Articles | Volume 26, issue 1
https://doi.org/10.5194/hess-26-197-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-26-197-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Choosing between post-processing precipitation forecasts or chaining several uncertainty quantification tools in hydrological forecasting systems
Emixi Sthefany Valdez
CORRESPONDING AUTHOR
Dept. of Civil and Water Engineering, Université Laval, 1065 Avenue de la Médecine, Quebec G1V 0A6, Canada
François Anctil
Dept. of Civil and Water Engineering, Université Laval, 1065 Avenue de la Médecine, Quebec G1V 0A6, Canada
Maria-Helena Ramos
Université Paris-Saclay, INRAE, UR HYCAR, 1 Rue Pierre-Gilles de Gennes, 92160 Antony, France
Related authors
No articles found.
Annie Y.-Y. Chang, Shaun Harrigan, Maria-Helena Ramos, Massimiliano Zappa, Christian M. Grams, Daniela I. V. Domeisen, and Konrad Bogner
EGUsphere, https://doi.org/10.5194/egusphere-2025-3411, https://doi.org/10.5194/egusphere-2025-3411, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Short summary
This study presents a machine learning-aided hybrid forecasting framework to improve early warnings of low flows in the European Alps. It combines weather regime information, streamflow observations, and model simulations (EFAS). Even using only weather regime data improves predictions over climatology, while integrating different data sources yields the best result, emphasizing the value of integrating diverse data sources.
Alexis Bédard-Therrien, François Anctil, Julie M. Thériault, Olivier Chalifour, Fanny Payette, Alexandre Vidal, and Daniel F. Nadeau
Hydrol. Earth Syst. Sci., 29, 1135–1158, https://doi.org/10.5194/hess-29-1135-2025, https://doi.org/10.5194/hess-29-1135-2025, 2025
Short summary
Short summary
Precipitation data from an automated observational network in eastern Canada showed a temperature interval where rain and snow could coexist. Random forest models were developed to classify the precipitation phase using meteorological data to evaluate operational applications. The models demonstrated significantly improved phase classification and reduced error compared to benchmark operational models. However, accurate prediction of mixed-phase precipitation remains challenging.
Kh Rahat Usman, Rodolfo Alvarado Montero, Tadros Ghobrial, François Anctil, and Arnejan van Loenen
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-116, https://doi.org/10.5194/gmd-2024-116, 2024
Revised manuscript under review for GMD
Short summary
Short summary
Rivers in cold climate regions such as Canada undergo freeze up during winters which makes the estimation forecasting of under-ice discharge very challenging and uncertain since there is no reliable method other than direct measurements. The current study explored the potential of deploying a coupled modelling framework for the estimation and forecasting of this parameter. The framework showed promising potential in addressing the challenge of estimating and forecasting the under-ice discharge.
Benjamin Bouchard, Daniel F. Nadeau, Florent Domine, François Anctil, Tobias Jonas, and Étienne Tremblay
Hydrol. Earth Syst. Sci., 28, 2745–2765, https://doi.org/10.5194/hess-28-2745-2024, https://doi.org/10.5194/hess-28-2745-2024, 2024
Short summary
Short summary
Observations and simulations from an exceptionally low-snow and warm winter, which may become the new norm in the boreal forest of eastern Canada, show an earlier and slower snowmelt, reduced soil temperature, stronger vertical temperature gradients in the snowpack, and a significantly lower spring streamflow. The magnitude of these effects is either amplified or reduced with regard to the complex structure of the canopy.
Thibault Hallouin, François Bourgin, Charles Perrin, Maria-Helena Ramos, and Vazken Andréassian
Geosci. Model Dev., 17, 4561–4578, https://doi.org/10.5194/gmd-17-4561-2024, https://doi.org/10.5194/gmd-17-4561-2024, 2024
Short summary
Short summary
The evaluation of the quality of hydrological model outputs against streamflow observations is widespread in the hydrological literature. In order to improve on the reproducibility of published studies, a new evaluation tool dedicated to hydrological applications is presented. It is open source and usable in a variety of programming languages to make it as accessible as possible to the community. Thus, authors and readers alike can use the same tool to produce and reproduce the results.
Simon Ricard, Philippe Lucas-Picher, Antoine Thiboult, and François Anctil
Hydrol. Earth Syst. Sci., 27, 2375–2395, https://doi.org/10.5194/hess-27-2375-2023, https://doi.org/10.5194/hess-27-2375-2023, 2023
Short summary
Short summary
A simplified hydroclimatic modelling workflow is proposed to quantify the impact of climate change on water discharge without resorting to meteorological observations. Results confirm that the proposed workflow produces equivalent projections of the seasonal mean flows in comparison to a conventional hydroclimatic modelling approach. The proposed approach supports the participation of end-users in interpreting the impact of climate change on water resources.
Maryse Charpentier-Noyer, Daniela Peredo, Axelle Fleury, Hugo Marchal, François Bouttier, Eric Gaume, Pierre Nicolle, Olivier Payrastre, and Maria-Helena Ramos
Nat. Hazards Earth Syst. Sci., 23, 2001–2029, https://doi.org/10.5194/nhess-23-2001-2023, https://doi.org/10.5194/nhess-23-2001-2023, 2023
Short summary
Short summary
This paper proposes a methodological framework designed for event-based evaluation in the context of an intense flash-flood event. The evaluation adopts the point of view of end users, with a focus on the anticipation of exceedances of discharge thresholds. With a study of rainfall forecasts, a discharge evaluation and a detailed look at the forecast hydrographs, the evaluation framework should help in drawing robust conclusions about the usefulness of new rainfall ensemble forecasts.
Jing Xu, François Anctil, and Marie-Amélie Boucher
Hydrol. Earth Syst. Sci., 26, 1001–1017, https://doi.org/10.5194/hess-26-1001-2022, https://doi.org/10.5194/hess-26-1001-2022, 2022
Short summary
Short summary
The performance of the non-dominated sorting genetic algorithm II (NSGA-II) is compared with a conventional post-processing method of affine kernel dressing. NSGA-II showed its superiority in improving the forecast skill and communicating trade-offs with end-users. It allows the enhancement of the forecast quality since it allows for setting multiple specific objectives from scratch. This flexibility should be considered as a reason to implement hydrologic ensemble prediction systems (H-EPSs).
Georg Lackner, Florent Domine, Daniel F. Nadeau, Annie-Claude Parent, François Anctil, Matthieu Lafaysse, and Marie Dumont
The Cryosphere, 16, 127–142, https://doi.org/10.5194/tc-16-127-2022, https://doi.org/10.5194/tc-16-127-2022, 2022
Short summary
Short summary
The surface energy budget is the sum of all incoming and outgoing energy fluxes at the Earth's surface and has a key role in the climate. We measured all these fluxes for an Arctic snowpack and found that most incoming energy from radiation is counterbalanced by thermal radiation and heat convection while sublimation was negligible. Overall, the snow model Crocus was able to simulate the observed energy fluxes well.
Achut Parajuli, Daniel F. Nadeau, François Anctil, and Marco Alves
The Cryosphere, 15, 5371–5386, https://doi.org/10.5194/tc-15-5371-2021, https://doi.org/10.5194/tc-15-5371-2021, 2021
Short summary
Short summary
Cold content is the energy required to attain an isothermal (0 °C) state and resulting in the snow surface melt. This study focuses on determining the multi-layer cold content (30 min time steps) relying on field measurements, snow temperature profile, and empirical formulation in four distinct forest sites of Montmorency Forest, eastern Canada. We present novel research where the effect of forest structure, local topography, and meteorological conditions on cold content variability is explored.
Simon Ricard, Philippe Lucas-Picher, and François Anctil
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-451, https://doi.org/10.5194/hess-2021-451, 2021
Revised manuscript not accepted
Short summary
Short summary
We propose a simplified hydroclimatic modelling workflow for producing hydrologic scenarios without resorting to meteorological observations. This innovative approach preserves trends and physical consistency between simulated climate variables, allows the implementation of modelling cascades despite observation scarcity, and supports the participation of end-users in producing and interpreting climate change impacts on water resources.
Etienne Guilpart, Vahid Espanmanesh, Amaury Tilmant, and François Anctil
Hydrol. Earth Syst. Sci., 25, 4611–4629, https://doi.org/10.5194/hess-25-4611-2021, https://doi.org/10.5194/hess-25-4611-2021, 2021
Short summary
Short summary
The stationary assumption in hydrology has become obsolete because of climate changes. In that context, it is crucial to assess the performance of a hydrologic model over a wide range of climates and their corresponding hydrologic conditions. In this paper, numerous, contrasted, climate sequences identified by a hidden Markov model (HMM) are used in a differential split-sample testing framework to assess the robustness of a hydrologic model. We illustrate the method on the Senegal River.
Manon Cassagnole, Maria-Helena Ramos, Ioanna Zalachori, Guillaume Thirel, Rémy Garçon, Joël Gailhard, and Thomas Ouillon
Hydrol. Earth Syst. Sci., 25, 1033–1052, https://doi.org/10.5194/hess-25-1033-2021, https://doi.org/10.5194/hess-25-1033-2021, 2021
Cited articles
Abaza, M., Anctil, F., Fortin, V., and Perreault, L.: On the incidence of
meteorological and hydrological processors: Effect of resolution, sharpness
and reliability of hydrological ensemble forecasts, J. Hydrol.,
555, 371–384, https://doi.org/10.1016/j.jhydrol.2017.10.038, 2017. a
Addor, N., Jaun, S., Fundel, F., and Zappa, M.: An operational hydrological ensemble prediction system for the city of Zurich (Switzerland): skill, case studies and scenarios, Hydrol. Earth Syst. Sci., 15, 2327–2347, https://doi.org/10.5194/hess-15-2327-2011, 2011. a
Alfieri, L., Pappenberger, F., Wetterhall, F., Haiden, T., Richardson, D., and
Salamon, P.: Evaluation of ensemble streamflow predictions in Europe, J. Hydrol., 517, 913–922,
https://doi.org/10.1016/j.jhydrol.2014.06.035, 2014. a
Aminyavari, S. and Saghafian, B.: Probabilistic streamflow forecast based on
spatial post-processing of TIGGE precipitation forecasts, Stoch.
Env. Res. Risk A., 33, 1939–1950, 2019. a
Anctil, F. and Ramos, M.-H.: Verification Metrics for Hydrological Ensemble
Forecasts, in: Handbook of Hydrometeorological Ensemble Forecasting, edited by: Duan, Q., Pappenberger, F., Wood, A., and Cloke, H. L., and Schaake, J. C., Springer Berlin Heidelberg,
1–30, https://doi.org/10.1007/978-3-642-39925-1_3, 2019. a, b
Andréassian, V., Oddos, A., Michel, C., Anctil, F., Perrin, C., and Loumagne,
C.: Impact of spatial aggregation of inputs and parameters on the efficiency
of rainfall-runoff models: A theoretical study using chimera watersheds,
Water Resour. Res., 40, W05209,
https://doi.org/10.1029/2003WR002854, 2004. a
Anghileri, D., Monhart, S., Zhou, C., Bogner, K., Castelletti, A., Burlando,
P., and Zappa, M.: The Value of Subseasonal Hydrometeorological Forecasts to
Hydropower Operations: How Much Does Preprocessing Matter?, Water Resour.
Res., 55, 10159–10178, https://doi.org/10.1029/2019WR025280,
2019. a
Arsenault, R., Poulin, A., Côté, P., and Brissette, F.: Comparison of
stochastic optimization algorithms in hydrological model calibration, J. Hydrol. Eng., 19, 1374–1384,
https://doi.org/10.1061/(ASCE)HE.1943-5584.0000938, 2014. a
Bellier, J., Bontron, G., and Zin, I.: Using Meteorological Analogues for
Reordering Postprocessed Precipitation Ensembles in Hydrological Forecasting,
Water Resour. Res., 53, 10085–10107,
https://doi.org/10.1002/2017WR021245, 2017. a, b
Bergeron, O.: Guide d'utilisation 2016 – Grilles climatiques quotidiennes du
Programme de surveillance du climat du Québec, version 1.2, Québec,
Ministère du Développement durable, de l’Environnement et de la
Lutte contre les changements climatiques, Direction du suivi de l’état
de l’environnement, 33 pp., ISBN 978-2-550-74872-4, 2016. a
Bergström, S. and Forsman, A.: Development of a conceptual deterministic
rainfall-runoff model, Hydrol. Res., 4, 147–170,
https://doi.org/10.2166/nh.1973.0012, 1973. a
Beven, K.: Causal models as multiple working hypotheses about environmental
processes, C. R. Geosci., 344, 77–88,
https://doi.org/10.1016/j.crte.2012.01.005, 2012. a
Beven, K.: Facets of uncertainty: epistemic uncertainty, non-stationarity,
likelihood, hypothesis testing, and communication, Hydrolog. Sci.
J., 61, 1652–1665, https://doi.org/10.1080/02626667.2015.1031761, 2016. a
Beven, K. J. and Alcock, R. E.: Modelling everything everywhere: a new approach
to decision-making for water management under uncertainty, Freshwater
Biol., 57, 124–132, 2012. a
Biondi, D. and Todini, E.: Comparing Hydrological Postprocessors Including
Ensemble Predictions Into Full Predictive Probability Distribution of
Streamflow, Water Resour. Res., 54, 9860–9882,
https://doi.org/10.1029/2017WR022432, 2018. a
Boelee, L., Lumbroso, D. M., Samuels, P. G., and Cloke, H. L.: Estimation of
uncertainty in flood forecasts – A comparison of methods, J. Flood
Risk Manag., 12, e12516, https://doi.org/10.1111/jfr3.12516, 2019. a, b, c, d
Bogner, K., Liechti, K., Bernhard, L., Monhart, S., and Zappa, M.: Skill of
Hydrological Extended Range Forecasts for Water Resources Management in
Switzerland, Water Resour. Manag., 32, 969–984, https://doi.org/10.1007/s11269-017-1849-5,
2018. a
Boucher, M. A., Tremblay, D., Delorme, L., Perreault, L., and Anctil, F.:
Hydro-economic assessment of hydrological forecasting systems, J.
Hydrol., 416-417, 133–144, https://doi.org/10.1016/j.jhydrol.2011.11.042, 2012. a
Boucher, M.-A., Perreault, L., Anctil, F., and Favre, A.-C.: Exploratory
analysis of statistical post-processing methods for hydrological ensemble
forecasts, Hydrol. Process., 29, 1141–1155,
https://doi.org/10.1002/hyp.10234, 2015. a
Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., Chen, D. H., Ebert, B., Fuentes, M., Hamill, T. M., Mylne, K., Nicolau, J., Paccagnella, T., Park, Y.-Y., Parsons, D., Raoult, B., Schuster, D., Silva Dias, P., Swinbank, R., Takeuchi, Y., Tennant, W., Wilson, L., and Worley, S.: The THORPEX interactive grand global ensemble, B. Am. Meteorol. Soc., 91, 1059–1072, https://doi.org/10.1175/2010BAMS2853.1, 2010 (data available at: https://apps.ecmwf.int/datasets/data/tigge/levtype=sfc/type=cf/, last access: 11 January 2022). a
Bourgin, F., Ramos, M. H., Thirel, G., and Andréassian, V.:
Investigating the interactions between data assimilation and post-processing
in hydrological ensemble forecasting, J. Hydrol., 519, 2775–2784,
https://doi.org/10.1016/j.jhydrol.2014.07.054, 2014. a, b
Bröcker, J.: Evaluating raw ensembles with the continuous ranked probability
score, Q. J. Roy. Meteor. Soc., 138,
1611–1617, https://doi.org/10.1002/qj.1891, 2012. a
Brown, J. D. and Seo, D. J.: Evaluation of a nonparametric post-processor for
bias correction and uncertainty estimation of hydrologic predictions,
Hydrol. Process., 27, 83–105, https://doi.org/10.1002/hyp.9263, 2013. a
Brown, J. D., Demargne, J., Seo, D.-J., and Liu, Y.: Environmental Modelling
& Software The Ensemble Verification System (EVS): A software tool for
verifying ensemble forecasts of hydrometeorological and hydrologic variables
at discrete locations, Environmental Modelling and Software, 25, 854–872,
https://doi.org/10.1016/j.envsoft.2010.01.009, 2010. a
Buizza, R.: Introduction to the special issue on “25 years of ensemble
forecasting”, Q. J. Roy. Meteor. Soc., 145,
1–11, https://doi.org/10.1002/qj.3370, 2019. a
Buizza, R. and Leutbecher, M.: The forecast skill horizon, Q. J.
Roy. Meteor. Soc., 141, 3366–3382,
https://doi.org/10.1002/qj.2619, 2015. a
Buizza, R. and Palmer, T.: The singular-vector structure of the atmospheric
general circulation, Tech. Rep., 208, Shinfield Park, Reading,
https://doi.org/10.21957/5k3hq6zqq, 1995. a
Buizza, R., Houtekamer, P., Pellerin, G., Toth, Z., Zhu, Y., and Wei, M.: A
comparison of the ECMWF, MSC, and NCEP global ensemble prediction systems,
Mon. Weather Rev., 133, 1076–1097,
https://doi.org/10.1175/MWR2905.1, 2005. a
Buizza, R., Leutbecher, M., and Isaksen, L.: Potential use of an ensemble of
analyses in the ECMWF Ensemble Prediction System, Q. J.
Roy. Meteor. Soc., 134, 2051–2066,
https://doi.org/10.1002/qj.346, 2008. a
Burnash, R. J., Ferral, R. L., and McGuire, R. A.: A generalized streamflow
simulation system, conceptual modeling for digital computers, US Department of Commerce, National Weather Service, and State of California, Department of Water Resources, 1973. a
Cane, D., Ghigo, S., Rabuffetti, D., and Milelli, M.: Real-time flood forecasting coupling different postprocessing techniques of precipitation forecast ensembles with a distributed hydrological model. The case study of may 2008 flood in western Piemonte, Italy, Nat. Hazards Earth Syst. Sci., 13, 211–220, https://doi.org/10.5194/nhess-13-211-2013, 2013. a
Cassagnole, M., Ramos, M.-H., Zalachori, I., Thirel, G., Garçon, R., Gailhard, J., and Ouillon, T.: Impact of the quality of hydrological forecasts on the management and revenue of hydroelectric reservoirs – a conceptual approach, Hydrol. Earth Syst. Sci., 25, 1033–1052, https://doi.org/10.5194/hess-25-1033-2021, 2021. a, b
Choi, J., Won, J., Lee, O., and Kim, S.: Usefulness of Global Root Zone Soil
Moisture Product for Streamflow Prediction of Ungauged Basins, Remote
Sensing, 13, 756, https://doi.org/10.3390/rs13040756, 2021. a
Clark, M., Gangopadhyay, S., Hay, L., Rajagopalan, B., and Wilby, R.: The
Schaake shuffle: A method for reconstructing space–time variability in
forecasted precipitation and temperature fields, J. Hydrometeorol.,
5, 243–262,
https://doi.org/10.1175/1525-7541(2004)005<0243:TSSAMF>2.0.CO;2, 2004. a
Clark, M. P., Rupp, D. E., Woods, R. A., Zheng, X., Ibbitt, R. P., Slater,
A. G., Schmidt, J., and Uddstrom, M. J.: Hydrological data assimilation with
the ensemble Kalman filter: Use of streamflow observations to update states
in a distributed hydrological model, Adv. Water Resour., 31,
1309–1324, https://doi.org/10.1016/j.advwatres.2008.06.005, 2008. a
Cloke, H. and Pappenberger, F.: Ensemble flood forecasting: A review, J. Hydrol., 375, 613–626,
https://doi.org/10.1016/j.jhydrol.2009.06.005, 2009. a
Coustau, M., Rousset-Regimbeau, F., Thirel, G., Habets, F., Janet, B., Martin,
E., de Saint-Aubin, C., and Soubeyroux, J.-M.: Impact of improved
meteorological forcing, profile of soil hydraulic conductivity and data
assimilation on an operational Hydrological Ensemble Forecast System over
France, J. Hydrol., 525, 781–792,
https://doi.org/10.1016/j.jhydrol.2015.04.022, 2015. a
Crochemore, L., Ramos, M.-H., and Pappenberger, F.: Bias correcting precipitation forecasts to improve the skill of seasonal streamflow forecasts, Hydrol. Earth Syst. Sci., 20, 3601–3618, https://doi.org/10.5194/hess-20-3601-2016, 2016. a
DeChant, C. M. and Moradkhani, H.: Improving the characterization of initial condition for ensemble streamflow prediction using data assimilation, Hydrol. Earth Syst. Sci., 15, 3399–3410, https://doi.org/10.5194/hess-15-3399-2011, 2011. a
DeChant, C. M. and Moradkhani, H.: Examining the effectiveness and robustness
of sequential data assimilation methods for quantification of uncertainty in
hydrologic forecasting, Water Resour. Res., 48, W04518,
https://doi.org/10.1029/2011WR011011, 2012. a
Demargne, J., Wu, L., Regonda, S. K., Brown, J. D., Lee, H., He, M., Seo,
D.-J., Hartman, R., Herr, H. D., Fresch, M., , Schaake, J., and Zhu, Y.: The science of NOAA's
operational hydrologic ensemble forecast service, B. Am.
Meteorol. Soc., 95, 79–98,
https://doi.org/10.1175/BAMS-D-12-00081.1, 2014. a
Demirel, M. C., Booij, M. J., and Hoekstra, A. Y.: Effect of different
uncertainty sources on the skill of 10 day ensemble low flow forecasts for
two hydrological models, Water Resour. Res., 49, 4035–4053,
https://doi.org/10.1002/wrcr.20294, 2013. a, b
Donnelly, C., Andersson, J. C., and Arheimer, B.: Using flow signatures and
catchment similarities to evaluate the E-HYPE multi-basin model across
Europe, Hydrolog. Sci. J., 61, 255–273,
https://doi.org/10.1080/02626667.2015.1027710, 2016. a
Duan, Q., Sorooshian, S., and Gupta, V. K.: Optimal use of the SCE-UA global
optimization method for calibrating watershed models, J. Hydrol.,
158, 265–284, https://doi.org/10.1016/0022-1694(94)90057-4, 1994. a
Emerton, R. E., Stephens, E. M., Pappenberger, F., Pagano, T. C., Weerts,
A. H., Wood, A. W., Salamon, P., Brown, J. D., Hjerdt, N., Donnelly, C.,
Baugh, C. A., and Cloke, H. L.: Continental and global scale flood
forecasting systems, WIRES Water, 3, 391–418,
https://doi.org/10.1002/wat2.1137, 2016. a
Evensen, G.: The ensemble Kalman filter: Theoretical formulation and practical
implementation, Ocean Dynam., 53, 343–367,
https://doi.org/10.1007/s10236-003-0036-9, 2003. a
Ferro, C. A., Richardson, D. S., and Weigel, A. P.: On the effect of ensemble
size on the discrete and continuous ranked probability scores, Meteorol.
Appl., 15, 19–24, https://doi.org/10.1002/met.45,
2008. a, b, c, d
Gaborit, É., Anctil, F., Fortin, V., and Pelletier, G.: On the reliability
of spatially disaggregated global ensemble rainfall forecasts, Hydrol.
Process., 27, 45–56, https://doi.org/10.1002/hyp.9509, 2013. a
Garçon, R.: Overall rain-flow model for flood forecasting and
pre-determination, Houille Blanche, 85, 88–95, https://doi.org/10.1051/lhb/1999088,
1999. a
Ghazvinian, M., Zhang, Y., and Seo, D.-J.: A Nonhomogeneous Regression-Based
Statistical Postprocessing Scheme for Generating Probabilistic Quantitative
Precipitation Forecast, J. Hydrometeorol., 21, 2275–2291,
https://doi.org/10.1175/JHM-D-20-0019.1, 2020. a
Girard, G., Morin, G., and Charbonneau, R.: Modèle
précipitations-débits à discrétisation spatiale, Cahiers
ORSTOM, série hydrologie, 9, 35–52, 1972. a
Gneiting, T., Balabdaoui, F., and Raftery, A. E.: Probabilistic forecasts,
calibration and sharpness, J. R. Stat. Soc. B, 69, 243–268,
https://doi.org/10.1111/j.1467-9868.2007.00587.x, 2007. a
Gourley, J. J. and Vieux, B. E.: A method for identifying sources of model
uncertainty in rainfall-runoff simulations, J. Hydrol., 327,
68–80, https://doi.org/10.1016/j.jhydrol.2005.11.036, 2006. a
Gupta, H. V., Kling, H., Yilmaz, K. K., and Martinez, G. F.: Decomposition of
the mean squared error and NSE performance criteria: Implications for
improving hydrological modelling, J. Hydrol., 377, 80–91,
https://doi.org/10.1016/j.jhydrol.2009.08.003, 2009. a
Hagedorn, R., Hamill, T. M., and Whitaker, J. S.: Probabilistic forecast
calibration using ECMWF and GFS ensemble reforecasts. Part I: Two-meter
temperatures, Mon. Weather Rev., 136, 2608–2619,
https://doi.org/10.1175/2007MWR2410.1, 2008. a
Hersbach, H.: Decomposition of the continuous ranked probability score for
ensemble prediction systems, Weather Forecast., 15, 559–570,
https://doi.org/10.1175/1520-0434(2000)015<0559:DOTCRP>2.0.CO;2, 2000. a
Houtekamer, P. L., Buehner, M., and De La Chevrotière, M.: Using the hybrid
gain algorithm to sample data assimilation uncertainty, Q. J. Roy. Meteor. Soc., 145,
35–56, https://doi.org/10.1002/qj.3426, 2019. a
Jakeman, A., Littlewood, I., and Whitehead, P.: Computation of the
instantaneous unit hydrograph and identifiable component flows with
application to two small upland catchments, J. Hydrol., 117,
275–300, https://doi.org/10.1016/0022-1694(90)90097-H, 1990. a
Kang, T.-H., Kim, Y.-O., and Hong, I.-P.: Comparison of pre- and
post-processors for ensemble streamflow prediction, Atmos. Sci.
Lett., 11, 153–159, https://doi.org/10.1002/asl.276, 2010. a
Kavetski, D., Kuczera, G., and Franks, S. W.: Bayesian analysis of input
uncertainty in hydrological modeling: 2. Application, Water Resour.
Res., 42, W03408, https://doi.org/10.1029/2005WR004376, 2006. a, b
Klemeš, V.: Operational testing of hydrological simulation models,
Hydrolog. Sci. J., 31, 13–24, https://doi.org/10.1080/02626668609491024,
1986. a
Kling, H., Fuchs, M., and Paulin, M.: Runoff conditions in the upper Danube
basin under an ensemble of climate change scenarios, J. Hydrol.,
424, 264–277, https://doi.org/10.1016/j.jhydrol.2012.01.011, 2012. a
Kollet, S., Sulis, M., Maxwell, R. M., Paniconi, C., Putti, M., Bertoldi, G.,
Coon, E. T., Cordano, E., Endrizzi, S., Kikinzon, E., Mouche, E., Mügler, C., Park, Y.-J., Refsgaard, J. C., Stisen, S., and Sudicky, E.: The integrated
hydrologic model intercomparison project, IH-MIP2: A second set of benchmark
results to diagnose integrated hydrology and feedbacks, Water Resour.
Res., 53, 867–890, 2017. a
Kottek, M., Grieser, J., Beck, C., Rudolf, B., and Rubel, F.: World map of the
Köppen-Geiger climate classification updated, Meteorol.
Z., 15, 259–263, https://doi.org/10.1127/0941-2948/2006/0130, 2006. a
Kwon, M., Kwon, H.-H., and Han, D.: A Hybrid Approach Combining Conceptual
Hydrological Models, Support Vector Machines and Remote Sensing Data for
Rainfall-Runoff Modeling, Remote Sensing, 12, 1801, https://doi.org/10.3390/rs12111801, 2020. a
L'hôte, Y., Chevallier, P., Coudrain, A., Lejeune, Y., and Etchevers, P.:
Relationship between precipitation phase and air temperature: comparison
between the Bolivian Andes and the Swiss Alps/Relation entre phase de
précipitation et température de l'air: comparaison entre les Andes
Boliviennes et les Alpes Suisses, Hydrolog. Sci. J., 50,
null–997, https://doi.org/10.1623/hysj.2005.50.6.989, 2005. a
Li, W., Duan, Q., Miao, C., Ye, A., Gong, W., and Di, Z.: A review on
statistical postprocessing methods for hydrometeorological ensemble
forecasting, WIRES Water, 4, e1246,
https://doi.org/10.1002/wat2.1246, 2017. a, b
Liu, Y., Weerts, A. H., Clark, M., Hendricks Franssen, H.-J., Kumar, S., Moradkhani, H., Seo, D.-J., Schwanenberg, D., Smith, P., van Dijk, A. I. J. M., van Velzen, N., He, M., Lee, H., Noh, S. J., Rakovec, O., and Restrepo, P.: Advancing data assimilation in operational hydrologic forecasting: progresses, challenges, and emerging opportunities, Hydrol. Earth Syst. Sci., 16, 3863–3887, https://doi.org/10.5194/hess-16-3863-2012, 2012. a
Lucatero, D., Madsen, H., Refsgaard, J. C., Kidmose, J., and Jensen, K. H.: On the skill of raw and post-processed ensemble seasonal meteorological forecasts in Denmark, Hydrol. Earth Syst. Sci., 22, 6591–6609, https://doi.org/10.5194/hess-22-6591-2018, 2018. a
Mendoza, P. A., Wood, A. W., Clark, E., Rothwell, E., Clark, M. P., Nijssen, B., Brekke, L. D., and Arnold, J. R.: An intercomparison of approaches for improving operational seasonal streamflow forecasts, Hydrol. Earth Syst. Sci., 21, 3915–3935, https://doi.org/10.5194/hess-21-3915-2017, 2017. a
Monhart, S., Zappa, M., Spirig, C., Schär, C., and Bogner, K.: Subseasonal hydrometeorological ensemble predictions in small- and medium-sized mountainous catchments: benefits of the NWP approach, Hydrol. Earth Syst. Sci., 23, 493–513, https://doi.org/10.5194/hess-23-493-2019, 2019. a
Moore, R. and Clarke, R.: A distribution function approach to rainfall runoff
modeling, Water Resour. Res., 17, 1367–1382,
https://doi.org/10.1029/WR017i005p01367, 1981. a
Noh, S. J., Rakovec, O., Weerts, A. H., and Tachikawa, Y.: On noise
specification in data assimilation schemes for improved flood forecasting
using distributed hydrological models, J. Hydrol., 519, 2707–2721,
https://doi.org/10.1016/j.jhydrol.2014.07.049, 2014. a
Oudin, L., Hervieu, F., Michel, C., Perrin, C., Andréassian, V.,
Anctil, F., and Loumagne, C.: Which potential evapotranspiration input
for a lumped rainfall–runoff model?: Part 2 – Towards a simple and
efficient potential evapotranspiration model for rainfall–runoff modelling,
J. Hydrol., 303, 290–306,
https://doi.org/10.1016/j.jhydrol.2004.08.026, 2005. a, b
Pagano, T. C., Wood, A. W., Ramos, M.-H., Cloke, H. L., Pappenberger, F.,
Clark, M. P., Cranston, M., Kavetski, D., Mathevet, T., Sorooshian, S.,
and Verkade, J. S.: Challenges of operational river forecasting, J.
Hydrometeorol., 15, 1692–1707,
https://doi.org/10.1175/JHM-D-13-0188.1, 2014. a, b
Palmer, T.: The ECMWF ensemble prediction system: Looking back (more than) 25
years and projecting forward 25 years, Q. J. Roy.
Meteorol. Soc., 145, 12–24, https://doi.org/10.1002/qj.3383,
2019. a
Pappenberger, F., Beven, K. J., Hunter, N. M., Bates, P. D., Gouweleeuw, B. T., Thielen, J., and de Roo, A. P. J.: Cascading model uncertainty from medium range weather forecasts (10 days) through a rainfall-runoff model to flood inundation predictions within the European Flood Forecasting System (EFFS), Hydrol. Earth Syst. Sci., 9, 381–393, https://doi.org/10.5194/hess-9-381-2005, 2005. a
Pappenberger, F., Ramos, M.-H., Cloke, H. L., Wetterhall, F., Alfieri, L.,
Bogner, K., Mueller, A., and Salamon, P.: How do I know if my forecasts are
better? Using benchmarks in hydrological ensemble prediction, J.
Hydrol., 522, 697–713, 2015. a
Pappenberger, F., Pagano, T. C., Brown, J. D., Alfieri, L., Lavers, D. A.,
Berthet, L., Bressand, F., Cloke, H. L., Cranston, M., Danhelka, J.,
Demargne, J., Demuth, N., de Saint-Aubin, C., Feikema, P. M., Fresch, M. A.,
Garçon, R., Gelfan, A., He, Y., Hu, Y. Z., Janet, B., Jurdy, N.,
Javelle, P., Kuchment, L., Laborda, Y., Langsholt, E., Le Lay, M., Li, Z. J.,
Mannessiez, F., Marchandise, A., Marty, R., Meißner, D., Manful, D.,
Organde, D., Pourret, V., Rademacher, S., Ramos, M.-H., Reinbold, D.,
Tibaldi, S., Silvano, P., Salamon, P., Shin, D., Sorbet, C., Sprokkereef, E.,
Thiemig, V., Tuteja, N. K., van Andel, S. J., Verkade, J. S.,
Vehviläinen, B., Vogelbacher, A., Wetterhall, F., Zappa, M., Van der
Zwan, R. E., and Thielen-del Pozo, J.: Hydrological Ensemble Prediction Systems
Around the Globe, edited by: Duan, Q., Pappenberger, F., Wood, A., Cloke, H. L., and Schaake, J. C., Springer Berlin Heidelberg, Berlin,
Heidelberg, 1187–1221, https://doi.org/10.1007/978-3-642-39925-1_47, 2019. a
Parker, W. S.: Model Evaluation: An Adequacy-for-Purpose View, Philos.
Sci., 87, 457–477, https://doi.org/10.1086/708691, 2020. a
Perrin, C.: Vers une amélioration d'un modèle global pluie-débit, PhD
thesis, Institut National Polytechnique de Grenoble-INPG, Grenoble, France, 287 pp., 2000. a
Poulin, A., Brissette, F., Leconte, R., Arsenault, R., and Malo, J.-S.:
Uncertainty of hydrological modelling in climate change impact studies in a
Canadian, snow-dominated river basin, J. Hydrol., 409, 626–636,
https://doi.org/10.1016/j.jhydrol.2011.08.057, 2011. a
Rakovec, O., Weerts, A. H., Hazenberg, P., Torfs, P. J. J. F., and Uijlenhoet, R.: State updating of a distributed hydrological model with Ensemble Kalman Filtering: effects of updating frequency and observation network density on forecast accuracy, Hydrol. Earth Syst. Sci., 16, 3435–3449, https://doi.org/10.5194/hess-16-3435-2012, 2012. a
Roulin, E. and Vannitsem, S.: Post-processing of medium-range probabilistic
hydrological forecasting: Impact of forcing, initial conditions and model
errors, Hydrol. Process., 29, 1434–1449, https://doi.org/10.1002/hyp.10259,
2015. a, b
Schaake, J. C., Hamill, T. M., Buizza, R., and Clark, M.: HEPEX: the
hydrological ensemble prediction experiment, B. Am.
Meteorol. Soc., 88, 1541–1548,
https://doi.org/10.1175/BAMS-88-10-1541, 2007. a, b
Schefzik, R., Thorarinsdottir, T. L., and Gneiting, T.: Uncertainty
Quantification in Complex Simulation Models Using Ensemble Copula Coupling,
Stat. Sci., 28, 616–640, https://doi.org/10.1214/13-STS443, 2013. a, b, c
Scheuerer, M., Hamill, T. M., Whitin, B., He, M., and Henkel, A.: A method for
preferential selection of dates in the Schaake shuffle approach to
constructing spatiotemporal forecast fields of temperature and precipitation,
Water Resour. Res., 53, 3029–3046,
https://doi.org/10.1002/2016WR020133, 2017. a, b
Seiller, G., Anctil, F., and Perrin, C.: Multimodel evaluation of twenty lumped hydrological models under contrasted climate conditions, Hydrol. Earth Syst. Sci., 16, 1171–1189, https://doi.org/10.5194/hess-16-1171-2012, 2012. a, b, c
Sharma, S., Siddique, R., Reed, S., Ahnert, P., Mendoza, P., and Mejia, A.: Relative effects of statistical preprocessing and postprocessing on a regional hydrological ensemble prediction system, Hydrol. Earth Syst. Sci., 22, 1831–1849, https://doi.org/10.5194/hess-22-1831-2018, 2018. a, b
Sharma, S., Siddique, R., Reed, S., Ahnert, P., and Mejia, A.: Hydrological
Model Diversity Enhances Streamflow Forecast Skill at Short-to Medium-Range
Timescales, Water Resour. Res., 55, 1510–1530,
https://doi.org/10.1029/2018WR023197, 2019. a, b
Sivapalan, M.: Process complexity at hillslope scale, process simplicity at the
watershed scale: is there a connection?, Hydrol. Process., 17,
1037–1041, https://doi.org/10.1002/hyp.5109, 2003. a
Slater, L. J. and Villarini, G.: Enhancing the Predictability of Seasonal
Streamflow With a Statistical-Dynamical Approach, Geophys. Res.
Lett., 45, 6504–6513, https://doi.org/10.1029/2018GL077945, 2018. a
Thiboult, A., Anctil, F., and Ramos, M.: How does the quantification of
uncertainties affect the quality and value of flood early warning systems?,
J. Hydrol., 551, 365–373, https://doi.org/10.1016/j.jhydrol.2017.05.014,
2017. a, b
Thiboult, A., Seiller, G., Poncelet, C., and Anctil, F.: The hoopla toolbox: a
hydrological prediction laboratory,
Environ. Modell. Softw., submitted, 2018. a
Thiboult, A., Seiller, G., and Anctil, F.: HOOPLA, GitHub [code], available at: https://github.com/AntoineThiboult/HOOPLA, 2019. a
Thirel, G., Salamon, P., Burek, P., and Kalas, M.: Assimilation of MODIS Snow
Cover Area Data in a Distributed Hydrological Model Using the Particle
Filter, Remote Sensing, 5, 5825–5850, https://doi.org/10.3390/rs5115825, 2013. a
Valéry, A., Andréassian, V., and Perrin, C.: “As simple as possible but not
simpler”: What is useful in a temperature-based snow-accounting routine?
Part 2 – Sensitivity analysis of the Cemaneige snow accounting routine on
380 catchments, J. Hydrol., 517, 1176–1187,
https://doi.org/10.1016/j.jhydrol.2014.04.058, 2014. a
Vannitsem, S., Bremnes, J. B., Demaeyer, J., Evans, G. R., Flowerdew, J.,
Hemri, S., Lerch, S., Roberts, N., Theis, S., Atencia, A., Bouallègue,
Z. B., Bhend, J., Dabernig, M., Cruz, L. D., Hieta, L., Mestre, O., Moret,
L., Plenković, I. O., Schmeits, M., Taillardat, M., den Bergh, J. V.,
Schaeybroeck, B. V., Whan, K., and Ylhaisi, J.: Statistical Postprocessing
for Weather Forecasts – Review, Challenges and Avenues in a Big Data World,
B. Am. Meteorol. Soc., 102, E681–E699,
https://doi.org/10.1175/BAMS-D-19-0308.1, 2020. a
Velázquez, J. A., Anctil, F., Ramos, M. H., and Perrin, C.: Can a multi-model approach improve hydrological ensemble forecasting? A study on 29 French catchments using 16 hydrological model structures, Adv. Geosci., 29, 33–42, https://doi.org/10.5194/adgeo-29-33-2011, 2011. a
Verkade, J., Brown, J., Reggiani, P., and Weerts, A.: Post-processing ECMWF
precipitation and temperature ensemble reforecasts for operational hydrologic
forecasting at various spatial scales, J. Hydrol., 501, 73–91,
https://doi.org/10.1016/j.jhydrol.2013.07.039, 2013. a, b
Wetterhall, F., Pappenberger, F., Alfieri, L., Cloke, H. L., Thielen-del Pozo, J., Balabanova, S., Daňhelka, J., Vogelbacher, A., Salamon, P., Carrasco, I., Cabrera-Tordera, A. J., Corzo-Toscano, M., Garcia-Padilla, M., Garcia-Sanchez, R. J., Ardilouze, C., Jurela, S., Terek, B., Csik, A., Casey, J., Stankūnavičius, G., Ceres, V., Sprokkereef, E., Stam, J., Anghel, E., Vladikovic, D., Alionte Eklund, C., Hjerdt, N., Djerv, H., Holmberg, F., Nilsson, J., Nyström, K., Sušnik, M., Hazlinger, M., and Holubecka, M.: HESS Opinions “Forecaster priorities for improving probabilistic flood forecasts”, Hydrol. Earth Syst. Sci., 17, 4389–4399, https://doi.org/10.5194/hess-17-4389-2013, 2013. a
Wilks, D. S.: Statistical methods in the atmospheric sciences, vol. 100,
Elsevier, ISBN 978-0-12-815823-4, https://doi.org/10.1016/C2017-0-03921-6, 2011. a
Wu, W., Emerton, R., Duan, Q., Wood, A. W., Wetterhall, F., and Robertson,
D. E.: Ensemble flood forecasting: Current status and future opportunities,
WIRES Water, 7, e1432, https://doi.org/10.1002/wat2.1432, 2020. a
Yu, W. and Kim, S.: Accuracy improvement of flood forecasting using
pre-processing of ensemble numerical weather prediction rainfall fields,
Journal of Japan Society of Civil Engineers, Ser. B1 (Hydraulic Engineering), 70, 151–156,
https://doi.org/10.2208/jscejhe.70.I_151, 2014. a, b
Zalachori, I., Ramos, M.-H., Garçon, R., Mathevet, T., and Gailhard, J.: Statistical processing of forecasts for hydrological ensemble prediction: a comparative study of different bias correction strategies, Adv. Sci. Res., 8, 135–141, https://doi.org/10.5194/asr-8-135-2012, 2012. a, b
Zappa, M., Beven, K. J., Bruen, M., Cofi, A. S., Kok, K., and Martin, E.:
Propagation of uncertainty from observing systems and NWP into hydrological
models : COST-731 Working Group 2, Atmos. Sci. Lett., 11, 83–91,
https://doi.org/10.1002/asl.248, 2010.
a
Zappa, M., van Andel, S. J., and Cloke, H. L.: Introduction to Ensemble
Forecast Applications and Showcases, Springer Berlin
Heidelberg, Berlin, Heidelberg, 1181–1185, https://doi.org/10.1007/978-3-642-39925-1_45, 2019. a
Zeng, T., Wang, L., Li, X., Song, L., Zhang, X., Zhou, J., Gao, B., and Liu,
R.: A New and Simplified Approach for Estimating the Daily River Discharge of
the Tibetan Plateau Using Satellite Precipitation: An Initial Study on the
Upper Brahmaputra River, Remote Sensing, 12, 2103, https://doi.org/10.3390/rs12132103, 2020. a
Zhang, Y., Wu, L., Scheuerer, M., Schaake, J., and Kongoli, C.: Comparison of
probabilistic quantitative precipitation forecasts from two postprocessing
mechanisms, J. Hydrometeorol., 18, 2873–2891,
https://doi.org/10.1175/JHM-D-16-0293.1, 2017. a
Zhao, R., Zuang, Y., Fang, L., Liu, X., and Zhang, Q.: The Xinanjiang model,
IAHS Publications, 129, 351–356, 1980. a
Short summary
We investigated how a precipitation post-processor interacts with other tools for uncertainty quantification in a hydrometeorological forecasting chain. Four systems were implemented to generate 7 d ensemble streamflow forecasts, which vary from partial to total uncertainty estimation. Overall analysis showed that post-processing and initial condition estimation ensure the most skill improvements, in some cases even better than a system that considers all sources of uncertainty.
We investigated how a precipitation post-processor interacts with other tools for uncertainty...