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Abstract. We introduce a hierarchical Bayesian model for
the spatial distribution of rainfall corresponding to an ex-
treme event of a specified duration that could be used with
regional hydrologic models to perform a regional hydrologic
risk analysis. An extreme event is defined if any gaging site
in the watershed experiences an annual maximum rainfall
event and the spatial field of rainfall at all sites correspond-
ing to that occurrence is modeled. Applications to data from
New York City demonstrate the effectiveness of the model
for providing spatial scenarios that could be used for simu-
lating loadings into the urban drainage system. Insights as to
the homogeneity in spatial rainfall and its implications for
modeling are provided by considering partial pooling in the
hierarchical Bayesian framework.

1 Introduction

For an existing urban drainage network, a proper considera-
tion of the spatial structure of extreme rainfall events is im-
portant for an assessment of the effectiveness of the network
for handling urban flooding subsequent to rainfall events of
varying duration, especially as concerns regarding the re-
silience of the system under a changing climate emerge. Of-
ten, investigators focus on return period analysis of extreme
rainfall at a site considering annual maxima or peaks over
threshold for a specific rainfall duration. In a regional con-
text, spatial models of annual maximum rainfall are some-
times considered (Renard et al., 2006; Renard and Lang,
2007; Dyrrdal et al., 2015). However, since the annual max-

imum is unlikely to occur for a given event at all sites, these
models do not represent the actual structure of potential ex-
treme rainfall events. Thus, existing models for spatial rain-
fall extremes cannot be used to provide forcing for the per-
formance of an existing drainage network (natural or con-
structed) under an extreme rainfall event. We address this
situation in this note by considering that the rainfall events
of interest for a specified duration are ones where any one
of the sites in the region experiences an annual maximum
event; the spatial field or rainfall of interest is then the field
associated with each such event.

In the exploratory analyses performed for New York City,
we noted that the structure of storms that lead to annual max-
imum events at different gages in the region may not be the
same and that the basic statistics of rainfall vary across sites.
We assemble a dataset of the annual maximum rainfall for
each specified duration at each station. Let us denote this
as Adjt for duration d , site j , and year t . These events may
not occur on the same day of each year across the stations.
Second, we consider the rainfall field at all stations associ-
ated with the annual maximum at any one station and call
this the “spatial field” (SF), Rdjki , where i is identified as
an event such that Rdkki = Adkt for site k = j for year t .
Rdjki then has the rainfall at all sites j for the event where
site k has an annual maximum. As a result, the total num-
ber of events, i, may be much larger than the total number of
years of data, N . A spatial event field of rainfall is thus con-
ditional on the occurrence of an annual maximum rainfall
for any station. Of interest is f (Rdjki |Adkt )f (Adkt ), where
f (.|.) and f (.) refer to a conditional and marginal probabil-
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ity distribution, respectively. For example, in 1979, the an-
nual maximum 12 h rainfall for the Central Park rainfall gage
was 3.29 inches. At this time of the day, eight other rain-
fall stations around New York City had 12 h rainfall accumu-
lations of 1.70 inches (Essex Fells), 2 inches (JF Kennedy
International Airport), 2.73 inches (LaGuardia Airport),
0.79 inches (Newark International Airport), 1.68 inches
(New Brunswick), 0.67 inches (New Milford), 0.98 inches
(Staten Island), and 0.87 inches (Watchung), respectively.
However, not all of those other accumulations were an-
nual maximum events in their respective sites. Hence,
A12-CP-1979 = 3.29 inches, and R12-j-CP-i = [3.29, 1.70, 2.00,
2.73, 0.79, 1.68, 0.67, 0.98, 0.87]. This is similar to the issue
noted by Asquith and Famiglietti (2000). See Table A1 in the
Appendix for a full example of the spatial rainfall fields in
1979. The hierarchical Bayesian models developed consider
the spatial field SF with the goal of providing an approach for
stochastically generating representative spatial fields of rain-
fall for a specified duration, such that at least one site in the
region experiences an annual maximum event. This is fun-
damentally different from the traditional rainfall frequency
analysis which models annual maximum data at each site in-
dependently or using a covariance structure from the annual
maximum data at all sites. In this paper, we formulated and
tested a simple model that could directly explore whether or
not and to what extent there was opportunity to pool regional
information on extreme rainfall events to describe plausible
spatial fields of extreme rainfall.

In Sect. 2, we present the data and the context for the appli-
cation to the greater New York area. In Sect. 3, we describe
the details of the multivariate hierarchical Bayesian models.
The results are discussed in Sect. 4. Finally, in Sect. 5, we
present a summary and conclusions.

2 Data description

2.1 Greater New York area context

The greater New York City area has a high density of man-
made infrastructure and hence a complex hydrological land-
scape. Like many older cities, sanitary and industrial wastew-
ater, rainwater, and street runoff are collected in the same
sewers and conveyed together to treatment plants. Approx-
imately 60 % of NYC’s drainage area is served by these
combined sewers. Flooding and combined sewer overflows
(CSOs) are a concern, and innovative solutions for using the
sewer system itself as flood storage by pumping water to
different areas during a storm has been suggested. Such hy-
drologic system upgrades need to be informed by the spatial
variability of extreme precipitation.

There are very few rain gage records that are longer than
20 or 30 years. Persistent data quality issues further re-
duce the available data. This challenge of reconciling sparse
data with spatially variable hydrological networks and me-

teorological phenomena is common to many urban areas.
Widely accepted design standards are derived from a set of
intensity–duration–frequency curves developed using daily
rainfall records from the period 1903–1951 (The New York
City Department of Environmental Protection, 2008). An
analysis of precipitation extremes for the region is offered
in Wilks and Cember (1993), using daily rainfall data, and in
McKay and Wilks (1995), using hourly rainfall data. None
of these analyses consider the spatial correlation of rainfall.

2.2 Precipitation data

The precipitation data was obtained from the National Cli-
matic Data Center (National Climate Data Center, 2013).
Rain gages were selected based on their proximity to New
York City, data quality, and length of the historical record.
Twenty-nine stations were initially identified as lying within
a 100-mile radius of Central Park, with over 25 years of
continuous hourly rainfall records. Sixteen stations were ex-
cluded, since the resulting data quality was too poor. The fi-
nal dataset consists of the remaining nine stations (Table 1);
abbreviations for each station used in the figures throughout
are provided in the first column.

2.3 Diagnostics and spatial concordance

The Shapiro–Wilks test (Shapiro and Wilk, 1965; Royston,
1992) was applied to the log-transformed annual maxima se-
ries at each station for each storm duration from 1 to 24 h. For
these 216 time series, the null hypothesis of the appropriate-
ness of the log-normal distribution was not rejected for 98 %
of the sites at the 1 % level, 88 % at the 5 % level, and 81 % at
the 10 % level. Though other distributions – such as the gen-
eralized extreme value (GEV), Pearson, and log-Pearson type
III (LP3) – are popular for extreme precipitation modeling, in
our application to the spatial field of rainfall, only one of the
sites experiences the annual maximum event, and others may
not be extreme values. In such a setting, the log-normal dis-
tribution can often be an appropriate representation (Raiford
et al., 2007), as seen here. Consequently, to illustrate the idea,
we consider a log-normal distribution with spatial correlation
across the sites for the NYC example. Other choices could
very well be made.

A heat map showing the fraction of annual maximums that
occur simultaneously is provided in Fig. 1. For these plots,
we define simultaneous storms to be those beginning within
±n hours of each other (where n is a multiple of the event du-
ration) to allow for the movement of a storm event over the
area and to identify distinct, independent rainfall events. We
see that precipitation extremes, even within a relatively local
area, are frequently not simultaneous. As expected, the si-
multaneous fraction of concurrent area increases as the storm
duration increases. However, even for a 24 h duration, less
than 60 % of the events are concurrent. This is true even
for the four closest stations – JFK, LGA, Central Park, and
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Table 1. Rain gage stations in New York City and surroundings.

Abb. Location Latitude Longitude Elevation Start End
(ft) (mm/dd/yyyy) (mm/dd/yyyy)

CP New York Central Park Observation Belvedere Tower, NY 40.66889 −73.9602 39.6 5/1/1948 7/29/2012
EF Essex Fells Service Building, NJ 40.8314 −74.2858 106.7 7/4/1949 8/1/2012
JFK New York JF Kennedy International Airport, NY 40.63861 −73.7622 3.4 1/1/1949 7/29/2012
LGA New York LaGuardia Airport 40.77944 −73.8803 3.4 5/1/1948 7/29/2012
NB New Brunswick 3 SE, NJ 40.4719 −74.4365 26.2 6/1/1968 2/1/2006
NW Newark International Airport, NJ 40.6825 −74.1694 2.1 5/1/1948 7/29/2012
NM New Milford, NJ 40.961 −74.015 3.7 5/31/1946 6/30/1980
SI New York Westerleigh, NY (Staten Island) 40.63333 −74.1167 24.4 5/1/1948 9/1/1992
WT Watchung, NJ 40.66222 −74.4164 79.2 6/1/1948 8/1/2012

Figure 1. Percent of simultaneous or near-simultaneous annual maxima events shown for the site-by-site comparison for nine sites and 1, 6,
12, and 24 h storms.

Staten Island – that are typically used to inform hydrologic
design in New York City.

This diagnostic analysis highlights the importance of con-
sidering the spatial structure of extreme rainfall for an event
with a specified duration.

3 Methodology

A hierarchical Bayesian approach that provides the ability
to partially pool model parameters across the rain gage sites
was developed. Full pooling would imply that a parameter
(e.g., the mean or variance of the distribution) was homo-
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geneous across the sites. No pooling would imply that each
site was independent. Partial pooling is an intermediate step
that allows information to be shared across sites at a level
informed by the data. This results in a multi-level model,
where model parameters are estimated at each site but are as-
sumed to be drawn from the parameters of distributions that
are specified at the regional level for each parameter (Gelman
and Hill, 2007). Such an approach has been implemented for
hydrometeorological extremes in Lima and Lall (2010) and
in Kwon et al. (2008), and for paleoclimate reconstructions
by Devineni et al. (2013).

3.1 Spatial fields hierarchical model conditioned on the
site experiencing an annual maximum

In this model, we consider a conditional process – where site
k has experienced an annual maximum event – and the cor-
responding rainfall amounts Rdjki at all sites are observed.
The logarithm of rainfall is considered to be normally dis-
tributed, and a multivariate normal distribution is specified
for each site k where an annual maximum has occurred. For
each such condition, we consider partial pooling of the mean
rainfall across all sites and consider the spatial covariance
across sites. We consider that the spatial field of rainfall may
actually be different depending on which site experiences an
annual maximum. The hierarchical model is described as be-
low:

Yk ∼MVN(µk6k)

µkj ∼ N
(
ωk, σ

2
k

)
Priors

6k ∼ Inv-Wishart(1,ν)
ωk ∼ N (0,1000)

σ 2
k ∼ U (0,100) . (1)

Yk is the log of the rainfall field Rdjki across all sites corre-
sponding to when station k has an annual maximum. For the
New York City application, it is a matrix of 64 (years) by 9
(stations) for a given duration and station k. Yk is assumed
to follow a multivariate normal distribution, with a vector of
station means µk and covariance across stations specified by
a 9-by-9 matrix 6k. At the second level of the model, the
station-specific means µj are assumed to be normally dis-
tributed, with a common mean ωk and variance σ 2

k . This is
a partial pooling approach with no covariates, as outlined in
Gelman and Hill (2007). A non-informative conjugate prior,
the inverse-Wishart distribution, is assumed for 6k , where1
is the scale matrix and ν is the degrees of freedom (Gelman et
al., 2004). If 6k is a j -by-j matrix, we assume ν equivalent
to (j + 1) and 1 equal to the j -by-j identity matrix (I). This
is equivalent to a uniform prior on each variance element of
the correlation matrix (Gelman and Hill, 2007). We give σ 2

k a
non-informative uniform prior andωk a non-informative con-

jugate normal prior for computational convenience (Gelman
and Hill, 2007; Gelman et al. 2004).

There are nine stations, and therefore there are nine dis-
tinct datasets Yk and nine distinct models for each storm du-
ration. For extreme rainfall events, i.e., those that exceed a
nominal design return period, we outline a simulation strat-
egy from these models that pools simulated fields that repre-
sent regional extreme events together.

3.2 Spatial fields single-level model

We consider a subset of the previous model where the as-
sumption that the mean log rainfall drawn from a common
spatial mean is relaxed. This leads to the simpler, no-pooling
model represented below:

Yk ∼ MVN(µks,6ks)

µkjs ∼ N (0, 1000)
6ks ∼ Inv-Wishart(1,v). (2)

As in the hierarchical model, Yk is the log of the SF when
station k is at an annual maximum. The vector of precipita-
tion means across j stations (including station k) is µks , with
a subscript s to indicate single-level model.

3.3 Spatial fields simulation for a regional T -year
return period

The spatial fields model can be used to simulate rainfall fields
corresponding to an annual maximum occurring at any one of
the sites, k. Next, if we are interested in design rainfall fields
represented by the T -year return period across the domain,
we follow a two-step process. First, based on the model that
is fit, we identify the T -year return period annual maximum
rainfall event for each site, k. Then, from simulations of the
multivariate rainfall fields using the model, we identify all
cases where the rainfall at site k exceeds the T -year event for
that site and take the corresponding simulated rainfall field
across all sites, j . The process is outlined below:

i. Threshold calculation. For each return period (T ) and
rainfall duration (D), a precipitation threshold is com-
puted for each station using the posterior mean and vari-
ance from the station k’s hierarchical Bayesian model.
The threshold was computed using frequency factors K
for the normal distribution (Guo, 2006) and the equation
below:

log(YT ,dk)= µ̃k +K (T )∗6̃kk. (3)

For example, letting k = 1 for Central Park, we compute
the SF model from Y1. We extract µ11, the Central Park
mean, and 611, the Central Park variance, and use them
in Eq. (3) above.

ii. Simulate multivariate field for Yk . From the hierarchical
Bayesian model defined in Eq. (1), we simulate a large
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number of realizations M (e.g., equal to 10 000) of the
rainfall fields Yk corresponding to the case when site
k has an annual maximum. These are based on draws
from the posterior distributions of the parameters, and
hence, they incorporate a consideration of parameter un-
certainty.

iii. Extract subset of simulations that exceed the T-Year
event at site k. Retain a subfield Zk from Yk , such that
Ydkkm>YT ,dk and that m= 1 . . . M is the index of the
simulation.

iv. Pool the T-year return period fields. The Zk are sub-
samples of rainfall fields from each of the nine mod-
els, such that an equal number of draws from each of
the k fields is selected. For T = 100 years, on average,
100 such samples will be generated from each station
for M = 10 000, and 900 total fields are then available
for our application to the New York City data for de-
sign or reliability analyses. For our illustrations here,
we sampled the same number of fields that are obtained
from applying steps (i) to (iv) on the observed rainfall
fields data. In essence, the spatial fields corresponding
to a T -year return period event are first derived from
observed rainfall fields data; these T -year return period
spatial rainfall fields then form the baseline to which the
simulated T -year return period spatial rainfall fields de-
rived from the posterior runs of the hierarchical model
are compared. Note that, since there may be multiple
sites with annual maxima per event i in the original
Rdjki data, and since these are contained in each ran-
dom field indexed by k, and since we modeled this spa-
tial field, the concurrence of high rainfall at those sites
will also be reproduced in the simulations. Similarly, the
incidence of high rainfall at multiple stations will also
be correctly reproduced across the pooled data across
the K simulations.

3.4 Model fitting and convergence

Two hundred and sixteen models (one for each duration
and each site) were fitted using JAGS (Just Another Gibbs
Sampler) (Plummer, 2003; Denwood et al., 2016). It uses a
Markov chain Monte Carlo (MCMC) simulation algorithm
(a Gibbs Sampler for the current example) to simulate the
posterior probability distribution of parameters. A random
normal distribution was used for the vector of station means
(µ, µk , µks), and a random Wishart distribution was used for
the precision. Similarly, a non-informative conjugate normal
prior for ωk and a non-informative uniform prior for σ 2

k are
assumed. In JAGS, the normal distribution is parameterized
in terms of precision instead of covariance (6,6k,6ks), as is
noted by convention in the model formulas above. We simu-
lated four chains, ran the model for 20 000 iterations, and the
first half of the simulations were discarded as burn-in.

Figure 2. Empirical cumulative distribution function of the poste-
rior distribution of (a) simulations and (b) mean parameters for the
Central Park 12 h hierarchical and non-hierarchical SF model. Pos-
terior means and simulations are shown on an untransformed scale
(i.e., the mean is the log mean). The empirical cumulative distri-
bution function derived from the observed data is also shown in
panel (a) along with the band that depicts the 99 % credible interval
of the posterior simulations.

4 Results and analysis

4.1 Bayesian model checking

For each model, the convergence of the posterior distribution
of each parameter was checked using the shrink factor pro-
posed by Gelman and Rubin (1992) – values under 1.1 for
all parameters suggest that the model has converged. Conver-
gence plots (showing the mixing of the four chains) were vi-
sually checked for all cases. All models converged appropri-
ately, with each parameter attaining a shrink factor between
1.0 and 1.1 and with the large majority reaching 1.0.

We compare the performance of the two SF models using
the deviance information criterion (DIC) and pD, as recom-
mended in Gelman et al. (2004). The scores were virtually
identical for the two types of SF models for each rainfall du-
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Figure 3. Empirical cumulative distribution function of the 12 h 10-year return period event from SF hierarchical models for the nine stations
(Central Park, LGA, New Milford – top to bottom, left panel; Essex Fells, New Brunswick, Staten Island – top to bottom, middle panel;
JFK, Newark, Watchung – top to bottom, right panel). The empirical cumulative distribution function derived from the observed 12 h 10-year
return period field is also shown. The band depicts the 99 % credible interval of the posterior simulations.

ration. Next, we considered whether the common mean in the
hierarchical model converged as successfully as other param-
eters; it did. Gelman and Hill (2007) suggest that, when there
are only a small number of groups and when the group-level
standard deviation is large, multi-level modeling may not add
much information. The resulting model will not necessarily
perform worse and will likely resemble the model without
pooling (as it does here). The posterior parameters for the re-
sulting simulations are essentially identical (Fig. 2a), and the
posterior for the mean shrunk only very slightly (Fig. 2b).

Next, we consider how the return period spatial rainfall
fields identified in the SF hierarchical models compare to ob-
served return period spatial fields. We do so by plotting the

empirical cumulative distribution function of the return pe-
riod event field estimated from the hierarchical model and by
comparing it with the empirical cumulative distribution func-
tion of the return period event field derived from the observed
data. The 99 % credible interval obtained from the posterior
simulations of the hierarchical models is also presented to
represent the uncertainty. Though the Bayesian models can
easily simulate any return period, the reliability of the empir-
ical estimate is dependent on the length of the record, so it is
only reliable as a goodness-of-fit measure for shorter return
periods. Results from all nine stations for the 10-year 12 h
accumulated rainfall are presented in Fig. 3. The plots for all
nine stations at the 1 and 24 h durations and the 10-year re-
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Figure 4. Empirical cumulative distribution function of 5-year return period events for 1 h (a), 6 h (b), 12 h (c), and 24 h (d) storms from
Staten Island SF hierarchical model simulations. The empirical cumulative distribution function of the observed 5-year return period event
fields at the respective durations are also shown. The band depicts the 99 % credible interval of the posterior simulations.

turn period are provided in Figs. A1 and A2, respectively, of
the appendix.

The observed 10-year 12 h return period fields for all sta-
tions are within the 99 % credible interval of the simulations,
for the most part. The SF model simulated tails that are much
greater in magnitude than the observed, as expected. The un-
certainty band is also wider at the tail end of the distribution.
New Milford is an exception, with slight underprediction of
the left tail. These differences are amplified at the left tail
for higher durations (i.e., the 24 h storms). The shorter dura-
tions (1 h storms) seem to be modeled well, albeit with wider
credible intervals.

Figure 4 presents a slightly different view of the results,
with a focus on how well various durations for a shorter re-
turn period event (5-year events) are simulated for a specific
station – Staten Island. While 1 h 5-year return period storm
fields are well simulated, there seems to be a bias (with the
observed field’s left tail falling outside the 99 % credible in-
terval of the simulated) with increasing durations. It is dif-
ficult to identify exactly why this might be the case with-
out significant additional exploratory analysis of the Staten

Island data. However, we note that the simulations reflect
additional information provided by the other stations in the
model. In this application, the Staten Island site record is 20
years shorter than the record at the other sites, and the shift
in the simulations reflects the shift in the rainfall in the other
sites over this period. Thus, the pooling strategy is instru-
mental in using the joint distribution across sites from the
common period of record to provide simulations that cover
the shift in the period. Of course, if the correlation across
sites has also changed over the period of missing data, the
algorithm is incapable of replicating such a change.

5 Summary and conclusions

For larger cities, a consideration of the drainage network and
the spatial dependence in rainfall at different durations is im-
portant to consider, at least from the perspective of assess-
ing the performance and resilience of the network and per-
haps also for design considerations. We were interested in
formulating and testing a simple model that could directly
explore whether or not and to what extent there was opportu-
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nity to pool regional information on extreme rainfall events
to describe plausible spatial fields of extreme rainfall. This
led to postulating and testing a Bayesian model that con-
siders the spatial field of rainfall associated with an annual
maximum occurrence at any site. We considered the applica-
tion of the model to relatively long rainfall time series from
the New York City region. Initial exploratory analyses sug-
gested that the rainfall characteristics and storm tracks var-
ied by event and by season across the region, such that dis-
tinct clusters could be identified, suggesting that the region
had a heterogeneous spatial structure with respect to extreme
rainfall (Hamidi et al., 2017). Our applications further clar-
ified the nature of this heterogeneity. It is interesting to also
note from the New York City analysis that there is support
for pooling the spatial covariance of rainfall across all sites
(irrespective of which one experienced an annual maximum
rain event for a given duration), even though, often, the ex-
ceedance probability distributions of rainfall for a given du-
ration may differ across sites, even after partial pooling. The
hierarchical Bayesian framework permits a consideration of
the uncertainty in parameter and model structure and helps
us to identify the level of homogeneity that may be appro-
priate for representing the processes underlying a particular
dataset.

Rain gages are the preferred data source for extreme event
modeling because of their long record, but incorporating
radar in addition to rain gages could provide the spatial den-
sity needed to explore how event rainfall characteristics re-
late to specific meteorological phenomena or to provide com-
parable simulations to existing stochastic models. The radar
information would contain considerably more spatial detail
necessary for building the type of model exemplified here.
However, radar rainfall records are much shorter, and con-
sequently, one needs to develop a methodology to appropri-
ately blend the shorter but spatially richer radar data with the
longer but spatially sparse gage data. Our algorithm can be
readily applied to a mix of radar and rain gage data. How-
ever, some extensions need to be pursued to address the very
different record lengths of each data source.

We used a log-normal distribution applied to rainfall for
each duration to illustrate our approach. The goodness-of-fit
tests support this assumption, and this permits some confi-
dence in the kind of conclusions we drew from the applica-
tions to the New York City data. However, other models –
such as the GEV or generalized Pareto or other choices for
the distribution – could very well be considered. The point
here was to highlight the need to consider spatial covari-
ance and an appropriate blending of local and regional data
sources through partial pooling.

Appendix A: Auxiliary figures

This appendix includes Table A1 and Figs. A1 and A2. Ta-
ble A1 provides an example derivation of extreme rainfall
fields. Figures A1 and A2 provide the results and baseline
comparisons of the 1 and 24 h 10-year return period events
from the SF models for the nine stations in and around New
York City.
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Table A1. Illustration of spatial rainfall fields for an example year, 1979, for 12 h accumulated rainfall. Anchor station column is the condition
where annual maximum rainfall is identified (Adkt ). The corresponding row presents the rainfall for other stations when the anchor station
is experiencing an annual maximum event (Rdjki |Adkt ). For instance, the third row shows the spatial rainfall field when JF Kennedy
International Airport had an annual maximum event in 1979 (2.03 inches of 12 h rainfall is shown in bold font to indicate the annual
maximum rainfall at the conditioning station). The 12 h rainfall recorded at the other stations simultaneously are presented across, in the row.
Notice that none of those other stations’ recorded rainfall is the at-site annual maximum event.

Other stations that form the spatial field (Rdjki)

CP EF JFK LGA NW NB NM SI WT

Anchor stations (Adkt ) CP 3.29 1.70 2.00 2.73 0.79 1.68 0.67 0.98 0.87
EF 0.56 2.56 NA 0.13 0.49 0.46 1.02 0.31 0.48
JFK 3.25 1.70 2.03 2.71 0.79 1.68 0.65 0.89 0.88
LGA 3.29 1.70 2.00 2.73 0.79 1.68 0.67 0.98 0.87
NW 1.44 1.22 1.48 1.23 2.01 1.92 1.30 2.20 1.73
NB 1.27 0.94 0.57 1.04 0.22 2.61 0.40 0.86 1.81
NM 2.29 1.03 1.52 1.77 0.44 1.99 2.41 1.76 0.77
SI 0.65 2.08 0.58 0.32 NA 1.46 0.23 3.66 1.62
WT 1.84 1.32 1.64 1.56 1.72 2.07 1.62 2.03 1.92

Figure A1. Empirical cumulative distribution function of the 1 h 10-year return period event from SF hierarchical models for the nine stations
(Central Park, LGA, New Milford – top to bottom, left panel; Essex Fells, New Brunswick, Staten Island – top to bottom, middle panel; JFK,
Newark, Watchung – top to bottom, right panel). The empirical cumulative distribution function derived from the observed 1 h 10-year return
period field is also shown. The band depicts the 99 % credible interval of the posterior simulations.
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Figure A2. Empirical cumulative distribution function of the 24 h 10-year return period event from SF hierarchical models for the nine
stations (Central Park, LGA, New Milford – top to bottom, left panel; Essex Fells, New Brunswick, Staten Island – top to bottom, middle
panel; JFK, Newark, Watchung – top to bottom, right panel). The empirical cumulative distribution function derived from the observed 24 h
10-year return period field is also shown. The band depicts the 99 % credible interval of the posterior simulations.
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