the beginning to the peak of all flood events. Accordingly,
the daily TWSA shows a distinct increase similar to stream-
flow during the same periods as expected. It is also inter-
esting to note that the beginning of the increase shown in
the daily TWSA is earlier than that of streamflow. This is
partly because high antecedent soil moisture, which is an im-
portant component of TWSA, has been identified as an im-
portant driver of flood events for regions (Fatolazadeh and
Goïta, 2022; Jing et al., 2020; Reager et al., 2014; Wasko
and Natthan, 2019). Meanwhile, this result indicates that
the daily TWSA can be potentially useful in building early
flood warning systems since it may identify the extreme flood
events much more earlier than streamflow.

5.5 Monitoring severe flood events based on the
proposed NDFPI in the year 2020

To better monitor severe flood events over the YRB, we pro-
pose a new index, i.e., NDFPI, by jointly using the tempo-
rally downscaled TWSA data and daily precipitation data, as
introduced in Sect. 4.5. According to the Yangtze River Con-
servancy Commission of Ministry of Water Resources, the
YRB suffered from catastrophic flooding in the year 2020.
Therefore, in this study, the severe flood events that occurred
in 2020 for the YRB will serve as an example to present the
capability of NDFPI in detecting extreme flood events. The
threshold values of daily streamflow and NDFPI for the 90th
percentile floods during 2003–2020 are presented in Fig. 9.
According to the results shown in Fig. 9, the larger thresh-
old values of NDFPI usually indicate severity of flood occur-
rence increases for a specific region. In addition, the shape
of percentile duration curve of daily streamflow across the
UYRB (Fig. 9b) is different to that shown in other regions. It
is noted that the outlet of the UYRB, the Yichang hydrolog-
ical station, is located approximately 45 km downstream of
the Three Gorges Reservoir (shown in Fig. 1), which is one
of the largest hydroelectric reservoirs in the world. Given that
the operations of the Three Gorges Reservoir can directly af-
fect the streamflow at Yichang station (Yang et al., 2022), the
result shown in Fig. 9b is reasonable.

Figure 10 shows the comparison between basin-averaged
NDFPI and daily streamflow observations for the 90th per-
centile floods in 2020. The results indicate that the ups and
downs of the streamflow observed at different hydrological
stations are highly consistent with the NDFPI results through
the whole season. For example, the observations of stream-
flow from the Shigu hydrological station (Fig. 10a) reached
the corresponding 90th percentile in 12 July. In comparison,
the NDFPI estimated by the temporally downscaled TWSA
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Figure 6. Daily (TWSA-MLP-day) and monthly (TWSA-MLP-month) time series of the TWSA simulated by the MLP model for (a) the
SYRB, (b) the UYRB, (c) the UMYRB and (d) the YRB respectively during 2003–2020. Note that monthly TWSA estimates derived from
GRACE and GRACE-FO satellite data (TWSA-GRACE-month) shown in this figure are detrended because hydroclimatic factors may not
fully simulate their long-term trends. TWSA: terrestrial water storage anomaly. MLP: multi-layer perceptron neural network. SYRB: source
regions of Yangtze River basin. UYRB: upper regions of Yangtze River basin. UMYRB: upper and middle regions of Yangtze River basin.
YRB: Yangtze River basin.

Figure 7. Daily TWSA temporally downscaled by the MLP model versus streamflow during flood events across (a) the SYRB, (b) the
UYRB, (c) the UMYRB and (d) the YRB respectively in 2010. The bold dashed blue lines and bold dashed red lines represent daily TWSA
and streamflow during the period between the beginning and end of each runoff event. TWSA: terrestrial water storage anomaly. MLP: multi-
layer perceptron neural network. SYRB: source regions of Yangtze River basin. UYRB: upper regions of Yangtze River basin. UMYRB:
upper and middle regions of Yangtze River basin. YRB: Yangtze River basin.
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Figure 8. Same as Fig. 7 but in 2020.

and daily precipitation reached its 90th percentile in 4 July
(Fig. 10a), which is 9 d earlier than that of daily streamflow.
As expected, these high-streamflow observations during the
wet season are usually accompanied by high NDFPI values,
which could be attributed to the effects of high precipitation
on streamflow during this period. For the YRB (Fig. 10d),
daily streamflow detected at the Datong hydrological station
reached its 90th percentile in 29 June and eventually peaked
in 13 July, with a maximum value of 7.2×109 m3 d−1, which
is in line with the findings in Jia et al. (2021). Accordingly,
the series of NDFPI reached its 90th percentile in 18 June
with a value of 0.58. In general, Fig. 10 clearly suggests that
the proposed NDFPI calculated by temporally downscaled
TWSA data and daily precipitation changes synchronously
with the reality of flood disasters in 2020 for the YRB. Mean-
while, it also indicates that such flood events can be moni-
tored by the proposed NDFPI earlier than traditional stream-
flow observations.

Previous studies usually focus on monitoring the long-
term flood events, while the flood events at sub-monthly
timescales using GRACE and GRACE-FO satellite data have
been limitedly investigated due to the limitation of their
temporal resolution (i.e., month) (Gouweleeuw et al., 2018;
Long et al., 2014). In this study, however, Fig. 10 clearly
shows the incremental process of TWSA during the wet sea-
son using the newly proposed NDFPI estimated by tempo-
rally downscaled GRACE and GRACE-FO satellite data and
daily precipitation for different regions. This means that the
proposed NDFPI has the great potential to detect the evo-
lution of extreme flood events within the short period. It is
also interesting to note that the NDFPI reached the threshold
of different classes of flood events earlier than that defined
by streamflow observations during the wet season in 2020,

which can be repeatedly found in the SYRB, the UYRB, the
UMYRB and the YRB (Fig. 10) respectively. The compar-
ison results indicate that the lag time between the threshold
values of flood events monitored by the NDFPI and that mon-
itored by daily streamflow during the wet season ranges from
8 to 15 d for the 90th percentile floods among all regions in
2020, all of which are far less than the temporal resolution of
original GRACE and GRACE-FO satellite data (i.e., month).
In addition to the 90th percentile floods, we also compare
the basin-averaged NDFPI and daily streamflow observations
for the 95th and 99th percentile floods in 2020 (shown in
Figs. S1–S4). The results also show that the series of NDFPI
reached the threshold values earlier than that of daily stream-
flow observations for the 95th and 99th percentile floods. For
example, there is a 11 d lag time between the threshold value
of NDFPI and that of the streamflow observed by Datong
hydrological station for the 99th percentile floods in 2020
(Fig. S4d), which provides useful information for accurate
and timely flood forecasts and can be very beneficial for pro-
tecting people and infrastructure over regions in a changing
climate.

6 Discussion

6.1 Extreme flood events monitored by NDFPI

The comparison results indicate that the proposed NDFPI
reached the threshold values of different classes of flood
events earlier than that defined by streamflow observations
in 2020 with respect to the YRB and its individual sub-
basins (shown in Figs. 8 and S1–S4). This is consistent with
the results found at the Missouri River basin by Reager et
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Figure 9. Percentile duration curves of daily streamflow observations and NDFPI for the 90th percentile floods across (a) the SYRB, (b) the
UYRB, (c) the UMYRB and (d) the YRB respectively during 2003–2020. The red dots and blue dots represent threshold values of daily
streamflow and NDFPI for the 90th percentile floods across different regions. SYRB: source regions of Yangtze River basin. UYRB: upper
regions of Yangtze River basin. UMYRB: upper and middle regions of Yangtze River basin. YRB: Yangtze River basin. NDFPI: normalized
daily flood potential index.

Figure 10. Comparison between basin-averaged NDFPI and daily streamflow observations for the 90th percentile floods in 2020 across
(a) the SYRB (observed at Shigu station), (b) the UYRB (observed at Yichang station), (c) the UMYRB (observed at Hankou station) and
(d) the YRB (observed at Datong station). Pink rectangles denote the duration period between the thresholds of daily streamflow for the
90th percentile floods and peak streamflow observed at the controlling hydrological stations over different regions. The thresholds of daily
streamflow and NDFPI for the 90th percentile floods are represented by the dashed red lines and dashed blue lines respectively. Note that the
scales of streamflow shown in each figure are not always the same. SYRB: source regions of Yangtze River basin. UYRB: upper regions of
Yangtze River basin. UMYRB: upper and middle regions of Yangtze River basin. YRB: Yangtze River basin. NDFPI: normalized daily flood
potential index.
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al. (2014). Reager et al. (2014) indicated that the regional
TWSA may lead river discharge slightly before the flood sea-
son, which can provide useful information on the signal of
high streamflow in the coming flood season. However, the
study of Reager et al. (2014) only demonstrated the applica-
tion of GRACE data to characterize regional flood potential
at monthly timescales. More accurate information about the
complete hydrologic state of a specific region at sub-monthly
timescales during the wet season has been limitedly investi-
gated, which is very vital for flood warnings. Given this, we
proposed a new index, i.e., NDFPI, by jointly using the tem-
porally downscaled TWSA data and daily precipitation data
to better analyze the hydrologic state of the study region dur-
ing the wet season at finer timescales.

The comparison analysis of the NDFPI and daily stream-
flow with respect to the YRB may explain the possible
reasons why the NDFPI can detect extreme flood events
for a specific river basin. Intense rainfall of long duration
can cause continuous increases in the surface water (e.g.,
water stored in lakes and wetlands), soil moisture storage
and groundwater storage that are totally represented by the
TWSA in this study through the process of infiltration. Many
studies also revealed that changes in surface water, soil mois-
ture and groundwater under intense rainfall can exert obvious
effects on the status of regional TWSA (Döll et al., 2012;
Felfelani et al., 2017; Sinha et al., 2019; Velicogna et al.,
2012). All these changes may ultimately result in the satu-
ration of aquifer over regions. However, the saturated state
of aquifers is not persistent because there is a great need for
the basin to relieve its saturated state by discharging exces-
sive water stored on and below the land surface into the river
channels, which may eventually lead to the dramatic increase
in streamflow and greatly increase the risk of widespread and
damaging regional flooding.

6.2 Advantages of detecting extreme flood events based
on temporally downscaled TWSA

The traditional flood monitoring approaches can provide use-
ful information about the evolution of flood events over
the study region through the measurements of rainfall and
streamflow. All these measurements largely depend on the in
situ hydrological stations and rainfall gauging stations dis-
tributed over the regions, which are difficult to achieve in
some regions with harsh environment and climatic condi-
tions. In comparison, satellite remote sensing has no such
limitation of traditional point-based observations, making it
a promising approach to monitor extreme flood events partic-
ularly in some poorly gauged basins. Given the large spatial
extent, complicated climatic conditions and inaccessible hy-
drological observations for some high-altitude regions (e.g.,
SYRB), the GRACE TWSA has shown great advantages and
superiority in flood monitoring and water resources man-
agement for the YRB than traditional flood monitoring ap-
proaches.

Furthermore, all these traditional flood monitoring ap-
proaches mainly focus on the meteorological conditions or
the status of surface water reflected by various hydrocli-
matic factors and pay little attention to the importance of
antecedent terrestrial water storage conditions before flood
events, which can play a critical role in capturing the flood
formation processes (Xiong et al., 2021b). For example, Rea-
ger and Famiglietti (2009) applied the TWSA from GRACE
data and monthly precipitation to assess the likelihood for
flooding at the regional scale and emphasized the importance
of terrestrial water storage signal in the accurate prediction
of floods and general runoff. Long et al. (2014) employed
the index of flood potential amount using GRACE data and
monthly precipitation to investigate hydrological floods and
droughts for a large karst plateau in Southwest China and
found that higher TWSA estimates are more prone to result
in large potential for flooding during rainy season because of
the excessive water that cannot be stored further. Therefore,
the new proposed index incorporating the TWSA can more
holistically quantify the potential of the development of se-
vere floods for regions than common flood potential indices
using hydroclimatic observations.

While previous studies have proposed several standard-
ized indices for large-scale flood monitoring based on the
GRACE-derived TWSA (Chen et al., 2010; Tangdamrong-
sub et al., 2016), flood monitoring and assessment at sub-
monthly timescales remains a challenge using GRACE data
due to its coarse temporal resolution (month). Flood monitor-
ing at finer timescales is pivotal in understanding the regional
water cycle under climate change, which ultimately helps to
manage the basin-scale water resources effectively and im-
prove the efficiency of early flood warning systems. The ap-
plication of daily series of TWSA temporally downscaled
from GRACE and GRACE-FO satellite data can provide a
useful method to comprehensively assess the integrated flood
conditions, considering the changes of both surface and sub-
surface water storage at sub-monthly timescales. The high-
est difference in the temporally downscaled TWSA and the
daily precipitation during the wet season, as revealed by the
NDFPI, can indicate the early signs of the region’s transition
from normal state to a flood-prone situation. Overall, the new
proposed NDFPI is proven to be a useful tool for flood moni-
toring with the finer timescale over large-scale basins, which
also makes it possible to monitor extreme flood events in a
timely manner, especially for some regions with limited in
situ streamflow observations.

6.3 Uncertainties and limitations

Using the method of linear detrending, long-term trends in
series of TWSA estimates have been removed during the re-
construction of the TWSA because they are generally driven
by various human activities such as irrigation, reservoir op-
eration and water withdrawals, all of which cannot be well
reconstructed by hydroclimatic factors (Humphrey and Gud-
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mundsson, 2019). Although the detrending method can re-
duce the impacts of human activities on reconstructing the
TWSA to some degree, it could still result in some discrepan-
cies between the results of the detrended TWSA and the natu-
ral TWSA under climatic variability, particularly in some re-
gions where intense human activities existed. In future, more
attention should be paid to reconstruct the series of the re-
gional TWSA under climatic variability when more detailed
statistics related to human use such as water consumption,
reservoir operation and inter-basin water diversion projects
are available. Meanwhile, TWSA estimates in some months
are not available for the GRACE and GRACE-FO satellite
due to the problem of battery management. Although all
these missing months can be effectively filled by different
machine-learning-based models, this method may overesti-
mate or underestimate the actual TWSA, especially for some
extreme values in the peak of the wet or dry season (Ab-
hishek et al., 2022).

Furthermore, this study presents an effective way to tem-
porally downscale the TWSA estimates from monthly time
series into daily values. This temporal downscaling method
is assessed through four case studies across the entire YRB,
which could present the temporal evolution of TWSA at
sub-monthly timescales during the wet season well. As this
study mainly focuses on characterizing regional flood poten-
tial based on the new proposed NDFPI incorporating tem-
porally downscaled TWSA estimates, we applied this tem-
poral downscaling method on the basin scale. In theory,
this method is also suitable for the temporal downscaling of
GRACE and GRACE-FO satellite data at the grid cell scale.
However, as pointed out by previous studies (Landerer and
Swenson, 2012; Save et al., 2016; Scanlon et al., 2016), grid-
ded TWSA estimates derived from GRACE and GRACE-FO
satellite data involved relatively large uncertainty induced by
associated measurement errors and signal leakage errors. As
a result, the accuracy of TWSA estimates can ultimately ex-
ert a direct influence on the optimized parameter sets that
are obtained for trained models in each grid cell, which is a
contributing factor of the uncertainty. In addition, the forc-
ing data of these models used for temporal downscaling, in-
cluding air temperature, precipitation and the GLDAS Noah-
derived SMSA, may also contain some errors and uncer-
tainties due to the uneven spatial distribution of meteoro-
logical stations and natural measurement errors (Lv et al.,
2017). These errors and uncertainties from the input data
could be propagated into the machine-learning-based mod-
els (e.g., MLP model), resulting in a broad range of differ-
ences between the observations and the simulated results.
The latest study has made some initial attempts to learn the
spatiotemporal patterns of difference between the TWSA de-
rived from GRACE data and that simulated by land surface
models based on the convolutional neural network (CNN)
models, with the goal of providing more accurate TWSA es-
timates (Mo et al., 2022; Sun et al., 2019). Therefore, thor-
ough consideration of the spatiotemporal patterns of differ-

ence between the TWSA derived from GRACE and GRACE-
FO satellite data and that simulated by other hydrological
models will be further taken in our future work when down-
scaling the TWSA estimates in order to better understand the
complex underlying mechanism for TWSA variations during
the wet season. Additionally, more efforts should be made to
further validate the reliability of temporally downscaled re-
lations proposed in this study when more independent data
sources (e.g., groundwater level measurements) are available
in YRB.

Overall, the present study shows the great potential of tem-
porally downscaled GRACE and GRACE-FO satellite data
in monitoring the extreme flood events. The study provides
an effective means for the temporal downscaling of origi-
nal TWSA estimates from GRACE and GRACE-FO satellite
data and will help facilitate the sustainable management of
water resources and develop monitoring and early-warning
systems for severe flood events over large-scale basins. The
methods and results shown in this study can provide impor-
tant implications of flood hazard prevention and water re-
source management for other similar basins that are prone to
suffer from severe extreme floods. Furthermore, this study
can also provide broader implications for flood monitor-
ing in ungauged or poorly gauged basins. For example, ad-
vances in satellite remote sensing have made remote sensing
a promising approach to capture various hydrological vari-
ables (e.g., precipitation, temperature and soil moisture) (Ta-
ble S2), since they can substantially reduce the limitations of
traditional ground-based observations. This is extremely use-
ful and important in hydrological research and applications,
particularly in ungauged or poorly gauged basins. Therefore,
we can calculate the flood potential index proposed in this
study (i.e., NDFPI) by jointly using remote-sensing-based
precipitation, temperature and soil moisture estimates com-
bined with GRACE and GRACE-FO satellite data, which can
further provide the potential of remote sensing data for flood-
ing in ungauged or poorly gauged basins.

7 Conclusions

In the present study, we downscaled the GRACE-/GRACE-
FO-derived TWSA estimates from monthly time series to
daily time series in the YRB by establishing a relationship
between TWSA estimates and hydroclimatic factors based
on machine learning techniques. Furthermore, the temporally
downscaled TWSA data combined with daily precipitation
were adopted to monitor the extreme flood events over the
entire YRB in 2020 based on a new daily flood potential in-
dex. The main conclusions can be drawn as follows:

1. When reconstructing the monthly TWSA in the YRB,
the MLP model shows the best performance, with
RMSE= 10.9 mm per month and NSE= 0.89. The
MLR model follows with RMSE= 13.4 mm per month
and NSE= 0.84, and the LSTM model shows the low-
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est performance, with RMSE= 15.1 mm per month and
NSE= 0.81 during the validation period.

2. Based on the MLP model, monthly time series of
TWSA were temporally downscaled to daily estimates
using meteorological observations and the outputs from
a land surface model. The results show high consistency
with original monthly TWSA estimates derived from
GRACE and GRACE-FO satellite data with regard to
seasonal cycles.

3. By jointly using daily average precipitation anoma-
lies and temporally downscaled TWSA, the proposed
NDFPI can effectively detect the flood events that oc-
curred in 2020 at sub-monthly timescales for the entire
YRB.

4. The comparison analysis indicates that different types
of flood events including the 90th, 95th and 99th per-
centile floods can be monitored by the proposed NDFPI
earlier than traditional streamflow observations with re-
spect to the YRB and its individual subbasins, which
is very vital for flood forecasts and warning across this
region.
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