Articles | Volume 26, issue 21
https://doi.org/10.5194/hess-26-5685-2022
https://doi.org/10.5194/hess-26-5685-2022
Technical note
 | 
11 Nov 2022
Technical note |  | 11 Nov 2022

Technical note: Modeling spatial fields of extreme precipitation – a hierarchical Bayesian approach

Bianca Rahill-Marier, Naresh Devineni, and Upmanu Lall

Related authors

Estimating return intervals for extreme climate conditions related to winter disasters and livestock mortality in Mongolia
Masahiko Haraguchi, Nicole Davi, Mukund Palat Rao, Caroline Leland, Masataka Watanabe, and Upmanu Lall
Nat. Hazards Earth Syst. Sci., 22, 2751–2770, https://doi.org/10.5194/nhess-22-2751-2022,https://doi.org/10.5194/nhess-22-2751-2022, 2022
Short summary
Space-time clustering of climate extremes amplify global climate impacts, leading to fat-tailed risk
Luc Bonnafous and Upmanu Lall
Nat. Hazards Earth Syst. Sci., 21, 2277–2284, https://doi.org/10.5194/nhess-21-2277-2021,https://doi.org/10.5194/nhess-21-2277-2021, 2021
Short summary
Joint editorial: Invigorating hydrological research through journal publications
Nevil Quinn, Günter Blöschl, András Bárdossy, Attilio Castellarin, Martyn Clark, Christophe Cudennec, Demetris Koutsoyiannis, Upmanu Lall, Lubomir Lichner, Juraj Parajka, Christa D. Peters-Lidard, Graham Sander, Hubert Savenije, Keith Smettem, Harry Vereecken, Alberto Viglione, Patrick Willems, Andy Wood, Ross Woods, Chong-Yu Xu, and Erwin Zehe
Proc. IAHS, 380, 3–8, https://doi.org/10.5194/piahs-380-3-2018,https://doi.org/10.5194/piahs-380-3-2018, 2018
Joint editorial: Invigorating hydrological research through journal publications
Nevil Quinn, Günter Blöschl, András Bárdossy, Attilio Castellarin, Martyn Clark, Christophe Cudennec, Demetris Koutsoyiannis, Upmanu Lall, Lubomir Lichner, Juraj Parajka, Christa D. Peters-Lidard, Graham Sander, Hubert Savenije, Keith Smettem, Harry Vereecken, Alberto Viglione, Patrick Willems, Andy Wood, Ross Woods, Chong-Yu Xu, and Erwin Zehe
Hydrol. Earth Syst. Sci., 22, 5735–5739, https://doi.org/10.5194/hess-22-5735-2018,https://doi.org/10.5194/hess-22-5735-2018, 2018
Season-ahead forecasting of water storage and irrigation requirements – an application to the southwest monsoon in India
Arun Ravindranath, Naresh Devineni, Upmanu Lall, and Paulina Concha Larrauri
Hydrol. Earth Syst. Sci., 22, 5125–5141, https://doi.org/10.5194/hess-22-5125-2018,https://doi.org/10.5194/hess-22-5125-2018, 2018
Short summary

Related subject area

Subject: Urban Hydrology | Techniques and Approaches: Modelling approaches
Combining statistical and hydrodynamic models to assess compound flood hazards from rainfall and storm surge: a case study of Shanghai
Hanqing Xu, Elisa Ragno, Sebastiaan N. Jonkman, Jun Wang, Jeremy D. Bricker, Zhan Tian, and Laixiang Sun
Hydrol. Earth Syst. Sci., 28, 3919–3930, https://doi.org/10.5194/hess-28-3919-2024,https://doi.org/10.5194/hess-28-3919-2024, 2024
Short summary
Simulation of spatially distributed sources, transport, and transformation of nitrogen from fertilization and septic system in an exurban watershed
Ruoyu Zhang, Lawrence E. Band, Peter M. Groffman, Amanda K. Suchy, Jonathan M. Duncan, and Arther J. Gold
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2023-256,https://doi.org/10.5194/hess-2023-256, 2023
Revised manuscript accepted for HESS
Short summary
An optimized long short-term memory (LSTM)-based approach applied to early warning and forecasting of ponding in the urban drainage system
Wen Zhu, Tao Tao, Hexiang Yan, Jieru Yan, Jiaying Wang, Shuping Li, and Kunlun Xin
Hydrol. Earth Syst. Sci., 27, 2035–2050, https://doi.org/10.5194/hess-27-2035-2023,https://doi.org/10.5194/hess-27-2035-2023, 2023
Short summary
A deep-learning-technique-based data-driven model for accurate and rapid flood predictions in temporal and spatial dimensions
Qianqian Zhou, Shuai Teng, Zuxiang Situ, Xiaoting Liao, Junman Feng, Gongfa Chen, Jianliang Zhang, and Zonglei Lu
Hydrol. Earth Syst. Sci., 27, 1791–1808, https://doi.org/10.5194/hess-27-1791-2023,https://doi.org/10.5194/hess-27-1791-2023, 2023
Short summary
Impact of urban geology on model simulations of shallow groundwater levels and flow paths
Ane LaBianca, Mette H. Mortensen, Peter Sandersen, Torben O. Sonnenborg, Karsten H. Jensen, and Jacob Kidmose
Hydrol. Earth Syst. Sci., 27, 1645–1666, https://doi.org/10.5194/hess-27-1645-2023,https://doi.org/10.5194/hess-27-1645-2023, 2023
Short summary

Cited articles

Asquith, W. H. and Famiglietti, J. S.: Precipitation areal-reduction factor estimation using an annual-maxima centered approach, J. Hydrol., 230, 55–69, 2000. 
Denwood, M. J.: runjags: An R package providing interface utilities, model templates, parallel computing methods and additional distributions for MCMC models in JAGS, J. Stat. Softw., 71, 1–25, 2016. 
Devineni, N., Lall, U., Pederson, N., and Cook, E.: A tree-ring-based reconstruction of Delaware River basin streamflow using hierarchical Bayesian regression, J. Climate, 26, 4357–4374, 2013. 
Dyrrdal, A. V., Lenkoski, A., Thorarinsdottir, T. L., and Stordal, F.: Bayesian hierarchical modeling of extreme hourly precipitation in Norway, Environmetrics, 26, 89–106, 2015. 
Gelman, A. and Hill, J.: Data Analysis Using Regression and Multilevel/Hierarchical Models (Analytical Methods for Social Research), Cambridge, Cambridge University Press, https://doi.org/10.1017/CBO9780511790942, 2007. 
Download
Short summary
We present a new approach to modeling extreme regional rainfall by considering the spatial structure of extreme events. The developed models allow a probabilistic exploration of how the regional drainage network may respond to extreme rainfall events and provide a foundation for how future risks may be better estimated.