Articles | Volume 26, issue 21
https://doi.org/10.5194/hess-26-5515-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-26-5515-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Effects of passive-storage conceptualization on modeling hydrological function and isotope dynamics in the flow system of a cockpit karst landscape
Guangxuan Li
Institute of Surface-Earth System Science, School of Earth System
Science, Tianjin University, Tianjin 300072, China
Tianjin Key Laboratory of Earth Critical Zone Science and
Sustainable Development in Bohai Rim, Tianjin 300072, China
Xi Chen
CORRESPONDING AUTHOR
Institute of Surface-Earth System Science, School of Earth System
Science, Tianjin University, Tianjin 300072, China
Tianjin Key Laboratory of Earth Critical Zone Science and
Sustainable Development in Bohai Rim, Tianjin 300072, China
Zhicai Zhang
College of Hydrology and Water Resources, Hohai University,
Nanjing 210098, China
Lichun Wang
Institute of Surface-Earth System Science, School of Earth System
Science, Tianjin University, Tianjin 300072, China
Tianjin Key Laboratory of Earth Critical Zone Science and
Sustainable Development in Bohai Rim, Tianjin 300072, China
Chris Soulsby
School of Geosciences, University of Aberdeen, Aberdeen AB24 3UF,
UK
Related authors
No articles found.
Maria Magdalena Warter, Dörthe Tetzlaff, Chris Soulsby, Tobias Goldhammer, Daniel Gebler, Kati Vierrikko, and Michael T. Monaghan
EGUsphere, https://doi.org/10.5194/egusphere-2024-3537, https://doi.org/10.5194/egusphere-2024-3537, 2024
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Short summary
There is a lack of understanding of how urban aquatic nature-based solutions affect ecohydrology and how they in turn are affected by urbanization and climate change. We use a multi-tracer approach using stable water isotopes, hydrochemistry and microbial and macrophyte diversity, to disentangle the effects of hydroclimate and urbanization. The results show potential limitations of aquaNBS impacts on water quality and biodiversity in response to hydroclimate and urban water sources.
Maria Magdalena Warter, Dörthe Tetzlaff, Christian Marx, and Chris Soulsby
Nat. Hazards Earth Syst. Sci., 24, 3907–3924, https://doi.org/10.5194/nhess-24-3907-2024, https://doi.org/10.5194/nhess-24-3907-2024, 2024
Short summary
Short summary
Streams are increasingly impacted by droughts and floods. Still, the amount of water needed for sustainable flows remains unclear and contested. A comparison of two streams in the Berlin–Brandenburg region of northeast Germany, using stable water isotopes, shows strong groundwater dependence with seasonal rainfall contributing to high/low flows. Understanding streamflow variability can help us assess the impacts of climate change on future water resource management.
Salim Goudarzi, Chris Soulsby, Jo Smith, Jamie Lee Stevenson, Alessandro Gimona, Scot Ramsay, Alison Hester, Iris Aalto, and Josie Geris
EGUsphere, https://doi.org/10.5194/egusphere-2024-2258, https://doi.org/10.5194/egusphere-2024-2258, 2024
Short summary
Short summary
Planting trees on farmlands is now considered as one of the potential solutions to climate change. Trees can suck CO2 out of our atmosphere and store it in their trunks and in the soil beneath them. They can promote biodiversity, protect against soil erosion and drought. They can even help reduce flood risk for downstream communities. But we need models that can tell us the likely impact of trees at different locations and scales. Our study provides such a model.
Hao Chen, Tiejun Wang, Yonggen Zhang, Yun Bai, and Xi Chen
Geosci. Model Dev., 16, 5685–5701, https://doi.org/10.5194/gmd-16-5685-2023, https://doi.org/10.5194/gmd-16-5685-2023, 2023
Short summary
Short summary
Effectively assembling multiple models for approaching a benchmark solution remains a long-standing issue for various geoscience domains. We here propose an automated machine learning-assisted ensemble framework (AutoML-Ens) that attempts to resolve this challenge. Results demonstrate the great potential of AutoML-Ens for improving estimations due to its two unique features, i.e., assigning dynamic weights for candidate models and taking full advantage of AutoML-assisted workflow.
Doerthe Tetzlaff, Aaron Smith, Lukas Kleine, Hauke Daempfling, Jonas Freymueller, and Chris Soulsby
Earth Syst. Sci. Data, 15, 1543–1554, https://doi.org/10.5194/essd-15-1543-2023, https://doi.org/10.5194/essd-15-1543-2023, 2023
Short summary
Short summary
We present a comprehensive set of ecohydrological hydrometric and stable water isotope data of 2 years of data. The data set is unique as the different compartments of the landscape were sampled and the effects of a prolonged drought (2018–2020) captured by a marked negative rainfall anomaly (the most severe regional drought of the 21st century). Thus, the data allow the drought effects on water storage, flux and age dynamics, and persistence of lowland landscapes to be investigated.
Xiaoqiang Yang, Doerthe Tetzlaff, Chris Soulsby, and Dietrich Borchardt
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2022-239, https://doi.org/10.5194/gmd-2022-239, 2022
Preprint retracted
Short summary
Short summary
We develop the catchment water quality assessment platform HiWaQ v1.0, which is compatible with multiple hydrological model structures. The nitrogen module (HiWaQ-N) and its coupling tests with two contrasting grid-based hydrological models demonstrate the robustness of the platform in estimating catchment N dynamics. With the unique design of the coupling flexibility, HiWaQ can leverage advancements in hydrological modelling and advance integrated catchment water quantity-quality assessments.
Aaron Smith, Doerthe Tetzlaff, Jessica Landgraf, Maren Dubbert, and Chris Soulsby
Biogeosciences, 19, 2465–2485, https://doi.org/10.5194/bg-19-2465-2022, https://doi.org/10.5194/bg-19-2465-2022, 2022
Short summary
Short summary
This research utilizes high-spatiotemporal-resolution soil and vegetation measurements, including water stable isotopes, within an ecohydrological model to partition water flux dynamics and identify flow paths and durations. Results showed high vegetation water use and high spatiotemporal dynamics of vegetation water source and vegetation isotopes. The evaluation of these dynamics further revealed relatively fast flow paths through both shallow soil and vegetation.
Jessica Landgraf, Dörthe Tetzlaff, Maren Dubbert, David Dubbert, Aaron Smith, and Chris Soulsby
Hydrol. Earth Syst. Sci., 26, 2073–2092, https://doi.org/10.5194/hess-26-2073-2022, https://doi.org/10.5194/hess-26-2073-2022, 2022
Short summary
Short summary
Using water stable isotopes, we studied from which water source (lake water, stream water, groundwater, or soil water) two willows were taking their water. We monitored the environmental conditions (e.g. air temperature and soil moisture) and the behaviour of the trees (water flow in the stem). We found that the most likely water sources of the willows were the upper soil layers but that there were seasonal dynamics.
Aaron J. Neill, Christian Birkel, Marco P. Maneta, Doerthe Tetzlaff, and Chris Soulsby
Hydrol. Earth Syst. Sci., 25, 4861–4886, https://doi.org/10.5194/hess-25-4861-2021, https://doi.org/10.5194/hess-25-4861-2021, 2021
Short summary
Short summary
Structural changes (cover and height of vegetation plus tree canopy characteristics) to forests during regeneration on degraded land affect how water is partitioned between streamflow, groundwater recharge and evapotranspiration. Partitioning most strongly deviates from baseline conditions during earlier stages of regeneration with dense forest, while recovery may be possible as the forest matures and opens out. This has consequences for informing sustainable landscape restoration strategies.
Mikael Gillefalk, Dörthe Tetzlaff, Reinhard Hinkelmann, Lena-Marie Kuhlemann, Aaron Smith, Fred Meier, Marco P. Maneta, and Chris Soulsby
Hydrol. Earth Syst. Sci., 25, 3635–3652, https://doi.org/10.5194/hess-25-3635-2021, https://doi.org/10.5194/hess-25-3635-2021, 2021
Short summary
Short summary
We used a tracer-aided ecohydrological model to quantify water flux–storage–age interactions for three urban vegetation types: trees, shrub and grass. The model results showed that evapotranspiration increased in the order shrub < grass < trees during one growing season. Additionally, we could show how
infiltration hotspotscreated by runoff from sealed onto vegetated surfaces can enhance both evapotranspiration and groundwater recharge.
Aaron Smith, Doerthe Tetzlaff, Lukas Kleine, Marco Maneta, and Chris Soulsby
Hydrol. Earth Syst. Sci., 25, 2239–2259, https://doi.org/10.5194/hess-25-2239-2021, https://doi.org/10.5194/hess-25-2239-2021, 2021
Short summary
Short summary
We used a tracer-aided ecohydrological model on a mixed land use catchment in northeastern Germany to quantify water flux–storage–age interactions at four model grid resolutions. The model's ability to reproduce spatio-temporal flux–storage–age interactions decreases with increasing model grid sizes. Similarly, larger model grids showed vegetation-influenced changes in blue and green water partitioning. Simulations reveal the value of measured soil and stream isotopes for model calibration.
Lena-Marie Kuhlemann, Doerthe Tetzlaff, Aaron Smith, Birgit Kleinschmit, and Chris Soulsby
Hydrol. Earth Syst. Sci., 25, 927–943, https://doi.org/10.5194/hess-25-927-2021, https://doi.org/10.5194/hess-25-927-2021, 2021
Short summary
Short summary
We studied water partitioning under urban grassland, shrub and trees during a warm and dry growing season in Berlin, Germany. Soil evaporation was highest under grass, but total green water fluxes and turnover time of soil water were greater under trees. Lowest evapotranspiration losses under shrub indicate potential higher drought resilience. Knowledge of water partitioning and requirements of urban green will be essential for better adaptive management of urban water and irrigation strategies.
Lukas Kleine, Doerthe Tetzlaff, Aaron Smith, Hailong Wang, and Chris Soulsby
Hydrol. Earth Syst. Sci., 24, 3737–3752, https://doi.org/10.5194/hess-24-3737-2020, https://doi.org/10.5194/hess-24-3737-2020, 2020
Short summary
Short summary
We investigated the effects of the 2018 drought on water partitioning in a lowland catchment under grassland and forest in north-eastern Germany. Conditions resulted in drying up of streams, yield losses, and lower groundwater levels. Oak trees continued to transpire during the drought. We used stable isotopes to assess the fluxes and ages of water. Sustainable use of resource water requires such understanding of ecohydrological water partitioning.
Man Gao, Xi Chen, and Jintao Liu
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2019-453, https://doi.org/10.5194/hess-2019-453, 2019
Manuscript not accepted for further review
Aaron Smith, Doerthe Tetzlaff, Hjalmar Laudon, Marco Maneta, and Chris Soulsby
Hydrol. Earth Syst. Sci., 23, 3319–3334, https://doi.org/10.5194/hess-23-3319-2019, https://doi.org/10.5194/hess-23-3319-2019, 2019
Short summary
Short summary
We adapted and used a spatially distributed eco-hydrological model, EcH2O-iso, to temporally evaluate the influence of soil freeze–thaw dynamics on evaporation and transpiration fluxes in a northern Swedish catchment. We used multi-criterion calibration over multiple years and found an early-season influence of soil frost on transpiration water ages. This work provides a framework for quantifying the current and future interactions of soil water, evaporation, and transpiration.
Thea I. Piovano, Doerthe Tetzlaff, Sean K. Carey, Nadine J. Shatilla, Aaron Smith, and Chris Soulsby
Hydrol. Earth Syst. Sci., 23, 2507–2523, https://doi.org/10.5194/hess-23-2507-2019, https://doi.org/10.5194/hess-23-2507-2019, 2019
Short summary
Short summary
We adapted the spatially distributed, tracer-aided model, STARR, to a permafrost-influenced catchment in the Yukon Territory, Canada, with a time-variable implementation of field capacity to capture thaw layer spatio-temporal dynamics. We applied a multi-criteria calibration with multi-year field data. This study demonstrates the value of the integration of isotope data in a spatially distributed model to quantify catchment water storage and age dynamics in a permafrost-influenced environment.
Hongkai Gao, Christian Birkel, Markus Hrachowitz, Doerthe Tetzlaff, Chris Soulsby, and Hubert H. G. Savenije
Hydrol. Earth Syst. Sci., 23, 787–809, https://doi.org/10.5194/hess-23-787-2019, https://doi.org/10.5194/hess-23-787-2019, 2019
Short summary
Short summary
Supported by large-sample ecological observations, a novel, simple and topography-driven runoff generation module (HSC-MCT) was created. The HSC-MCT is calibration-free, and therefore it can be used to predict in ungauged basins, and has great potential to be generalized at the global scale. Also, it allows us to reproduce the variation of saturation areas, which has great potential to be used for broader hydrological, ecological, climatological, and biogeochemical studies.
Zhicai Zhang, Xi Chen, Qinbo Cheng, and Chris Soulsby
Hydrol. Earth Syst. Sci., 23, 51–71, https://doi.org/10.5194/hess-23-51-2019, https://doi.org/10.5194/hess-23-51-2019, 2019
Short summary
Short summary
We developed a new tracer-aided hydrological model for karst catchments. This model captured the flow and tracer dynamics within each landscape unit quite well, and we could estimate the storage, fluxes and age of water within each. Such tracer-aided models enhance our understanding of the hydrological connectivity between different landscape units and the mixing processes between various flow sources. It is an encouraging step forward in tracer-aided modelling of karst catchments.
Sylvain Kuppel, Doerthe Tetzlaff, Marco P. Maneta, and Chris Soulsby
Geosci. Model Dev., 11, 3045–3069, https://doi.org/10.5194/gmd-11-3045-2018, https://doi.org/10.5194/gmd-11-3045-2018, 2018
Short summary
Short summary
This paper presents a novel ecohydrological model in which both the fluxes of water and the relative concentration in stable isotopes (2H and 18O) can be simulated. Spatial heterogeneity, lateral transfers and plant-driven water use are incorporated. A thorough evaluation shows encouraging results using a wide range of in situ measurements from a Scottish catchment. The same modelling principles are then used to simulate how (and where) precipitation ages as water transits in the catchment.
Matthias Sprenger, Doerthe Tetzlaff, Jim Buttle, Hjalmar Laudon, and Chris Soulsby
Hydrol. Earth Syst. Sci., 22, 3965–3981, https://doi.org/10.5194/hess-22-3965-2018, https://doi.org/10.5194/hess-22-3965-2018, 2018
Short summary
Short summary
We estimated water ages in the upper critical zone with a soil physical model (SWIS) and found that the age of water stored in the soil, as well as of water leaving the soil via evaporation, transpiration, or recharge, was younger the higher soil water storage (inverse storage effect). Travel times of transpiration and evaporation were different. We conceptualized the subsurface into fast and slow flow domains and the water was usually half as young in the fast as in the slow flow domain.
Aaron A. Smith, Doerthe Tetzlaff, and Chris Soulsby
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2018-57, https://doi.org/10.5194/hess-2018-57, 2018
Preprint withdrawn
Pertti Ala-aho, Doerthe Tetzlaff, James P. McNamara, Hjalmar Laudon, and Chris Soulsby
Hydrol. Earth Syst. Sci., 21, 5089–5110, https://doi.org/10.5194/hess-21-5089-2017, https://doi.org/10.5194/hess-21-5089-2017, 2017
Short summary
Short summary
We used the Spatially Distributed Tracer-Aided Rainfall-Runoff model (STARR) to simulate streamflows, stable water isotope ratios, snowpack dynamics, and water ages in three snow-influenced experimental catchments with exceptionally long and rich datasets. Our simulations reproduced the hydrological observations in all three catchments, suggested contrasting stream water age distributions between catchments, and demonstrated the importance of snow isotope processes in tracer-aided modelling.
Matthias Sprenger, Doerthe Tetzlaff, and Chris Soulsby
Hydrol. Earth Syst. Sci., 21, 3839–3858, https://doi.org/10.5194/hess-21-3839-2017, https://doi.org/10.5194/hess-21-3839-2017, 2017
Short summary
Short summary
We sampled the isotopic composition in the top 20 cm at four different sites in the Scottish Highlands at 5 cm intervals over 1 year. The relationship between the soil water isotopic fractionation and evapotranspiration showed a hysteresis pattern due to a lag response to onset and offset of the evaporative losses. The isotope data revealed that vegetation had a significant influence on the soil evaporation with evaporation being double from soils beneath Scots pine compared to heather.
M. Hrachowitz, H. Savenije, T. A. Bogaard, D. Tetzlaff, and C. Soulsby
Hydrol. Earth Syst. Sci., 17, 533–564, https://doi.org/10.5194/hess-17-533-2013, https://doi.org/10.5194/hess-17-533-2013, 2013
Related subject area
Subject: Catchment hydrology | Techniques and Approaches: Modelling approaches
Improving the hydrological consistency of a process-based solute-transport model by simultaneous calibration of streamflow and stream concentrations
Leveraging a time-series event separation method to disentangle time-varying hydrologic controls on streamflow – application to wildfire-affected catchments
The significance of the leaf area index for evapotranspiration estimation in SWAT-T for characteristic land cover types of West Africa
Improved representation of soil moisture processes through incorporation of cosmic-ray neutron count measurements in a large-scale hydrologic model
Spatio-temporal patterns and trends of streamflow in water-scarce Mediterranean basins
A large-sample modelling approach towards integrating streamflow and evaporation data for the Spanish catchments
Seasonal variation in land cover estimates reveals sensitivities and opportunities for environmental models
Estimating response times, flow velocities, and roughness coefficients of Canadian Prairie basins
Learning landscape features from streamflow with autoencoders
On the use of streamflow transformations for hydrological model calibration
Simulation-based inference for parameter estimation of complex watershed simulators
Multi-scale soil moisture data and process-based modeling reveal the importance of lateral groundwater flow in a subarctic catchment
Catchment response to climatic variability: implications for root zone storage and streamflow predictions
Hybrid hydrological modeling for large alpine basins: a semi-distributed approach
Karst aquifer discharge response to rainfall interpreted as anomalous transport
HESS Opinions: Never train a Long Short-Term Memory (LSTM) network on a single basin
Large-sample hydrology – a few camels or a whole caravan?
Comment on “Are soils overrated in hydrology?” by Gao et al. (2023)
Projections of streamflow intermittence under climate change in European drying river networks
Multi-decadal fluctuations in root zone storage capacity through vegetation adaptation to hydro-climatic variability have minor effects on the hydrological response in the Neckar River basin, Germany
Projected future changes in the cryosphere and hydrology of a mountainous catchment in the upper Heihe River, China
On the importance of plant phenology in the evaporative process of a semi-arid woodland: could it be why satellite-based evaporation estimates in the miombo differ?
Achieving water budget closure through physical hydrological processes modelling: insights from a large-sample study
Regionalization of GR4J model parameters for river flow prediction in Paraná, Brazil
Heavy-tailed flood peak distributions: What is the effect of the spatial variability of rainfall and runoff generation?
Evolution of river regimes in the Mekong River basin over 8 decades and the role of dams in recent hydrological extremes
Skill of seasonal flow forecasts at catchment scale: an assessment across South Korea
To what extent do flood-inducing storm events change future flood hazards?
State updating in the Xin'anjiang Model: Joint assimilating streamflow and multi-source soil moisture data via Asynchronous Ensemble Kalman Filter with enhanced Error Models
When ancient numerical demons meet physics-informed machine learning: adjoint-based gradients for implicit differentiable modeling
Runoff component quantification and future streamflow projection in a large mountainous basin based on a multidata-constrained cryospheric-hydrological model
Assessing the impact of climate change on high return levels of peak flows in Bavaria applying the CRCM5 large ensemble
Impacts of climate and land surface change on catchment evapotranspiration and runoff from 1951 to 2020 in Saxony, Germany
Quantifying and reducing flood forecast uncertainty by the CHUP-BMA method
Developing a tile drainage module for the Cold Regions Hydrological Model: lessons from a farm in southern Ontario, Canada
To bucket or not to bucket? Analyzing the performance and interpretability of hybrid hydrological models with dynamic parameterization
Widespread flooding dynamics under climate change: characterising floods using grid-based hydrological modelling and regional climate projections
HESS Opinions: The sword of Damocles of the impossible flood
A diversity centric strategy for the selection of spatio-temporal training data for LSTM-based streamflow forecasting
Metamorphic testing of machine learning and conceptual hydrologic models
The influence of human activities on streamflow reductions during the megadrought in central Chile
Elevational control of isotopic composition and application in understanding hydrologic processes in the mid Merced River catchment, Sierra Nevada, California, USA
Lack of robustness of hydrological models: A large-sample diagnosis and an attempt to identify the hydrological and climatic drivers
Exploring the Potential Processes Controls for Changes of Precipitation-Runoff Relationships in Non-stationary Environments
Enhancing long short-term memory (LSTM)-based streamflow prediction with a spatially distributed approach
Broadleaf afforestation impacts on terrestrial hydrology insignificant compared to climate change in Great Britain
CH-RUN: A data-driven spatially contiguous runoff monitoring product for Switzerland
Simulating the Tone River Eastward Diversion Project in Japan Carried Out Four Centuries Ago
Impacts of spatiotemporal resolutions of precipitation on flood event simulation based on multimodel structures – a case study over the Xiang River basin in China
A network approach for multiscale catchment classification using traits
Jordy Salmon-Monviola, Ophélie Fovet, and Markus Hrachowitz
Hydrol. Earth Syst. Sci., 29, 127–158, https://doi.org/10.5194/hess-29-127-2025, https://doi.org/10.5194/hess-29-127-2025, 2025
Short summary
Short summary
To increase the predictive power of hydrological models, it is necessary to improve their consistency, i.e. their physical realism, which is measured by the ability of the model to reproduce observed system dynamics. Using a model to represent the dynamics of water and nitrate and dissolved organic carbon concentrations in an agricultural catchment, we showed that using solute-concentration data for calibration is useful to improve the hydrological consistency of the model.
Haley A. Canham, Belize Lane, Colin B. Phillips, and Brendan P. Murphy
Hydrol. Earth Syst. Sci., 29, 27–43, https://doi.org/10.5194/hess-29-27-2025, https://doi.org/10.5194/hess-29-27-2025, 2025
Short summary
Short summary
The influence of watershed disturbances has proved challenging to disentangle from natural streamflow variability. This study evaluates the influence of time-varying hydrologic controls on rainfall–runoff in undisturbed and wildfire-disturbed watersheds using a novel time-series event separation method. Across watersheds, water year type and season influenced rainfall–runoff patterns. Accounting for these controls enabled clearer isolation of wildfire effects.
Fabian Merk, Timo Schaffhauser, Faizan Anwar, Ye Tuo, Jean-Martial Cohard, and Markus Disse
Hydrol. Earth Syst. Sci., 28, 5511–5539, https://doi.org/10.5194/hess-28-5511-2024, https://doi.org/10.5194/hess-28-5511-2024, 2024
Short summary
Short summary
Evapotranspiration (ET) is computed from the vegetation (plant transpiration) and soil (soil evaporation). In western Africa, plant transpiration correlates with vegetation growth. Vegetation is often represented using the leaf area index (LAI). In this study, we evaluate the importance of the LAI for ET calculation. We take a close look at this interaction and highlight its relevance. Our work contributes to the understanding of terrestrial water cycle processes .
Eshrat Fatima, Rohini Kumar, Sabine Attinger, Maren Kaluza, Oldrich Rakovec, Corinna Rebmann, Rafael Rosolem, Sascha E. Oswald, Luis Samaniego, Steffen Zacharias, and Martin Schrön
Hydrol. Earth Syst. Sci., 28, 5419–5441, https://doi.org/10.5194/hess-28-5419-2024, https://doi.org/10.5194/hess-28-5419-2024, 2024
Short summary
Short summary
This study establishes a framework to incorporate cosmic-ray neutron measurements into the mesoscale Hydrological Model (mHM). We evaluate different approaches to estimate neutron counts within the mHM using the Desilets equation, with uniformly and non-uniformly weighted average soil moisture, and the physically based code COSMIC. The data improved not only soil moisture simulations but also the parameterisation of evapotranspiration in the model.
Laia Estrada, Xavier Garcia, Joan Saló-Grau, Rafael Marcé, Antoni Munné, and Vicenç Acuña
Hydrol. Earth Syst. Sci., 28, 5353–5373, https://doi.org/10.5194/hess-28-5353-2024, https://doi.org/10.5194/hess-28-5353-2024, 2024
Short summary
Short summary
Hydrological modelling is a powerful tool to support decision-making. We assessed spatio-temporal patterns and trends of streamflow for 2001–2022 with a hydrological model, integrating stakeholder expert knowledge on management operations. The results provide insight into how climate change and anthropogenic pressures affect water resources availability in regions vulnerable to water scarcity, thus raising the need for sustainable management practices and integrated hydrological modelling.
Patricio Yeste, Matilde García-Valdecasas Ojeda, Sonia R. Gámiz-Fortis, Yolanda Castro-Díez, Axel Bronstert, and María Jesús Esteban-Parra
Hydrol. Earth Syst. Sci., 28, 5331–5352, https://doi.org/10.5194/hess-28-5331-2024, https://doi.org/10.5194/hess-28-5331-2024, 2024
Short summary
Short summary
Integrating streamflow and evaporation data can help improve the physical realism of hydrologic models. We investigate the capabilities of the Variable Infiltration Capacity (VIC) to reproduce both hydrologic variables for 189 headwater located in Spain. Results from sensitivity analyses indicate that adding two vegetation parameters is enough to improve the representation of evaporation and that the performance of VIC exceeded that of the largest modelling effort currently available in Spain.
Daniel T. Myers, David Jones, Diana Oviedo-Vargas, John Paul Schmit, Darren L. Ficklin, and Xuesong Zhang
Hydrol. Earth Syst. Sci., 28, 5295–5310, https://doi.org/10.5194/hess-28-5295-2024, https://doi.org/10.5194/hess-28-5295-2024, 2024
Short summary
Short summary
We studied how streamflow and water quality models respond to land cover data collected by satellites during the growing season versus the non-growing season. The land cover data showed more trees during the growing season and more built areas during the non-growing season. We next found that the use of non-growing season data resulted in a higher modeled nutrient export to streams. Knowledge of these sensitivities would be particularly important when models inform water resource management.
Kevin R. Shook, Paul H. Whitfield, Christopher Spence, and John W. Pomeroy
Hydrol. Earth Syst. Sci., 28, 5173–5192, https://doi.org/10.5194/hess-28-5173-2024, https://doi.org/10.5194/hess-28-5173-2024, 2024
Short summary
Short summary
Recent studies suggest that the velocities of water running off landscapes in the Canadian Prairies may be much smaller than generally assumed. Analyses of historical flows for 23 basins in central Alberta show that many of the rivers responded more slowly and that the flows are much slower than would be estimated from equations developed elsewhere. The effects of slow flow velocities on the development of hydrological models of the region are discussed, as are the possible causes.
Alberto Bassi, Marvin Höge, Antonietta Mira, Fabrizio Fenicia, and Carlo Albert
Hydrol. Earth Syst. Sci., 28, 4971–4988, https://doi.org/10.5194/hess-28-4971-2024, https://doi.org/10.5194/hess-28-4971-2024, 2024
Short summary
Short summary
The goal is to remove the impact of meteorological drivers in order to uncover the unique landscape fingerprints of a catchment from streamflow data. Our results reveal an optimal two-feature summary for most catchments, with a third feature associated with aridity and intermittent flow that is needed for challenging cases. Baseflow index, aridity, and soil or vegetation attributes strongly correlate with learnt features, indicating their importance for streamflow prediction.
Guillaume Thirel, Léonard Santos, Olivier Delaigue, and Charles Perrin
Hydrol. Earth Syst. Sci., 28, 4837–4860, https://doi.org/10.5194/hess-28-4837-2024, https://doi.org/10.5194/hess-28-4837-2024, 2024
Short summary
Short summary
We discuss how mathematical transformations impact calibrated hydrological model simulations. We assess how 11 transformations behave over the complete range of streamflows. Extreme transformations lead to models that are specialized for extreme streamflows but show poor performance outside the range of targeted streamflows and are less robust. We show that no a priori assumption about transformations can be taken as warranted.
Robert Hull, Elena Leonarduzzi, Luis De La Fuente, Hoang Viet Tran, Andrew Bennett, Peter Melchior, Reed M. Maxwell, and Laura E. Condon
Hydrol. Earth Syst. Sci., 28, 4685–4713, https://doi.org/10.5194/hess-28-4685-2024, https://doi.org/10.5194/hess-28-4685-2024, 2024
Short summary
Short summary
Large-scale hydrologic simulators are a needed tool to explore complex watershed processes and how they may evolve with a changing climate. However, calibrating them can be difficult because they are costly to run and have many unknown parameters. We implement a state-of-the-art approach to model calibration using neural networks with a set of experiments based on streamflow in the upper Colorado River basin.
Jari-Pekka Nousu, Kersti Leppä, Hannu Marttila, Pertti Ala-aho, Giulia Mazzotti, Terhikki Manninen, Mika Korkiakoski, Mika Aurela, Annalea Lohila, and Samuli Launiainen
Hydrol. Earth Syst. Sci., 28, 4643–4666, https://doi.org/10.5194/hess-28-4643-2024, https://doi.org/10.5194/hess-28-4643-2024, 2024
Short summary
Short summary
We used hydrological models, field measurements, and satellite-based data to study the soil moisture dynamics in a subarctic catchment. The role of groundwater was studied with different ways to model the groundwater dynamics and via comparisons to the observational data. The choice of groundwater model was shown to have a strong impact, and representation of lateral flow was important to capture wet soil conditions. Our results provide insights for ecohydrological studies in boreal regions.
Nienke Tempel, Laurène Bouaziz, Riccardo Taormina, Ellis van Noppen, Jasper Stam, Eric Sprokkereef, and Markus Hrachowitz
Hydrol. Earth Syst. Sci., 28, 4577–4597, https://doi.org/10.5194/hess-28-4577-2024, https://doi.org/10.5194/hess-28-4577-2024, 2024
Short summary
Short summary
This study explores the impact of climatic variability on root zone water storage capacities and, thus, on hydrological predictions. Analysing data from 286 areas in Europe and the US, we found that, despite some variations in root zone storage capacity due to changing climatic conditions over multiple decades, these changes are generally minor and have a limited effect on water storage and river flow predictions.
Bu Li, Ting Sun, Fuqiang Tian, Mahmut Tudaji, Li Qin, and Guangheng Ni
Hydrol. Earth Syst. Sci., 28, 4521–4538, https://doi.org/10.5194/hess-28-4521-2024, https://doi.org/10.5194/hess-28-4521-2024, 2024
Short summary
Short summary
This paper developed hybrid semi-distributed hydrological models by employing a process-based model as the backbone and utilizing deep learning to parameterize and replace internal modules. The main contribution is to provide a high-performance tool enriched with explicit hydrological knowledge for hydrological prediction and to improve understanding about the hydrological sensitivities to climate change in large alpine basins.
Dan Elhanati, Nadine Goeppert, and Brian Berkowitz
Hydrol. Earth Syst. Sci., 28, 4239–4249, https://doi.org/10.5194/hess-28-4239-2024, https://doi.org/10.5194/hess-28-4239-2024, 2024
Short summary
Short summary
A continuous time random walk framework was developed to allow modeling of a karst aquifer discharge response to measured rainfall. The application of the numerical model yielded robust fits between modeled and measured discharge values, especially for the distinctive long tails found during recession times. The findings shed light on the interplay of slow and fast flow in the karst system and establish the application of the model for simulating flow and transport in such systems.
Frederik Kratzert, Martin Gauch, Daniel Klotz, and Grey Nearing
Hydrol. Earth Syst. Sci., 28, 4187–4201, https://doi.org/10.5194/hess-28-4187-2024, https://doi.org/10.5194/hess-28-4187-2024, 2024
Short summary
Short summary
Recently, a special type of neural-network architecture became increasingly popular in hydrology literature. However, in most applications, this model was applied as a one-to-one replacement for hydrology models without adapting or rethinking the experimental setup. In this opinion paper, we show how this is almost always a bad decision and how using these kinds of models requires the use of large-sample hydrology data sets.
Franziska Clerc-Schwarzenbach, Giovanni Selleri, Mattia Neri, Elena Toth, Ilja van Meerveld, and Jan Seibert
Hydrol. Earth Syst. Sci., 28, 4219–4237, https://doi.org/10.5194/hess-28-4219-2024, https://doi.org/10.5194/hess-28-4219-2024, 2024
Short summary
Short summary
We show that the differences between the forcing data included in three CAMELS datasets (US, BR, GB) and the forcing data included for the same catchments in the Caravan dataset affect model calibration considerably. The model performance dropped when the data from the Caravan dataset were used instead of the original data. Most of the model performance drop could be attributed to the differences in precipitation data. However, differences were largest for the potential evapotranspiration data.
Ying Zhao, Mehdi Rahmati, Harry Vereecken, and Dani Or
Hydrol. Earth Syst. Sci., 28, 4059–4063, https://doi.org/10.5194/hess-28-4059-2024, https://doi.org/10.5194/hess-28-4059-2024, 2024
Short summary
Short summary
Gao et al. (2023) question the importance of soil in hydrology, sparking debate. We acknowledge some valid points but critique their broad, unsubstantiated views on soil's role. Our response highlights three key areas: (1) the false divide between ecosystem-centric and soil-centric approaches, (2) the vital yet varied impact of soil properties, and (3) the call for a scale-aware framework. We aim to unify these perspectives, enhancing hydrology's comprehensive understanding.
Louise Mimeau, Annika Künne, Alexandre Devers, Flora Branger, Sven Kralisch, Claire Lauvernet, Jean-Philippe Vidal, Núria Bonada, Zoltán Csabai, Heikki Mykrä, Petr Pařil, Luka Polović, and Thibault Datry
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-272, https://doi.org/10.5194/hess-2024-272, 2024
Preprint under review for HESS
Short summary
Short summary
Our study projects how climate change will affect drying of river segments and stream networks in Europe, using advanced modeling techniques to assess changes in six river networks across diverse ecoregions. We found that drying events will become more frequent, intense and start earlier or last longer, potentially turning some river sections from perennial to intermittent. The results are valuable for river ecologists in evaluating the ecological health of river ecosystem.
Siyuan Wang, Markus Hrachowitz, and Gerrit Schoups
Hydrol. Earth Syst. Sci., 28, 4011–4033, https://doi.org/10.5194/hess-28-4011-2024, https://doi.org/10.5194/hess-28-4011-2024, 2024
Short summary
Short summary
Root zone storage capacity (Sumax) changes significantly over multiple decades, reflecting vegetation adaptation to climatic variability. However, this temporal evolution of Sumax cannot explain long-term fluctuations in the partitioning of water fluxes as expressed by deviations ΔIE from the parametric Budyko curve over time with different climatic conditions, and it does not have any significant effects on shorter-term hydrological response characteristics of the upper Neckar catchment.
Zehua Chang, Hongkai Gao, Leilei Yong, Kang Wang, Rensheng Chen, Chuntan Han, Otgonbayar Demberel, Batsuren Dorjsuren, Shugui Hou, and Zheng Duan
Hydrol. Earth Syst. Sci., 28, 3897–3917, https://doi.org/10.5194/hess-28-3897-2024, https://doi.org/10.5194/hess-28-3897-2024, 2024
Short summary
Short summary
An integrated cryospheric–hydrologic model, FLEX-Cryo, was developed that considers glaciers, snow cover, and frozen soil and their dynamic impacts on hydrology. We utilized it to simulate future changes in cryosphere and hydrology in the Hulu catchment. Our projections showed the two glaciers will melt completely around 2050, snow cover will reduce, and permafrost will degrade. For hydrology, runoff will decrease after the glacier has melted, and permafrost degradation will increase baseflow.
Henry M. Zimba, Miriam Coenders-Gerrits, Kawawa E. Banda, Petra Hulsman, Nick van de Giesen, Imasiku A. Nyambe, and Hubert H. G. Savenije
Hydrol. Earth Syst. Sci., 28, 3633–3663, https://doi.org/10.5194/hess-28-3633-2024, https://doi.org/10.5194/hess-28-3633-2024, 2024
Short summary
Short summary
The fall and flushing of new leaves in the miombo woodlands co-occur in the dry season before the commencement of seasonal rainfall. The miombo species are also said to have access to soil moisture in deep soils, including groundwater in the dry season. Satellite-based evaporation estimates, temporal trends, and magnitudes differ the most in the dry season, most likely due to inadequate understanding and representation of the highlighted miombo species attributes in simulations.
Xudong Zheng, Dengfeng Liu, Shengzhi Huang, Hao Wang, and Xianmeng Meng
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-230, https://doi.org/10.5194/hess-2024-230, 2024
Revised manuscript accepted for HESS
Short summary
Short summary
Water budget non-closure is a widespread phenomenon among multisource datasets, which undermines the robustness of hydrological inferences. This study proposes a Multisource Datasets Correction Framework grounded in Physical Hydrological Processes Modelling to enhance water budget closure, called PHPM-MDCF. We examined the efficiency and robustness of the framework using the CAMELS dataset, and achieved an average reduction of 49 % in total water budget residuals across 475 CONUS basins.
Louise Akemi Kuana, Arlan Scortegagna Almeida, Emílio Graciliano Ferreira Mercuri, and Steffen Manfred Noe
Hydrol. Earth Syst. Sci., 28, 3367–3390, https://doi.org/10.5194/hess-28-3367-2024, https://doi.org/10.5194/hess-28-3367-2024, 2024
Short summary
Short summary
The authors compared regionalization methods for river flow prediction in 126 catchments from the south of Brazil, a region with humid subtropical and hot temperate climate. The regionalization method based on physiographic–climatic similarity had the best performance for predicting daily and Q95 reference flow. We showed that basins without flow monitoring can have a good approximation of streamflow using machine learning and physiographic–climatic information as inputs.
Elena Macdonald, Bruno Merz, Viet Dung Nguyen, and Sergiy Vorogushyn
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-181, https://doi.org/10.5194/hess-2024-181, 2024
Revised manuscript accepted for HESS
Short summary
Short summary
Flood peak distributions indicate how likely the occurrence of an extreme flood is at a certain river. If the distribution has a so-called heavy tail, extreme floods are more likely than might be anticipated. We find heavier tails in small compared to large catchments, and that spatially variable rainfall leads to a lower occurrence probability of extreme floods. Spatially variable runoff does not show an effect. The results can improve estimations of occurrence probabilities of extreme floods.
Huy Dang and Yadu Pokhrel
Hydrol. Earth Syst. Sci., 28, 3347–3365, https://doi.org/10.5194/hess-28-3347-2024, https://doi.org/10.5194/hess-28-3347-2024, 2024
Short summary
Short summary
By examining basin-wide simulations of a river regime over 83 years with and without dams, we present evidence that climate variation was a key driver of hydrologic variabilities in the Mekong River basin (MRB) over the long term; however, dams have largely altered the seasonality of the Mekong’s flow regime and annual flooding patterns in major downstream areas in recent years. These findings could help us rethink the planning of future dams and water resource management in the MRB.
Yongshin Lee, Francesca Pianosi, Andres Peñuela, and Miguel Angel Rico-Ramirez
Hydrol. Earth Syst. Sci., 28, 3261–3279, https://doi.org/10.5194/hess-28-3261-2024, https://doi.org/10.5194/hess-28-3261-2024, 2024
Short summary
Short summary
Following recent advancements in weather prediction technology, we explored how seasonal weather forecasts (1 or more months ahead) could benefit practical water management in South Korea. Our findings highlight that using seasonal weather forecasts for predicting flow patterns 1 to 3 months ahead is effective, especially during dry years. This suggest that seasonal weather forecasts can be helpful in improving the management of water resources.
Mariam Khanam, Giulia Sofia, and Emmanouil N. Anagnostou
Hydrol. Earth Syst. Sci., 28, 3161–3190, https://doi.org/10.5194/hess-28-3161-2024, https://doi.org/10.5194/hess-28-3161-2024, 2024
Short summary
Short summary
Flooding worsens due to climate change, with river dynamics being a key in local flood control. Predicting post-storm geomorphic changes is challenging. Using self-organizing maps and machine learning, this study forecasts post-storm alterations in stage–discharge relationships across 3101 US stream gages. The provided framework can aid in updating hazard assessments by identifying rivers prone to change, integrating channel adjustments into flood hazard assessment.
Junfu Gong, Xingwen Liu, Cheng Yao, Zhijia Li, Albrecht Weerts, Qiaoling Li, Satish Bastola, Yingchun Huang, and Junzeng Xu
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-211, https://doi.org/10.5194/hess-2024-211, 2024
Revised manuscript accepted for HESS
Short summary
Short summary
Our study introduces a new method to improve flood forecasting by combining soil moisture and streamflow data using an advanced data assimilation technique. By integrating field and reanalysis soil moisture data and assimilating this with streamflow measurements, we aim to enhance the accuracy of flood predictions. This approach reduces the accumulation of past errors in the initial conditions at the start of the forecast, helping better prepare for and respond to floods.
Yalan Song, Wouter J. M. Knoben, Martyn P. Clark, Dapeng Feng, Kathryn Lawson, Kamlesh Sawadekar, and Chaopeng Shen
Hydrol. Earth Syst. Sci., 28, 3051–3077, https://doi.org/10.5194/hess-28-3051-2024, https://doi.org/10.5194/hess-28-3051-2024, 2024
Short summary
Short summary
Differentiable models (DMs) integrate neural networks and physical equations for accuracy, interpretability, and knowledge discovery. We developed an adjoint-based DM for ordinary differential equations (ODEs) for hydrological modeling, reducing distorted fluxes and physical parameters from errors in models that use explicit and operation-splitting schemes. With a better numerical scheme and improved structure, the adjoint-based DM matches or surpasses long short-term memory (LSTM) performance.
Mengjiao Zhang, Yi Nan, and Fuqiang Tian
EGUsphere, https://doi.org/10.5194/egusphere-2024-1464, https://doi.org/10.5194/egusphere-2024-1464, 2024
Short summary
Short summary
Our study conducted a detailed analysis of runoff component and future trend in the Yarlung Tsangpo River basin owing to the existed differences in the published results, and find that the contributions of snowmelt and glacier melt runoff to streamflow were limited, both for ~5 % which were much lower than previous results. The streamflow there will continuously increase in the future, but the overestimated contribution from glacier melt would lead to an underestimation on such increasing trend.
Florian Willkofer, Raul R. Wood, and Ralf Ludwig
Hydrol. Earth Syst. Sci., 28, 2969–2989, https://doi.org/10.5194/hess-28-2969-2024, https://doi.org/10.5194/hess-28-2969-2024, 2024
Short summary
Short summary
Severe flood events pose a threat to riverine areas, yet robust estimates of the dynamics of these events in the future due to climate change are rarely available. Hence, this study uses data from a regional climate model, SMILE, to drive a high-resolution hydrological model for 98 catchments of hydrological Bavaria and exploits the large database to derive robust values for the 100-year flood events. Results indicate an increase in frequency and intensity for most catchments in the future.
Maik Renner and Corina Hauffe
Hydrol. Earth Syst. Sci., 28, 2849–2869, https://doi.org/10.5194/hess-28-2849-2024, https://doi.org/10.5194/hess-28-2849-2024, 2024
Short summary
Short summary
Climate and land surface changes influence the partitioning of water balance components decisively. Their impact is quantified for 71 catchments in Saxony. Germany. Distinct signatures in the joint water and energy budgets are found: (i) past forest dieback caused a decrease in and subsequent recovery of evapotranspiration in the affected regions, and (ii) the recent shift towards higher aridity imposed a large decline in runoff that has not been seen in the observation records before.
Zhen Cui, Shenglian Guo, Hua Chen, Dedi Liu, Yanlai Zhou, and Chong-Yu Xu
Hydrol. Earth Syst. Sci., 28, 2809–2829, https://doi.org/10.5194/hess-28-2809-2024, https://doi.org/10.5194/hess-28-2809-2024, 2024
Short summary
Short summary
Ensemble forecasting facilitates reliable flood forecasting and warning. This study couples the copula-based hydrologic uncertainty processor (CHUP) with Bayesian model averaging (BMA) and proposes the novel CHUP-BMA method of reducing inflow forecasting uncertainty of the Three Gorges Reservoir. The CHUP-BMA avoids the normal distribution assumption in the HUP-BMA and considers the constraint of initial conditions, which can improve the deterministic and probabilistic forecast performance.
Mazda Kompanizare, Diogo Costa, Merrin L. Macrae, John W. Pomeroy, and Richard M. Petrone
Hydrol. Earth Syst. Sci., 28, 2785–2807, https://doi.org/10.5194/hess-28-2785-2024, https://doi.org/10.5194/hess-28-2785-2024, 2024
Short summary
Short summary
A new agricultural tile drainage module was developed in the Cold Region Hydrological Model platform. Tile flow and water levels are simulated by considering the effect of capillary fringe thickness, drainable water and seasonal regional groundwater dynamics. The model was applied to a small well-instrumented farm in southern Ontario, Canada, where there are concerns about the impacts of agricultural drainage into Lake Erie.
Eduardo Acuña Espinoza, Ralf Loritz, Manuel Álvarez Chaves, Nicole Bäuerle, and Uwe Ehret
Hydrol. Earth Syst. Sci., 28, 2705–2719, https://doi.org/10.5194/hess-28-2705-2024, https://doi.org/10.5194/hess-28-2705-2024, 2024
Short summary
Short summary
Hydrological hybrid models promise to merge the performance of deep learning methods with the interpretability of process-based models. One hybrid approach is the dynamic parameterization of conceptual models using long short-term memory (LSTM) networks. We explored this method to evaluate the effect of the flexibility given by LSTMs on the process-based part.
Adam Griffin, Alison L. Kay, Paul Sayers, Victoria Bell, Elizabeth Stewart, and Sam Carr
Hydrol. Earth Syst. Sci., 28, 2635–2650, https://doi.org/10.5194/hess-28-2635-2024, https://doi.org/10.5194/hess-28-2635-2024, 2024
Short summary
Short summary
Widespread flooding is a major problem in the UK and is greatly affected by climate change and land-use change. To look at how widespread flooding changes in the future, climate model data (UKCP18) were used with a hydrological model (Grid-to-Grid) across the UK, and 14 400 events were identified between two time slices: 1980–2010 and 2050–2080. There was a strong increase in the number of winter events in the future time slice and in the peak return periods.
Alberto Montanari, Bruno Merz, and Günter Blöschl
Hydrol. Earth Syst. Sci., 28, 2603–2615, https://doi.org/10.5194/hess-28-2603-2024, https://doi.org/10.5194/hess-28-2603-2024, 2024
Short summary
Short summary
Floods often take communities by surprise, as they are often considered virtually
impossibleyet are an ever-present threat similar to the sword suspended over the head of Damocles in the classical Greek anecdote. We discuss four reasons why extremely large floods carry a risk that is often larger than expected. We provide suggestions for managing the risk of megafloods by calling for a creative exploration of hazard scenarios and communicating the unknown corners of the reality of floods.
Everett Snieder and Usman T. Khan
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-169, https://doi.org/10.5194/hess-2024-169, 2024
Revised manuscript accepted for HESS
Short summary
Short summary
Improving the accuracy of flood forecasts is paramount to minimising flood damage. Machine-learning models are increasingly being applied for flood forecasting. Such models are typically trained to large historic hydrometeorological datasets. In this work, we evaluate methods for selecting training datasets, that maximise the spatiotemproal diversity of the represented hydrological processes. Empirical results showcase the importance of hydrological diversity in training ML models.
Peter Reichert, Kai Ma, Marvin Höge, Fabrizio Fenicia, Marco Baity-Jesi, Dapeng Feng, and Chaopeng Shen
Hydrol. Earth Syst. Sci., 28, 2505–2529, https://doi.org/10.5194/hess-28-2505-2024, https://doi.org/10.5194/hess-28-2505-2024, 2024
Short summary
Short summary
We compared the predicted change in catchment outlet discharge to precipitation and temperature change for conceptual and machine learning hydrological models. We found that machine learning models, despite providing excellent fit and prediction capabilities, can be unreliable regarding the prediction of the effect of temperature change for low-elevation catchments. This indicates the need for caution when applying them for the prediction of the effect of climate change.
Nicolás Álamos, Camila Alvarez-Garreton, Ariel Muñoz, and Álvaro González-Reyes
Hydrol. Earth Syst. Sci., 28, 2483–2503, https://doi.org/10.5194/hess-28-2483-2024, https://doi.org/10.5194/hess-28-2483-2024, 2024
Short summary
Short summary
In this study, we assess the effects of climate and water use on streamflow reductions and drought intensification during the last 3 decades in central Chile. We address this by contrasting streamflow observations with near-natural streamflow simulations. We conclude that while the lack of precipitation dominates streamflow reductions in the megadrought, water uses have not diminished during this time, causing a worsening of the hydrological drought conditions and maladaptation conditions.
Fengjing Liu, Martha H. Conklin, and Glenn D. Shaw
Hydrol. Earth Syst. Sci., 28, 2239–2258, https://doi.org/10.5194/hess-28-2239-2024, https://doi.org/10.5194/hess-28-2239-2024, 2024
Short summary
Short summary
Mountain snowpack has been declining and more precipitation falls as rain than snow. Using stable isotopes, we found flows and flow duration in Yosemite Creek are most sensitive to climate warming due to strong evaporation of waterfalls, potentially lengthening the dry-up period of waterfalls in summer and negatively affecting tourism. Groundwater recharge in Yosemite Valley is primarily from the upper snow–rain transition (2000–2500 m) and very vulnerable to a reduction in the snow–rain ratio.
Léonard Santos, Vazken Andréassian, Torben O. Sonnenborg, Göran Lindström, Alban de Lavenne, Charles Perrin, Lila Collet, and Guillaume Thirel
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-80, https://doi.org/10.5194/hess-2024-80, 2024
Revised manuscript accepted for HESS
Short summary
Short summary
This work aims at investigating how hydrological models can be transferred to a period in which climatic conditions are different to the ones of the period in which it was set up. The RAT method, built to detect dependencies between model error and climatic drivers, was applied to 3 different hydrological models on 352 catchments in Denmark, France and Sweden. Potential issues are detected for a significant number of catchments for the 3 models even though these catchments differ for each model.
Tian Lan, Tongfang Li, Hongbo Zhang, Jiefeng Wu, Yongqin David Chen, and Chong-Yu Xu
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-118, https://doi.org/10.5194/hess-2024-118, 2024
Revised manuscript accepted for HESS
Short summary
Short summary
This study develops an integrated framework based on the novel Driving index for changes in Precipitation-Runoff Relationships (DPRR) to explore the controls for changes in precipitation-runoff relationships in non-stationary environments. According to the quantitative results of the candidate driving factors, the possible process explanations for changes in the precipitation-runoff relationships are deduced. The main contribution offers a comprehensive understanding of hydrological processes.
Qiutong Yu, Bryan A. Tolson, Hongren Shen, Ming Han, Juliane Mai, and Jimmy Lin
Hydrol. Earth Syst. Sci., 28, 2107–2122, https://doi.org/10.5194/hess-28-2107-2024, https://doi.org/10.5194/hess-28-2107-2024, 2024
Short summary
Short summary
It is challenging to incorporate input variables' spatial distribution information when implementing long short-term memory (LSTM) models for streamflow prediction. This work presents a novel hybrid modelling approach to predict streamflow while accounting for spatial variability. We evaluated the performance against lumped LSTM predictions in 224 basins across the Great Lakes region in North America. This approach shows promise for predicting streamflow in large, ungauged basin.
Marcus Buechel, Louise Slater, and Simon Dadson
Hydrol. Earth Syst. Sci., 28, 2081–2105, https://doi.org/10.5194/hess-28-2081-2024, https://doi.org/10.5194/hess-28-2081-2024, 2024
Short summary
Short summary
Afforestation has been proposed internationally, but the hydrological implications of such large increases in the spatial extent of woodland are not fully understood. In this study, we use a land surface model to simulate hydrology across Great Britain with realistic afforestation scenarios and potential climate changes. Countrywide afforestation minimally influences hydrology, when compared to climate change, and reduces low streamflow whilst not lowering the highest flows.
Basil Kraft, Michael Schirmer, William H. Aeberhard, Massimiliano Zappa, Sonia I. Seneviratne, and Lukas Gudmundsson
EGUsphere, https://doi.org/10.5194/egusphere-2024-993, https://doi.org/10.5194/egusphere-2024-993, 2024
Short summary
Short summary
This study uses deep learning to predict spatially contiguous water runoff in Switzerland from 1962–2023. It outperforms traditional models, requiring less data and computational power. Key findings include increased dry years and summer water scarcity. This method offers significant advancements in water monitoring.
Joško Trošelj and Naota Hanasaki
EGUsphere, https://doi.org/10.5194/egusphere-2024-595, https://doi.org/10.5194/egusphere-2024-595, 2024
Short summary
Short summary
This study presents the first distributed hydrological simulation which confirms the claims raised by historians that the Eastward Diversion Project of the Tone River in Japan was conducted four centuries ago to increase low flows and subsequent travelling possibilities surrounding the Capitol Edo (Tokyo) using inland navigation. We reconstructed six historical river maps and indirectly validated the historical simulations with reachable ancient river ports via increased low-flow water levels.
Qian Zhu, Xiaodong Qin, Dongyang Zhou, Tiantian Yang, and Xinyi Song
Hydrol. Earth Syst. Sci., 28, 1665–1686, https://doi.org/10.5194/hess-28-1665-2024, https://doi.org/10.5194/hess-28-1665-2024, 2024
Short summary
Short summary
Input data, model and calibration strategy can affect the accuracy of flood event simulation and prediction. Satellite-based precipitation with different spatiotemporal resolutions is an important input source. Data-driven models are sometimes proven to be more accurate than hydrological models. Event-based calibration and conventional strategy are two options adopted for flood simulation. This study targets the three concerns for accurate flood event simulation and prediction.
Fabio Ciulla and Charuleka Varadharajan
Hydrol. Earth Syst. Sci., 28, 1617–1651, https://doi.org/10.5194/hess-28-1617-2024, https://doi.org/10.5194/hess-28-1617-2024, 2024
Short summary
Short summary
We present a new method based on network science for unsupervised classification of large datasets and apply it to classify 9067 US catchments and 274 biophysical traits at multiple scales. We find that our trait-based approach produces catchment classes with distinct streamflow behavior and that spatial patterns emerge amongst pristine and human-impacted catchments. This method can be widely used beyond hydrology to identify patterns, reduce trait redundancy, and select representative sites.
Cited articles
Adinehvand, R., Raeisi, E., and Hartmann, A.: A step-wise semi-distributed
simulation approach to characterize a karst aquifer and to support dam
construction in a datascarce environment, J. Hydrol., 554, 470–481,
https://doi.org/10.1016/j.jhydrol.2017.08.056, 2017.
Ala-aho, P., Tetzlaff, D., McNamara, J. P., Laudon, H., and Soulsby, C.: Using isotopes to constrain water flux and age estimates in snow-influenced catchments using the STARR (Spatially distributed Tracer-Aided Rainfall–Runoff) model, Hydrol. Earth Syst. Sci., 21, 5089–5110, https://doi.org/10.5194/hess-21-5089-2017, 2017.
Barnes, C. J. and Bonell, M.: Application of unit hydrograph techniques to
solute transport in catchments, Hydrol. Process., 10, 793–802, 1996.
Benettin, P., Kirchner, J. W., Rinaldo, A., and Botter, G.: Modeling chloride
transport using travel time distributions at Plynlimon, Wales, Water Resour.
Res., 51, 3259–3276, https://doi.org/10.1002/2014WR016600, 2015.
Beven, K.: A manifesto for the equifinality thesis, J.
Hydrol., 320, 18–36, https://doi.org/10.1016/j.jhydrol.2005.07.007,
2006.
Birkel, C. and Soulsby, C.: Advancing tracer-aided rainfall-runoff modelling: A
review of progress, problems and unrealised potential, Hydrol. Process., 29,
5227–5240, https://doi.org/10.1002/hyp.10594, 2015.
Birkel, C., Tetzlaff, D., Dunn, S. M., and Soulsby, C.: Using lumped conceptual
rainfall-runoff models to simulate daily isotope variability with
fractionation in a nested mesoscale catchment, Adv. Water Resour., 34,
383–394, https://doi.org/10.1016/j.advwatres.2010.12.006, 2011a.
Birkel, C., Soulsby, C., and Tetzlaff, D.: Modelling catchment-scale water
storage dynamics: reconciling dynamic storage with tracer-inferred passive
storage, Hydrol. Process., 25, 3924–3936, https://doi.org/10.1002/hyp.8201,
2011b.
Birkel, C., Soulsby, C., and Tetzlaff, D.: Conceptual modelling to assess how
the interplay of hydrological connectivity, catchment storage and tracer
dynamics controls non-stationary water age estimates, Hydrol. Process., 29,
2956–2969, https://doi.org/10.1002/hyp.10414, 2015.
Birkel, C., Duvert, C., Correa, A., Munksgaard, N. C., Maher, D. T.,
and Hutley, L. B.: Tracer-aided modeling in the low-relief, wet-dry tropics
suggests water ages and DOC export are driven by seasonal wetlands and deep
groundwater, Water Resour. Res., 55, e2019WR026175,
https://doi.org/10.1029/2019WR026175, 2020.
Capell, R., Tetzlaff, D., and Soulsby, C.: Can time domain and source area
tracers reduce uncertainty in rainfall-runoff models in larger heterogeneous
catchments?, Water Resour. Res., 48, W09544,
https://doi.org/10.1029/2011wr011543, 2012.
Carey, S. and Quinton, W.: Evaluating snowmelt runoff generation in a
discontinuous permafrost catchment using stable isotope, hydrochemical and
hydrometric data, Hydrol. Res., 35, 309–324,
https://doi.org/10.2166/nh.2004.0023, 2004.
Chacha, N., Njau, K. N., Lugomela, G. V., and Muzuka, A. N. N.: Groundwater age
dating and recharge mechanism of Arusha aquifer, northern Tanzania:
application of radioisotope and stable isotope techniques, Hydrogeol. J.,
26, 2693–2706, https:// doi.org/10.1007/s10040-018-1832-0, 2018.
Chang, Y., Hartmann, A., Liu, L., Jiang, G., and Wu, J.: Identifying more
realistic model structures by electrical conductivity observations of the
karst spring, Water Resour. Res., 57, e2020WR028587,
https://doi.org/10.1029/2020WR028587, 2020.
Charlier, J.-B., Bertrand, C., and Mudry, J.: Conceptual hydrogeological model
of flow and transport of dissolved organic carbon in a small Jura karst
system, J. Hydrol., 460, 52–64,
https://doi.org/10.1016/j.jhydrol.2012.06.043, 2012.
Chen, X., Zhang, Z., Soulsby, C., Cheng, Q., Binley, A., Jiang, R., and Tao, M.:
Characterizing the heterogeneity of karst critical zone and its hydrological
function: an integrated approach, Hydrol. Process., 2018, 2932–2946,
https://doi.org/10.1002/hyp.13232, 2018.
Cheng, Q., Chen, X., Tao, M., and Binley, A.: Characterization of karst
structures using quasi-3D electrical resistivity tomography, Environ. Earth
Sci., 78, 285, https://doi.org/10.1007/s12665-019-8284-2, 2019.
Deb, K., Pratap, A., Agarwal, S., and Meyarivan, T.: A fast and elitist
multi-objective genetic algorithm: NSGA-II, IEEE T. Evol. Comput., 6,
182–197, https://doi.org/10.1109/4235.996017, 2002.
Dehaspe, J., Birkel, C., Tetzlaff, D., Sánchez-Murillo, R.,
Durá-Quesada, A. M., and Soulsby, C.: Spatially-distributed tracer-aided
modelling to explore water and isotope transport, storage and mixing in a
pristine, humid tropical catchment, Hydrol. Process., 32, 3206–3224,
https://doi.org/10.1002/hyp.13258, 2018.
Ding, H., Zhang, X., Chu, X., and Wu, Q.: Simulation of groundwater dynamic
response to hydrological factors in karst aquifer system, J. Hydrol., 587,
124995, https://doi.org/10.1016/j.jhydrol.2020.124995, 2020.
Delavau, C. J., Stadnyk, T., and Holmes, T.: Examining the impacts of precipitation isotope input (δ18Oppt) on distributed, tracer-aided hydrological modelling, Hydrol. Earth Syst. Sci., 21, 2595–2614, https://doi.org/10.5194/hess-21-2595-2017, 2017.
Dubois, E., Doummar, J., Pistre, S., and Larocque, M.: Calibration of a lumped karst system model and application to the Qachqouch karst spring (Lebanon) under climate change conditions, Hydrol. Earth Syst. Sci., 24, 4275–4290, https://doi.org/10.5194/hess-24-4275-2020, 2020.
Dunn, S. M., Birkel, C., Soulsby, C., and Tetzlaff, D.: Transit time
distributions of a conceptual model: their characteristics and
sensitivities, Hydrol. Process., 24, 1719–1729,
https://doi.org/10.1002/hyp.7560, 2010.
Elghawi, R., Pekhazis, K., and Doummar, J.: Multi-regression analysis between
stable isotope composition and hydrochemical parameters in karst springs to
provide insights into groundwater origin and subsurface processes: regional
application to Lebanon, Environ. Earth Sci., 80, 1–21,
https://doi.org/10.1007/s12665-021-09519-4, 2021.
Fenicia, F., Savenije, Hubert, H. G., Matgen, P., and Pfister, L.: A comparison of
alternative multiobjective calibration strategies for hydrological modeling,
Water Resour. Res., 43, W03434, https://doi.org/10.1029/2006wr005098, 2007.
Fenicia, F., McDonnell, J. J., and Savenije, H. H. G.: Learning from model
improvement: on the contribution of complementary data to process
understanding, Water Resour. Res., 44, W06419,
https://doi.org/10.1029/2007WR006386, 2008.
Fenicia, F., Wrede, S., Kavetski, D., Pfister, L., Hoffmann, L., Savenije,
H. H. G., and McDonnell, J. J.: Assessing the impact of mixing assumptions on the
estimation of streamwater mean residence time, Hydrol. Process., 24,
1730–1741, https://doi.org/10.1002/hyp.7595, 2010.
Freer, J., Beven, K., and Ambroise, B.: Bayesian estimation of uncertainty
in runoff prediction and the value of data: An application of the GLUE
approach, Water Resour. Res., 32, 2161–2173,
https://doi.org/10.1029/96WR03723, 1996.
Hrachowitz, M., Savenije, H., Bogaard, T. A., Tetzlaff, D., and Soulsby, C.: What can flux tracking teach us about water age distribution patterns and their temporal dynamics?, Hydrol. Earth Syst. Sci., 17, 533–564, https://doi.org/10.5194/hess-17-533-2013, 2013.
Hartmann, A., Barberá, J. A., Lange, J., Andreo,
B., and Weiler, M.: Progress in the hydrologic simulation of
time variant recharge areas of karst systems-Exemplified at
a karst spring in Southern Spain, Adv. Water Resour.,
54, 149–160, https://doi.org/10.1016/j.advwatres.2013.01.010, 2013.
Husic, A., Fox, J., Adams, E., Ford, W., Agouridis,
C., Currens, J., Backus, J.: Nitrate Pathways, processes,
and timing in an agricul-tural karst system: Development
and application of a numerical model, Water Resour.
Res., 55, 2079–2103, https://doi.org/10.1029/2018WR023703,
2019.
Jeannin, P. Y., Artigue, G., Butscher, C., Chang, Y., Charlier, J. B., Duran,
L., Gill, L., Hartmann, A., Johannet, A., Jourde, H., Kavousi, A., Liesch,
T., Liu, Y., Lüthi, M., Malard, A., Mazzilli, N., Pardo-Igúzquiza,
E., Thiéry, D., Reimann, T., Schuler, P.,
Wöhling, T., and Wunsch, A.: Karst modelling challenge 1:
Results of hydrological modelling, J. Hydrol., 600, 126508,
https://doi.org/10.1016/j.jhydrol.2021.126508, 2021.
Jourde, H., Massei, N., Mazzilli, N., Binet, S., Batiot-Guilhe, C., Labat,
D., Steinmann, M., Bailly-Comte, V., Seidel, J. L., Arfib, B., Charlier, J.
B., Guinot, V., Jardani, A., Fournier, M., Aliouache, M., Babic, M.,
Bertrand, C., Brunet, P., Boyer, J. F., Bricquet, J. P., Camboulive, T.,
Carrière, S. D., Celle- Jeanton, H., Chalikakis, K., Chen, N., Cholet,
C., Clauzon, V., Soglio, L. D., Danquigny, C., Défargue, C., Denimal,
S., Emblanch, C., Hernandez, F., Gillon, M., Gutierrez, A., Sanchez, L. H.,
Hery, M., Houillon, N., Johannet, A., Jouves, J., Jozja, N., Ladouche, B.,
Leonardi, V., Lorette, G., Loup, C., Marchand, P., de Montety, V., Muller,
R., Ollivier, C., Sivelle, V., Lastennet, R., Lecoq, N., Maréchal, J.
C., Perotin, L., Perrin, J., Petre, M. A., Peyraube, N., Pistre, S.,
Plagnes, V., Probst, A., Probst, J. L., Simler, R., Stefani, V., Valdes-Lao,
D., Viseur, S., and Wang, X.: SNO KARST: A French Network of Observatories for
the Multidisciplinary Study of Critical Zone Processes in Karst Watersheds
and Aquifers, Vadose Zone J., 17, 180094,
https://doi.org/10.2136/vzj2018.04.0094, 2018.
Lyew-Ayee, P., Viles, H, A., and Tucker, G, E.: The use of GIS-based digital
morphometric techniques in the study of cockpit karst, Earth Surf. Process.
Land., 32, 165–179, https://doi.org/10.1002/esp.1399, 2007.
Mayer-Anhalt, L., Birkel, C., Sánchez-Murillo, R., and Schulz, S.:
Tracer-aided modelling reveals quick runoff generation and young streamflow
ages in a tropical rainforest catchment, Hydrol. Process., 36, e14508,
https://doi.org/10.1002/hyp.14508, 2022.
Mudarra, M., Hartmann, A., and Andreo, B.: Combining experimental methods and
modeling to quantify the complex recharge behavior of karst aquifers, Water
Resour. Res., 55, 1384–1404, https://doi.org/10.1029/2017WR021819, 2019.
Neill, A. J., Tetzlaff, D., Strachan, N. J. C., and Soulsby, C.: To what
extent does hydrological connectivity control dynamics of faecal indicator
organisms in streams? Initial hypothesis testing using a tracer-aided model,
J. Hydrol., 570, 423–435, https://doi.org/10.1016/j.jhydrol.2018.12.066,
2019.
Kirchner, J. W., Feng, X., and Neal, C.: Catchment-scale advection and dispersion
as a mechanism for fractal scaling in stream tracer concentrations, J.
Hydrol., 254, 82–101, https://doi.org/10.1016/s0022-1694(01)00487-5, 2001.
Kling, H., Fuchs, M., and Paulin, M.: Runoff conditions in the upper Danube
basin under an ensemble of climate change scenarios, J. Hydrol., 424,
264–277, https://doi.org/10.1016/j.jhydrol.2012.01.011, 2012.
Kollat, J. B. and Reed, P. M.: Comparing state-of-the-art evolutionary
multi-objective algorithms for long-term groundwater monitoring design, Adv.
Water Resour., 29, 792–807, https://doi.org/10.1016/j.advwatres.2005.07.010,
2006.
Karadimitriou, N. K., Joekar-Niasar, V., Babaei, M., and Shore, C. A.: Critical
Role of the Immobile Zone in Non-Fickian Two-Phase Transport: A New
Paradigm, Environ. Sci. Technol., 50, 4384–4392,
https://doi.org/10.1021/acs.est.5b05947, 2016.
Long, A. J. and Putnam, L. D.: Linear model describing three components of flow
in karst aquifers using 18O data, J. Hydrol., 296, 254–270,
https://doi.org/10.1016/j.jhydrol.2004.03.023, 2004.
Martínez-Santos, P. and Andreu, J. M.: Lumped and
distributed approaches to model natural recharge in semiarid
karst aquifers, J. Hydrol., 388, 389–398,
https://doi.org/10.1016/j.jhydrol.2010.05.018, 2010.
Nan, Y., Tian, L., He, Z., Tian, F., and Shao, L.: The value of water isotope data on improving process understanding in a glacierized catchment on the Tibetan Plateau, Hydrol. Earth Syst. Sci., 25, 3653–3673, https://doi.org/10.5194/hess-25-3653-2021, 2021.
Ollivier, C., Mazzilli, N., Olioso, A., Chalikakis, K., Carrière, S. D.,
Danquigny, C., and Emblanch, C.: Karst recharge-discharge semi distributed model
to assess spatial variability of flows, Sci. Total Environ., 703, 134368,
https://doi.org/10.1016/j.scitotenv.2019.134368, 2020.
Page, T., Beven, K. J., Freer, J., and Neal, C.: Modelling the chloride signal
at Plynlimon, Wales, using a modified dynamic TOPMODEL incorporating
conservative chemical mixing (with uncertainty), Hydrol. Process., 21,
292–307, https://doi.org/10.1002/hyp.6186, 2007.
Perrin, C., Michel, C., and AndreÂassian, V.: Does a large number of
parameters enhance model performance? Comparative assessment of common
catchment model structures on 429 catchments, J. Hydrol., 242, 275–301,
https://doi.org/10.1016/S0022-1694(00)00393-0, 2001.
Piovano, T. I., Tetzlaff, D., Carey, S. K., Shatilla, N. J., Smith, A., and Soulsby, C.: Spatially distributed tracer-aided runoff modelling and dynamics of storage and water ages in a permafrost-influenced catchment, Hydrol. Earth Syst. Sci., 23, 2507–2523, https://doi.org/10.5194/hess-23-2507-2019, 2019.
Piovano, T. I., Tetzlaff, D., Maneta, M., Buttle, J. M., Carey, S. K.,
Laudon, H., McNamarah, J., and Soulsby, C.: Contrasting storage-flux-age
interactions revealed by catchment inter-comparison using a tracer-aided
runoff model, J. Hydrol., 590, 125226,
https://doi.org/10.1016/j.jhydrol.2020.125226, 2020.
Roubinet, D., Dreuzy, J., and Tartakovsky, D. M.: Semi-analytical solutions for
solute transport and exchange in fractured porous media, Water Resour. Res.,
48, 273–279, https://doi.org/10.1029/2011WR011168, 2012.
Rodriguez, N. B., McGuire, K. J., and Klaus, J.: Time-varying storage-Water age
relationships in a catchment with a Mediterranean climate, Water Resour.
Res., 54, 3988–4008, https://doi.org/10.1029/2017WR021964, 2018.
Son, K. and Sivapalan, M.: Improving model structure and reducing parameter
uncertainty in conceptual water balance models through the use of auxiliary
data, Water Resour. Res., 43, W01415, https://doi.org/10.1029/2006wr005032,
2007.
Soulsby, C., Piegat, K., Seibert, J., and Tetzlaff, D.: Catchment scale
estimates of flow path partitioning and water storage based on transit time
and runoff modelling, Hydrol. Process., 25, 3960–3976,
https://doi.org/10.1002/hyp.8324, 2011.
Soulsby, C., Birkel, C., Geris, J., Dick, J., Tunaley, C., and Tetzlaff, D.: Stream
water age distributions controlled by storage dynamics and nonlinear
hydrologic connectivity: Modeling with high-resolution isotope data, Water
Resour. Res., 51, 7759–7776, https://doi.org/10.1002/2015WR017888, 2015.
Sprenger, M., Tetzlaff, D., and Soulsby, C.: Soil water stable isotopes reveal evaporation dynamics at the soil–plant–atmosphere interface of the critical zone, Hydrol. Earth Syst. Sci., 21, 3839–3858, https://doi.org/10.5194/hess-21-3839-2017, 2017.
Sprenger, M., Tetzlaff, D., Buttle, J., Laudon, H., Leistert, H.,
Mitchell, C. P. J., Snelgrove, J., Weiler, M., and Soulsby, C.: Measuring and modeling
stable isotopes of mobile and bulk soil water, Vadose Zone J., 17, 170149,
https://doi.org/10.2136/vzj2017.08.0149, 2018.
Schumer, R., Benson, D. A., Meerschaert, M. M., Baeumer, B.: Fractal
mobile/immobile solute transport, Water Resour. Res., 39, 1296,
https://doi.org/10.1029/2003WR002141, 2003.
van Huijgevoort, M. H. J., Tetzlaff, D., Sutanudjaja, E. H., and Soulsby, C.:
Using high resolution tracer data to constrain water storage, flux and age
estimates in a spatially distributed rainfall-runoff model, Hydrol.
Process., 30, 4761–4778, https://doi.org/10.1002/hyp.10902, 2016.
Wang, L., Cardenas, M. B., Zhou, J. Q., and Ketcham, R. A.: The complexity of
nonlinear flow and non-Fickian transport in fractures driven by
three-dimensional recirculation zones, J. Geophys. Res.-Sol. Ea., 125,
e2020JB020028, https://doi.org/10.1029/2020JB020028, 2020.
White, W. B.: A brief history of karst hydrogeology: contributions of the
NSS, J. Cave Karst Stud., 69, 13–26, 2007.
Worthington, S. R. H.: Diagnostic hydrogeologic characteristics of a karst
aquifer (Kentucky, USA), Hydrogeol. J., 17, 1665–1678,
https://doi.org/10.1007/s10040-009-0489-0, 2009.
Worthington, S. R. H., Davies, G. J., and Ford, D. C.: Matrix, fracture and channel components of storage and flow in a Paleozoic limestone aquifer, in: Groundwater flow and contaminant transport in carbonate aquifers, edited by: Sasowsky, I. D. and Wicks, C. M.,Balkema, Rotterdam, 113–128, ISBN 90-5410-498-8, 2000.
Wunsch, A., Liesch, T., Cinkus, G., Ravbar, N., Chen, Z., Mazzilli, N., Jourde, H., and Goldscheider, N.: Karst spring discharge modeling based on deep learning using spatially distributed input data, Hydrol. Earth Syst. Sci., 26, 2405–2430, https://doi.org/10.5194/hess-26-2405-2022, 2022.
Xu, C., Xu, X., Liu, M., Li, Z., Zhang, Y., Zhu, J., Wang, K., Chen, X.,
Zhang, Z., Peng, T.: An improved optimization scheme for representing
hillslopes and depressions in karst hydrology, Water Resour. Res., 56,
e2019WR026038, https://doi.org/10.1029/2019WR026038, 2020.
Xue, B., Chen, X., Zhang, Z., Cheng, Q.: A Semi-distributed Karst
Hydrological Model Considering the Hydraulic Connection Between Hillslope
and Depression: a case Study in Chenqi Catchment, China Rural Water And
Hydropower., 437, 1–5, 2019 (in Chinese).
Yang, X., Tetzlaff, D., Soulsby, C., Smith, A., and Borchardt, D.: Catchment
functioning under prolonged drought stress: tracer-aided ecohydrological
modeling in an intensively managed agricultural catchment, Water Resour.
Res., 57, e2020WR029094, https://doi.org/10.1029/2020WR029094, 2021.
Zhang, R., Chen, X., Zhang, Z., and Soulsby, C.: Using hysteretic behavior and
hydrograph classification to identify hydrological function across the
“hillslope-depression-stream” continuum in a karst catchment, Hydrol.
Process., 34, 3464–3480, https://doi.org/10.1002/hyp.13793, 2020.
Zhang, Z., Chen, X., Ghadouani, A., and Peng, S.: Modelling
hydrological processes influenced by soil, rock and
vegetation in a small karst basin of southwest China,
Hydrol. Process., 25, 2456–2470, https://doi.org/10.1002/hyp.8022,
2011.
Zhang, Z., Chen, X., Cheng, Q., and Soulsby, C.: Storage dynamics, hydrological connectivity and flux ages in a karst catchment: conceptual modelling using stable isotopes, Hydrol. Earth Syst. Sci., 23, 51–71, https://doi.org/10.5194/hess-23-51-2019, 2019.
Zhang, Z., Chen, X., Cheng, Q., and Soulsby, C.:
Characterizing the variability of transit time distributions
and young water fractions in karst catchments using flux
tracking. Hydrol. Process., 34, 3156–3174,
https://doi.org/10.1002/hyp.13829, 2020.
Zhao, R. J.: The xinanjiang model applied in china. J.
Hydrol., 135, 371–381, https://doi.org/10.1016/0022-1694(92)90096-E,
1992.
Zhao, X., Chang, Y., Wu, J., and Xue, X.: Effects of
flow rate variation on solute transport in a karst
conduit with a pool, Environ. Earth Sci., 78, 237,
https://doi.org/10.1007/s12665-019-8243-y, 2019.
Zhao, X., Chang, Y., Wu, J., Li, Q., and Cao, Z.:
Investigating the relationships between parameters in the
transient storage model and the pool volume in karst
conduits through tracer experiments, J. Hydrol., 593,
125825, https://doi.org/10.1016/j.jhydrol.2020.125825, 2021.
Short summary
We developed a coupled flow–tracer model to understand the effects of passive storage on modeling hydrological function and isotope dynamics in a karst flow system. Models with passive storages show improvement in matching isotope dynamics performance, and the improved performance also strongly depends on the number and location of passive storages. Our results also suggested that the solute transport is primarily controlled by advection and hydrodynamic dispersion in the steep hillslope unit.
We developed a coupled flow–tracer model to understand the effects of passive storage on...