Articles | Volume 26, issue 22
https://doi.org/10.5194/hess-26-5917-2022
https://doi.org/10.5194/hess-26-5917-2022
Research article
 | 
25 Nov 2022
Research article |  | 25 Nov 2022

Simulating the hydrological impacts of land use conversion from annual crop to perennial forage in the Canadian Prairies using the Cold Regions Hydrological Modelling platform

Marcos R. C. Cordeiro, Kang Liang, Henry F. Wilson, Jason Vanrobaeys, David A. Lobb, Xing Fang, and John W. Pomeroy

Related authors

Quantifying Spatiotemporal and Elevational Precipitation Gauge Network Uncertainty in the Canadian Rockies
André Bertoncini and John W. Pomeroy
EGUsphere, https://doi.org/10.5194/egusphere-2024-288,https://doi.org/10.5194/egusphere-2024-288, 2024
Short summary
Measuring prairie snow water equivalent with combined UAV-borne gamma spectrometry and lidar
Phillip Harder, Warren Helgason, and John Pomeroy
EGUsphere, https://doi.org/10.5194/egusphere-2023-2586,https://doi.org/10.5194/egusphere-2023-2586, 2023
Short summary
Modelling the regional sensitivity of snowmelt, soil moisture, and streamflow generation to climate over the Canadian Prairies using a basin classification approach
Zhihua He, Kevin Shook, Christopher Spence, John W. Pomeroy, and Colin Whitfield
Hydrol. Earth Syst. Sci., 27, 3525–3546, https://doi.org/10.5194/hess-27-3525-2023,https://doi.org/10.5194/hess-27-3525-2023, 2023
Short summary
Estimating response times, flow velocities and roughness coefficients of Canadian Prairie basins
Kevin Robert Shook, Paul H. Whitfield, Christopher Spence, and John Willard Pomeroy
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2023-51,https://doi.org/10.5194/hess-2023-51, 2023
Preprint under review for HESS
Short summary
Developing a tile drainage module for Cold Regions Hydrological Model: Lessons from a farm in Southern Ontario, Canada
Mazda Kompanizare, Diogo Costa, Merrin Macrae, John Pomeroy, and Richard Petrone
EGUsphere, https://doi.org/10.5194/egusphere-2023-142,https://doi.org/10.5194/egusphere-2023-142, 2023
Short summary

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Modelling approaches
Empirical stream thermal sensitivity cluster on the landscape according to geology and climate
Lillian M. McGill, E. Ashley Steel, and Aimee H. Fullerton
Hydrol. Earth Syst. Sci., 28, 1351–1371, https://doi.org/10.5194/hess-28-1351-2024,https://doi.org/10.5194/hess-28-1351-2024, 2024
Short summary
Deep learning for monthly rainfall–runoff modelling: a large-sample comparison with conceptual models across Australia
Stephanie R. Clark, Julien Lerat, Jean-Michel Perraud, and Peter Fitch
Hydrol. Earth Syst. Sci., 28, 1191–1213, https://doi.org/10.5194/hess-28-1191-2024,https://doi.org/10.5194/hess-28-1191-2024, 2024
Short summary
On optimization of calibrations of a distributed hydrological model with spatially distributed information on snow
Dipti Tiwari, Mélanie Trudel, and Robert Leconte
Hydrol. Earth Syst. Sci., 28, 1127–1146, https://doi.org/10.5194/hess-28-1127-2024,https://doi.org/10.5194/hess-28-1127-2024, 2024
Short summary
Toward interpretable LSTM-based modeling of hydrological systems
Luis Andres De la Fuente, Mohammad Reza Ehsani, Hoshin Vijai Gupta, and Laura Elizabeth Condon
Hydrol. Earth Syst. Sci., 28, 945–971, https://doi.org/10.5194/hess-28-945-2024,https://doi.org/10.5194/hess-28-945-2024, 2024
Short summary
Flow intermittence prediction using a hybrid hydrological modelling approach: influence of observed intermittence data on the training of a random forest model
Louise Mimeau, Annika Künne, Flora Branger, Sven Kralisch, Alexandre Devers, and Jean-Philippe Vidal
Hydrol. Earth Syst. Sci., 28, 851–871, https://doi.org/10.5194/hess-28-851-2024,https://doi.org/10.5194/hess-28-851-2024, 2024
Short summary

Cited articles

Agriculture and Agri-Food Canada (AAFC): The Canadian System of Soil Classification, NRC Research Press, Ottawa, 188 pp., https://doi.org/10.1139/9780660174044, 1998. 
Agriculture and Agri-Food Canada (AAFC): Annual Crop Inventory 2013, https://open.canada.ca/data/en/dataset/ba2645d5-4458-414d-b196-6303ac06c1c9/resource/7971855d-c2e0-422b-8da5-5bb87978522f (last access: 9 February 2021), 2013. 
Aksoy, H. and Kavvas, M. L.: A review of hillslope and watershed scale erosion and sediment transport models, Catena, 64, 247–271, https://doi.org/10.1016/j.catena.2005.08.008, 2005. 
Allen, R. G., Pereira, L. S., Raes, D., and Smith, M.: Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56. Fao, Rome, 300, D05109, 1998. 
Ayers, H. D.: Influence of soil profile and vegetation characteristic on netrainfall supply to runoff, in: Spillway Design Floods: Proceeding of HydrologySymposium No. 1, National Research Council of Canada, 198–205, 1959. 
Download
Short summary
This study addresses the issue of increasing interest in the hydrological impacts of converting cropland to perennial forage cover in the Canadian Prairies. By developing customized models using the Cold Regions Hydrological Modelling (CRHM) platform, this long-term (1992–2013) modelling study is expected to provide stakeholders with science-based information regarding the hydrological impacts of land use conversion from annual crop to perennial forage cover in the Canadian Prairies.