Articles | Volume 26, issue 19
https://doi.org/10.5194/hess-26-4995-2022
https://doi.org/10.5194/hess-26-4995-2022
Research article
 | 
11 Oct 2022
Research article |  | 11 Oct 2022

Differential response of plant transpiration to uptake of rainwater-recharged soil water for dominant tree species in the semiarid Loess Plateau

Yakun Tang, Lina Wang, Yongqiang Yu, and Dongxu Lu

Related subject area

Subject: Ecohydrology | Techniques and Approaches: Theory development
The natural abundance of stable water isotopes method may overestimate deep-layer soil water use by trees
Shaofei Wang, Xiaodong Gao, Min Yang, Gaopeng Huo, Xiaolin Song, Kadambot H. M. Siddique, Pute Wu, and Xining Zhao
Hydrol. Earth Syst. Sci., 27, 123–137, https://doi.org/10.5194/hess-27-123-2023,https://doi.org/10.5194/hess-27-123-2023, 2023
Short summary
Contribution of cryosphere to runoff in the transition zone between the Tibetan Plateau and arid region based on environmental isotopes
Juan Gui, Zongxing Li, Qi Feng, Qiao Cui, and Jian Xue
Hydrol. Earth Syst. Sci., 27, 97–122, https://doi.org/10.5194/hess-27-97-2023,https://doi.org/10.5194/hess-27-97-2023, 2023
Short summary
Vegetation optimality explains the convergence of catchments on the Budyko curve
Remko C. Nijzink and Stanislaus J. Schymanski
Hydrol. Earth Syst. Sci., 26, 6289–6309, https://doi.org/10.5194/hess-26-6289-2022,https://doi.org/10.5194/hess-26-6289-2022, 2022
Short summary
Isotopic offsets between bulk plant water and its sources are larger in cool and wet environments
Javier de la Casa, Adrià Barbeta, Asun Rodríguez-Uña, Lisa Wingate, Jérôme Ogée, and Teresa E. Gimeno
Hydrol. Earth Syst. Sci., 26, 4125–4146, https://doi.org/10.5194/hess-26-4125-2022,https://doi.org/10.5194/hess-26-4125-2022, 2022
Short summary
Hydrology without dimensions
Amilcare Porporato
Hydrol. Earth Syst. Sci., 26, 355–374, https://doi.org/10.5194/hess-26-355-2022,https://doi.org/10.5194/hess-26-355-2022, 2022
Short summary

Cited articles

Allen, R. G., Periera, L. S., Raes, D., and Smith, M.: Crop evapotranspiration: Guidelines for Computing Crop Requirements, Irrigation and Drainage paper No. 56, FAO, Rome, Italy, 17–28, https://www.fao.org/3/X0490E/x0490e00.htm (last access: 9 October 2022), 1998. 
Bai, X., Jia, X. X., Jia, Y. H., Shao, M. A., and Hu, W.: Modeling long-term soil water dynamics in response to land-use change in a semi-arid area, J. Hydrol., 585, 124824, https://doi.org/10.1016/j.jhydrol.2020.124824, 2020. 
Berkelhammer, M., Still, C., Ritter, F., Winnick, M., Anderson, L., Carroll, R., Carbone, M., and Williams, K. H.: Persistence and Plasticity in Conifer Water-Use Strategies, J. Geophys. Res.-Biogeo., 125, e2018JG004845, https://doi.org/10.1029/2018JG004845, 2020. 
Chen, Y. J., Cao, K. F., Schnitzer, S. A., Fan, Z. X., Zhang, J. L., and Bongers, F.: Water-use advantage for lianas over trees in tropical seasonal forests, New Phytol., 205, 128–136, https://doi.org/10.1111/nph.13036, 2015. 
Cheng, X. L., An, S. Q., Li, B., Chen, J. Q., Lin, G. H., Liu, Y. H., Luo, Y. Q., and Liu, S. R.: Summer rain pulse size and rainwater uptake by three dominant desert plants in a desertified grassland ecosystem in northwestern China, Plant Ecol., 184, 1–12, 2006. 
Download
Short summary
Whether rainwater-recharged soil water (RRS) uptake can increase plant transpiration after rainfall pulses requires investigation. Our results indicate a differential response of plant transpiration to RRS uptake. Mixed afforestation enhances these water relationships and decreases soil water source competition in deep soil. Our results suggest that plant species or plantation types that can enhance RRS uptake and reduce water competition should be considered for use in water-limited regions.