Articles | Volume 26, issue 10
Hydrol. Earth Syst. Sci., 26, 2715–2732, 2022
Hydrol. Earth Syst. Sci., 26, 2715–2732, 2022
Research article
24 May 2022
Research article | 24 May 2022

Quantifying multi-year hydrological memory with Catchment Forgetting Curves

Alban de Lavenne et al.

Related authors

Spatial variability of the parameters of a semi-distributed hydrological model
Alban de Lavenne, Guillaume Thirel, Vazken Andréassian, Charles Perrin, and Maria-Helena Ramos
Proc. IAHS, 373, 87–94,,, 2016
Short summary

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Modelling approaches
Simulating the hydrological impacts of land use conversion from annual crop to perennial forage in the Canadian Prairies using the Cold Regions Hydrological Modelling platform
Marcos R. C. Cordeiro, Kang Liang, Henry F. Wilson, Jason Vanrobaeys, David A. Lobb, Xing Fang, and John W. Pomeroy
Hydrol. Earth Syst. Sci., 26, 5917–5931,,, 2022
Short summary
How can we benefit from regime information to make more effective use of long short-term memory (LSTM) runoff models?
Reyhaneh Hashemi, Pierre Brigode, Pierre-André Garambois, and Pierre Javelle
Hydrol. Earth Syst. Sci., 26, 5793–5816,,, 2022
Short summary
On the value of satellite remote sensing to reduce uncertainties of regional simulations of the Colorado River
Mu Xiao, Giuseppe Mascaro, Zhaocheng Wang, Kristen M. Whitney, and Enrique R. Vivoni
Hydrol. Earth Syst. Sci., 26, 5627–5646,,, 2022
Short summary
Assessing runoff sensitivity of North American Prairie Pothole Region basins to wetland drainage using a basin classification-based virtual modelling approach
Christopher Spence, Zhihua He, Kevin R. Shook, John W. Pomeroy, Colin J. Whitfield, and Jared D. Wolfe
Hydrol. Earth Syst. Sci., 26, 5555–5575,,, 2022
Short summary
A large-sample investigation into uncertain climate change impacts on high flows across Great Britain
Rosanna A. Lane, Gemma Coxon, Jim Freer, Jan Seibert, and Thorsten Wagener
Hydrol. Earth Syst. Sci., 26, 5535–5554,,, 2022
Short summary

Cited articles

Amogu, O., Descroix, L., Yéro, K. S., Breton, E. L., Mamadou, I., Ali, A., Vischel, T., Bader, J.-C., Moussa, I. B., Gautier, E., Boubkraoui, S., and Belleudy, P.: Increasing River Flows in the Sahel?, Water, 2, 170–199,, 2010. a
Andersson, L. and Arheimer, B.: Modelling of human and climatic impact on nitrogen load in a Swedish river 1885-1994, Hydrobiologia, 497, 63–77,, 2003. a
Andréassian, V. and Perrin, C.: On the ambiguous interpretation of the Turc-Budyko nondimensional graph, Water Resour. Res., 48,, 2012. a
Andréassian, V., Coron, L., Lerat, J., and Le Moine, N.: Climate elasticity of streamflow revisited – an elasticity index based on long-term hydrometeorological records, Hydrol. Earth Syst. Sci., 20, 4503–4524,, 2016. a, b
Ballabio, C., Panagos, P., and Monatanarella, L.: Mapping topsoil physical properties at European scale using the LUCAS database, Geoderma, 261, 110–123,, 2016. a
Short summary
A watershed remembers the past to some extent, and this memory influences its behavior. This memory is defined by the ability to store past rainfall for several years. By releasing this water into the river or the atmosphere, it tends to forget. We describe how this memory fades over time in France and Sweden. A few watersheds show a multi-year memory. It increases with the influence of groundwater or dry conditions. After 3 or 4 years, they behave independently of the past.