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Abstract. This study aims to decipher the interactions of a
precipitation post-processor and several other tools for un-
certainty quantification implemented in a hydrometeorolog-
ical forecasting chain. We make use of four hydrometeoro-
logical forecasting systems that differ by how uncertainties
are estimated and propagated. They consider the following
sources of uncertainty: system A, forcing, system B, forcing
and initial conditions, system C, forcing and model structure,
and system D, forcing, initial conditions, and model struc-
ture. For each system’s configuration, we investigate the re-
liability and accuracy of post-processed precipitation fore-
casts in order to evaluate their ability to improve streamflow
forecasts for up to 7 d of forecast horizon. The evaluation is
carried out across 30 catchments in the province of Quebec
(Canada) and over the 2011–2016 period. Results are com-
pared using a multicriteria approach, and the analysis is per-
formed as a function of lead time and catchment size. The
results indicate that the precipitation post-processor resulted
in large improvements in the quality of forecasts with re-
gard to the raw precipitation forecasts. This was especially
the case when evaluating relative bias and reliability. How-
ever, its effectiveness in terms of improving the quality of
hydrological forecasts varied according to the configuration
of the forecasting system, the forecast attribute, the forecast
lead time, and the catchment size. The combination of the
precipitation post-processor and the quantification of uncer-
tainty from initial conditions showed the best results. When
all sources of uncertainty were quantified, the contribution
of the precipitation post-processor to provide better stream-
flow forecasts was not remarkable, and in some cases, it even

deteriorated the overall performance of the hydrometeoro-
logical forecasting system. Our study provides an in-depth
investigation of how improvements brought by a precipita-
tion post-processor to the quality of the inputs to a hydrolog-
ical forecasting model can be cancelled along the forecasting
chain, depending on how the hydrometeorological forecast-
ing system is configured and on how the other sources of
hydrological forecasting uncertainty (initial conditions and
model structure) are considered and accounted for. This has
implications for the choices users might make when design-
ing new or enhancing existing hydrometeorological ensem-
ble forecasting systems.

1 Introduction

Reliable and accurate hydrological forecasts are critical to
several applications such as preparedness against flood-
related casualties and damages, water resources manage-
ment, and hydropower operations (Alfieri et al., 2014;
Bogner et al., 2018; Boucher et al., 2012; Cassagnole et al.,
2021). Accordingly, different methods have been developed
and implemented to represent the errors propagated through-
out the hydrometeorological forecasting chain and improve
operational forecasting systems (Zappa et al., 2010; Pagano
et al., 2014; Emerton et al., 2016). The inherent uncertainty
of hydrological forecasts stems from four main sources: (1)
observations, (2) the hydrological model structure and pa-
rameters, (3) the initial hydrological conditions, and (4) the
meteorological forcing (Schaake et al., 2007; Thiboult et al.,
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2016). Two traditional philosophies are generally adopted in
the literature to quantify those uncertainties: statistical meth-
ods and ensemble-based methods (e.g., Boelee et al., 2019).
The latter is increasingly being used operationally or pre-
operationally (Coustau et al., 2015; Addor et al., 2011; De-
margne et al., 2014) for short (up to 2–3 d), medium (up to
2 weeks), and extended (sub-seasonal and seasonal) fore-
cast ranges (Pappenberger et al., 2019). It relies on issu-
ing several members of an ensemble (possible future evo-
lution of the forecast variable) or combining many scenar-
ios of model structure and/or parameters, catchment descrip-
tive states, and forcing data. Probabilistic guidance can be
generated from the ensemble and provides useful informa-
tion about forecast uncertainty to users (Zappa et al., 2019).
Additionally, the contribution of each component of uncer-
tainty quantification in a forecasting system can be assessed,
which is not possible with the statistical philosophy since
it evaluates total uncertainty (Demirel et al., 2013; Kavet-
ski et al., 2006). A third philosophy is gradually growing
in popularity in addition to the traditional methods: the hy-
brid statistical–dynamical forecasting systems, which com-
bine the ability of physical models (e.g., ensemble numer-
ical weather prediction – NWP) to predict large-scale phe-
nomena with the strengths of statistical processing methods
(e.g., statistical/machine learning model driven with dynam-
ical predictions) to estimate probabilities conditioned on ob-
servations (Mendoza et al., 2017; Slater and Villarini, 2018).

The uncertainty of the observations stems from the fact
that even though we have better and more extensive observa-
tions in the last few decades, data are unavoidably spatially
incomplete and uncertain. Nevertheless, remote sensing of
the atmosphere and surface by satellites has revolutionized
forecasting and has provided valuable information around
the globe with increased accuracy and frequency to forecast-
ing systems. Therefore, satellite observations have been used
in many hydrological applications as alternative data (Choi
et al., 2021; Zeng et al., 2020; Kwon et al., 2020).

To represent the hydrological model structure and param-
eter uncertainty, the multimodel framework has become a
viable solution (Velázquez et al., 2011; Seiller et al., 2012;
Thiboult and Anctil, 2015; Thiboult et al., 2016). Model
structure uncertainty has proven to be dominant compared
to uncertainty in parameter estimation (Poulin et al., 2011;
Gourley and Vieux, 2006; Clark et al., 2008) or to solely in-
creasing the number of members of an ensemble (Sharma
et al., 2019). Regarding the quantification of the initial con-
dition uncertainty in hydrological forecasting, many data as-
similation (DA) techniques have been proposed (Liu et al.,
2012). The most common DA methods in hydrology are the
particle filter (e.g., DeChant and Moradkhani, 2012; Thirel
et al., 2013), the ensemble Kalman filter (e.g., Rakovec et al.,
2012), and its variants (e.g., Noh et al., 2014). The use of
DA techniques usually enhances performance comparatively
to an initial model simulation without DA, especially in the

short range and early medium range (Bourgin et al., 2014;
Thiboult et al., 2016; DeChant and Moradkhani, 2011).

Meteorological forcing uncertainty is primarily tackled
by ensembles of NWP model outputs (Cloke and Pappen-
berger, 2009), generated by running the same model several
times from slightly different initial conditions and/or using
stochastic patterns to represent model variations. Notwith-
standing substantial improvements made in NWP, it is still
a challenge to represent phenomena at sub-basin scales cor-
rectly, particularly convective processes (Pappenberger et al.,
2005). Meteorological models also face difficulties predict-
ing the magnitude, time, and location of large precipitation
events, which are dominant flood-generating mechanisms in
small and large river basins. Systematic biases affecting the
accuracy and reliability of numerical weather model outputs
cascade into the hydrological forecasting chain and may be
amplified on the streamflow forecasts. Consequently, a mete-
orological post-processor (sometimes named pre-processor
in hydrology as it refers to corrections to hydrological model
inputs) is nowadays an integral part of many hydrological
forecasting systems (Schaake et al., 2007; Gneiting, 2014;
Yu and Kim, 2014; Anghileri et al., 2019), especially in the
longer forecast ranges, for which the meteorological model
resolution affecting the simulation of precipitation processes
is generally coarser than the one used for short and medium
ranges (Crochemore et al., 2016; Lucatero et al., 2018; Mon-
hart et al., 2019). The degree of complexity of these precipi-
tation post-processing techniques varies from simple system-
atic bias correction to more sophisticated techniques involv-
ing conditional distributions (see Li et al., 2017, and Vannit-
sem et al., 2020, for reviews).

While some studies based on medium-range forecasts sug-
gested important improvements in the quality of stream-
flow forecasts after post-processing precipitation forecasts
(Aminyavari and Saghafian, 2019; Yu and Kim, 2014; Cane
et al., 2013), others indicate that improvements in precip-
itation and temperature forecasts do not always translate
into better streamflow forecasts, at least not proportionally
(Verkade et al., 2013; Zalachori et al., 2012; Roulin and
Vannitsem, 2015). It is suggested that precipitation post-
processing application should be carried out only when the
inherent hydrological bias is eliminated or at least reduced.
Otherwise, its value may be underestimated (Kang et al.,
2010; Sharma et al., 2018). In other words, if the hydrom-
eteorological forecasting system does not have components
to estimate the other sources of uncertainties in the forecast-
ing chain (e.g., model structure and initial condition uncer-
tainty), a meteorological post-processor alone does not guar-
antee improvements in the hydrological forecasts. There-
fore, hydrological post-processors (targeting bias correction
of hydrological model outputs) are often advocated to deal
with the bias and the under-dispersion of ensemble forecasts
caused by the partial representation of forecast uncertainty
(Boucher et al., 2015; Brown and Seo, 2013). Hydrological
post-processing alone has been shown to be a good alterna-
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tive for improving forecasting performance (Zalachori et al.,
2012; Sharma et al., 2018), but it cannot compensate for
weather forecasts that are highly biased (Abaza et al., 2017;
Roulin and Vannitsem, 2015) unless it addresses the many
sources of uncertainty in an integrated manner (Demirel
et al., 2013; Kavetski et al., 2006; Biondi and Todini, 2018).
For instance, precipitation biases towards underestimation
could lead to missing events since the hydrological model
will fail to exceed flood thresholds. In this regard, a common
question in the operational hydrometeorological forecasting
community is whether post-processing efforts should be ap-
plied to weather forecasts, hydrological forecasts, or both.

Recently, Thiboult et al. (2016, 2017) discussed the need
for post-processing model outputs when the main sources
of uncertainty in a hydrological forecasting chain are cor-
rectly quantified. Post-processing model outputs adds a cost
to the system, may not substantially improve the outputs,
and may even add additional sources of uncertainty to the
whole forecasting process. For example, after the applica-
tion of some statistical techniques, the spatiotemporal cor-
relation (Clark et al., 2004; Schefzik et al., 2013) and the
coherence (when forecasts are at least as skillful as climatol-
ogy, Gneiting, 2014) of the forecasts can be destroyed. Nev-
ertheless, quantifying “all” uncertainties may limit the oper-
ational applicability of forecasting systems, especially when
there are limitations in data and computational time manage-
ment (Boelee et al., 2019; Wetterhall et al., 2013). Consider-
ing several sources of uncertainty in ensemble hydrometeo-
rological forecasting often implies an increase in the number
of simulations. A larger number of members in an ensem-
ble forecasting system could allow a closer representation of
the full marginal distribution of possible future occurrences
and yield better forecasts (Houtekamer et al., 2019). How-
ever, there is also additional uncertainty associated with the
assumptions made in creating a larger ensemble. A plethora
of methods exists to quantify each source of uncertainty,
which implies ontological uncertainties (Beven, 2016). If the
methodologies implemented to simulate the sources of fore-
cast error and quantify various uncertainty sources are in-
appropriate, even a large ensemble size could be under- or
over-dispersive and thus not represent the total predictive un-
certainty accurately (Boelee et al., 2019; Buizza et al., 2005).

Trade-offs are inevitable when defining the configuration
of an ensemble hydrometeorological forecasting system to
be implemented in an operational context. The traditional
sources of uncertainty (i.e., initial conditions, hydrological
model structure and parameters, and forcings) are rarely con-
sidered fully and simultaneously. There are still gaps in un-
derstanding the way they interact with the dominant phys-
ical processes and flow-generating mechanisms that oper-
ate on a given river basin (Pagano et al., 2014). Meanwhile,
operational weather forecasts have constantly been improv-
ing and will continue to evolve in the future. For example,
improvements have been made on three of the key charac-
teristics of the ensemble weather forecasts of the European

Centre for Medium-Range Weather Forecasts (ECMWF):
vertical and horizontal resolution, forecast length, and en-
semble size (Buizza, 2019; Buizza and Leutbecher, 2015;
Palmer, 2019). In May 2021, an upgrade of the ECMWF’s
Integrated Forecasting System (IFS) introduced single preci-
sion for high-resolution and ensemble forecasts, which is ex-
pected to increase forecast skill across different time ranges.
Therefore, it is relevant for hydrologists to better understand
under which circumstances they can directly use NWP out-
puts without compromising hydrological forecasting perfor-
mance. It is necessary to evaluate how each component of
a forecasting system interacts with the other and to under-
stand how they contribute to forecast performance. This may
give clues as to where to focus investments: should we fa-
vor a sophisticated system accounting for many sources of
uncertainty or a simpler one endowed with post-processing
for bias correction? Notably, several studies highlight in uni-
son the need for further research regarding the incorporation
of precipitation post-processing techniques and the evalua-
tion of their interaction with the other components of the hy-
drometeorological modeling chain for diverse hydroclimatic
conditions (Wu et al., 2020).

This study aims to identify under which circumstances the
implementation of a post-processor of precipitation forecasts
would significantly improve hydrological forecasts. For this,
we investigate the interactions among several state-of-the-
art tools for uncertainty quantification implemented in a hy-
drometeorological forecasting chain. More specifically, the
following questions are addressed.

– Does precipitation post-processing improve streamflow
forecasts when dealing with a forecasting system that
fully or partially quantifies other sources of uncertainty?

– How does the performance of different uncertainty
quantification tools compare?

– How does each uncertainty quantification tool con-
tribute to improving streamflow forecast performance
across different lead times and catchment sizes?

We created four hydrometeorological forecasting systems
that differ by how uncertainties are estimated and propa-
gated. They consider the following sources of uncertainty:
system A, forcing, system B, forcing and initial conditions,
system C, forcing and model structure, and system D, forc-
ing, initial conditions, and model structure. We considered
the ECMWF ensemble precipitation forecast over the pe-
riod 2011–2016 and up to 7 d of forecast horizon, seven
hydrological lumped conceptual models, and the ensemble
Kalman filter as tools for uncertainty quantification. These
three tools represent the forcing, model structure, and initial
condition uncertainties, respectively. We investigated their
performance across 30 catchments in the province of Quebec
(Canada) for each system. Precipitation forecasts are post-
processed by applying the censored, shifted gamma distribu-
tion proposed by Scheuerer and Hamill (2015).
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This paper is structured as follows: Sect. 2 presents the
methods, data sets, and case study. Section 3 presents the
results, followed by a discussion in Sect. 4 and finally the
conclusions in Sect. 5.

2 Methods and case study

2.1 Tools for uncertainty quantification

The ensemble forecasting approach allows us to distinguish
the part of uncertainty that comes from different sources.
A specific source of uncertainty can be tracked through the
modeling chain and along lead times (Boelee et al., 2019).
Following Thiboult et al. (2016), we created four ensem-
ble prediction systems that differ in how hydrometeorolog-
ical uncertainties are quantified (Table 1). Ensembles were
built from the HOOPLA (HydrOlOgical Prediction LAbora-
tory; https://github.com/AntoineThiboult/HOOPLA, last ac-
cess: 23 January 2021) modular framework (Thiboult et al.,
2018), an automatic software that allows us to carry out
model calibration and obtain hydrological simulations and
forecasts at different time steps. They consider uncertainty
coming from system A, forcing, system B, forcing and ini-
tial conditions, system C, forcing and model structure, and
system D, forcing, initial conditions, and model structure.
Each source contributes a number of members, from 7 to 50,
to the forecasting system when it is turned on, as shown in
Table 1. In systems for which hydrological modeling uncer-
tainty is not considered (i.e., A and B), only one model is
used, and it is the one presenting median performance dur-
ing calibration. As shown in Table 1, all systems quantify
the forcing (in our case, precipitation) uncertainty. Raw and
post-processed ensemble precipitation forecasts drive the hy-
drological model(s).

In the following sections, we describe each tool that quan-
tifies a different source of uncertainty as applied in this study.
We include each technique’s conceptual aspects and the rea-
sons behind their selection.

2.1.1 Precipitation forecast uncertainty: ensemble
forecast

Forcing uncertainty is characterized by precipitation ensem-
ble forecasts issued by the European Centre for Medium-
Range Weather Forecasts (ECMWF) (Buizza and Palmer,
1995; Buizza et al., 2008), downloaded through the TIGGE
database for the 2011–2016 period. In this study, the set con-
sists of 50 exchangeable members issued at 12:00 UTC, for
a maximum forecast horizon of 7 d at a 6 h time step.

The database was originally provided with a 0.25◦ spatial
resolution and was reduced to 0.1◦ by bilinear interpolation
(Gaborit et al., 2013) to ensure that several grid points are sit-
uated within each catchment boundary. Additionally, when
downscaling, we considered the contribution of the points
close to the catchment boundaries, which allows us to have

a better description of the meteorological conditions of the
catchments and implicitly account for position uncertainty
(Thiboult et al., 2016; Scheuerer and Hamill, 2015).

Forecasts and observations were temporally aggregated to
a daily time step and spatially averaged to the catchment
scale to match the common HOOPLA framework of the hy-
drological models. In order to isolate the effect of precipita-
tion, observed air temperatures were used instead of the fore-
cast ones. This allows us to focus on changes in streamflow
forecast performance attributed only to precipitation post-
processing, which is typically the most challenging variable
to simulate and the one that mostly impacts hydrological
forecasting (Hagedorn et al., 2008).

2.1.2 Precipitation post-processor: censored, shifted
gamma distribution (CSGD)

The ECMWF ensemble precipitation forecasts were post-
processed over the 2011–2016 period following a simpli-
fied variant of the CSGD method proposed by Scheuerer
and Hamill (2015). The CSGD is based on a complex het-
eroscedastic, nonlinear regression model conceived to ad-
dress the peculiarities of precipitation (e.g., its intermittent
and highly skewed nature and its typically large forecast
errors). This method yields full predictive probability dis-
tributions for precipitation accumulations based on ensem-
ble model output statistics (EMOS) and censored, shifted
gamma distributions. We selected the CSGD method be-
cause it has broadly outperformed other established post-
processing methods, especially in processing intense rain-
fall events (Scheuerer and Hamill, 2015; Zhang et al., 2017).
Moreover, its relative impact on hydrological forecasts has
already been assessed at different scales and under vari-
ous hydroclimatic conditions (Bellier et al., 2017; Scheuerer
et al., 2017).

In this study, the original version of the CSGD method was
adapted because the ensemble statistics had to be determined
on the average catchment rainfall rather than at each grid
point within the catchment boundaries. Figure 1 identifies
the different stages necessary to apply the method. Briefly,
the application of the CSGD was accomplished as follows.

1. Errors in the ensemble forecast climatology were cor-
rected via the quantile mapping (QM) procedure advo-
cated by Scheuerer and Hamill (2015). The QM method
adjusts the cumulative distribution function (CDF) of
the forecasts onto the observations. In this version, the
quantiles were estimated from the empirical CDFs. See
Scheuerer and Hamill (2015) for details about the pro-
cedure and extrapolations beyond the extremes of the
empirical CDFs.

2. The corrected forecasts were condensed into statistics,
used as predictors to drive a heteroscedastic regression
model. The predictors were the ensemble mean (f ), the
ensemble probability of precipitation (POPf ), and the
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Table 1. Forecasting systems A, B, C, and D of the study and total number of members of the resulting ensemble streamflow forecast. On
(off) indicates when uncertainty is (is not) quantified with the help of ensemble members.

Systems

Source (number of members when “On”) A B C D

Forcing (precipitation) (50 members) On On On On
Initial conditions (50 members) Off On Off On
Model structure (seven hydrological models/members) Off Off On On

No. of members 50 2500 350 17 500

ensemble mean difference (MDf ). The latter is a mea-
sure of the forecast spread.

3. The CSGD model with mean (µ), standard deviation
(σ ), and shift (δ; it controls POPf = 0) parameters was
fitted to the climatological distribution of observations
to establish the parameters for the unconditional CSGD
(µcl), (σcl), and (δcl). The ensemble statistics from step
1 and the unconditional CSGD parameters were linked
to the CSGD model via

µ=
µcl

a1
log1p

[
expm1(a1)(a2+ a3POPf + a4f )

]
,

(1)

σ = σcl

(
b1

√
µ

µcl
+ b2MDf

)
, (2)

δ = δcl, (3)

where log1p(x)=log(1+ x) and expm1(x)=exp(x)−
1. The δ parameter accounts for the probability of
zero precipitation. Both the unconditional CSGDs and
the regression parameters are fitted by minimizing a
closed form of the continuous ranked probability score
(CRPS). We refer to Scheuerer and Hamill (2015) for
more details about the equations, model structure, and
fitting.

Considering that precipitation (and particularly intense
events) does not have a temporal autocorrelation (memory)
as strong as streamflow (Li et al., 2017), we adopted the
standard leave-one-year-out cross-validation approach to es-
timate the CSGD climatological and regression model pa-
rameters. They were fitted for each month and lead time, us-
ing a training window of approximately 3 months (all fore-
cast and observations from 90 d around the 15th day of the
month under consideration), resulting in a training sample
size of 91× 5 pairs of observations and forecasts.

The CSGD method yields a predictive distribution for each
catchment, lead time, and month. This distribution allows
one to make a sample and construct an ensemble of any
desired size M . As comparing ensembles of different sizes
may induce a bias (Buizza and Palmer, 1998; Ferro et al.,
2008), we drew ensembles of the same size as the raw fore-
casts (M = 50). Similarly to Scheuerer and Hamill (2015),

we sampled the full distribution by choosing the quantiles
with level αm = (m− 0.5/M) for m= 1, . . .,M , which cor-
respond to the optimal sample of the predictive distribution
that minimizes the CRPS (Bröcker, 2012).

2.1.3 Reordering method: ensemble copula coupling

EMOS procedures, such as the CSGD method, destroy the
spatiotemporal and intervariable correlation of the forecasts.
Many studies stressed the importance of correctly recon-
structing the dependence structures of weather variables
for hydrological ensemble forecasting (Bellier et al., 2017;
Scheuerer et al., 2017; Verkade et al., 2013). In this study, we
use ensemble copula coupling (ECC) (Schefzik et al., 2013)
to address this issue. This technique reconstructs the spa-
tiotemporal correlation by reordering samples from the raw
predictive marginal distributions to identify the dependence
template. The ECC reasoning lies in the fact that the physical
model can adequately represent the covariability between the
different dimensions (i.e., space, time, variables). Further-
more, as the template is the raw ensemble, the ECC should
have the same number of members as the raw ensemble. Ac-
cordingly, the predictive distribution sample with equidistant
quantiles with levels αm = (m− 0.5/M) is reordered so that
the rank order structure is the same as the raw ensemble val-
ues. We refer to Schefzik et al. (2013) for more details about
the mathematical framework underlying the method.

2.1.4 Initial conditions. Uncertainty: ensemble Kalman
filter

The ensemble Kalman filter (Evensen, 2003, EnKF) is used
to provide hydrological model states at each time step. The
EnKF is a sophisticated sequential and probabilistic data as-
similation technique that relies on a Bayesian approach. It es-
timates the probability density function of model states con-
ditioned by the distribution of observations. In this study, we
use the same hyperparameters (EnKF settings) as Thiboult
et al. (2016). They were identified after rigorous testing car-
ried out by Thiboult and Anctil (2015) using model perfor-
mance on reliability and bias as criteria of selection over the
same hydrologic region as the present study.
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Figure 1. Stages of the CSGD precipitation post-processor.

The EnKF performance is highly sensitive to its hyperpa-
rameters (Thiboult and Anctil, 2015), which represent the un-
certainty around hydrological model inputs and outputs. For
precipitation, we used 50 % standard deviation of the mean
value with a gamma law. For streamflow and temperature, we
used 10 % and 2 ◦C standard deviation with normal distribu-
tion, respectively.

At every time step, the EnKF is tuned to optimize relia-
bility and accuracy, per catchment and hydrological model,
following two principal stages.

1. Forecasting: N forcing scenarios are propagated using
the hyperparameters through the model to generate N
members of state variables from the prior estimate of the
state (X−t , also called background or predicted state).
From this ensemble of state variables, the model’s er-
ror covariance matrix (Pt , the difference between the
true state and the individual hydrological model real-
izations) is computed and used to calculate the Kalman
gain (Kt ). Then, the Kalman gain is calculated from Pt
and Rt (the covariance of observation noise) according
to a weighting coefficient used to update the states of
the hydrological model. The Kalman gain is mathemat-
ically represented as

Kt = PtHT (HPtHT
+Rt )−1, (4)

where the t indices refer to the time and H is the ob-
servation function that relates the state vectors and the
observations.

2. Update (analysis): once an observation becomes avail-
able (zt ), the state variables (X+t ) are updated as a com-
bination of the prior knowledge of the states (X−t ), the

Kalman gain (Kt ), and the innovation (i.e., the differ-
ence between the observed and prior simulated stream-
flow).

X+t =X−t + Kt (zt −HX−t ) (5)

A full description of the EnKF scheme applied in this
study is provided in Thiboult and Anctil (2015).

The work of Thiboult and Anctil (2015) demonstrated that
EnKF performance is not as sensitive to the number of mem-
bers as it is to the hyperparameters (at least for the catch-
ments and models used in this study). Ensembles of 25 and
200 members presented similar performances. Therefore, we
opted for 50 members as a trade-off between computational
cost and stochastic errors when sampling the marginal distri-
butions of the state variables.

2.1.5 Hydrological uncertainty: hydrological models,
snow module, and evapotranspiration

To consider model structure and parametrization uncertain-
ties, we use 7 of the 20 lumped conceptual hydrological mod-
els available in the HOOPLA framework. Keeping in mind
parsimony and diversity as criteria (different contexts, objec-
tives, and structures), Seiller et al. (2012) selected these 20
models, expanding from an initial list established by Perrin
(2000).

To maximize the benefits from the multimodel approach,
with the constraint of low computational time and data man-
agement, we opted for seven models with particular atten-
tion paid to how they represent flow production, draining,
and routing processes. The structures of the selected mod-
els vary from six to nine free parameters and from two to
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five water storage elements. All the hydrological models in-
clude a soil moisture accounting storage and at least one rout-
ing process. Diversity can be a useful feature for forecasting
events beyond the range of responses observed during model
calibration (Beven, 2012; Beven and Alcock, 2012) and for
catchments that present strong heterogeneities (Kollet et al.,
2017). Table 2 summarizes the main characteristics of the
lumped models and identifies the original models from which
they were derived.

All the hydrological models are individually coupled with
the CemaNeige snow accounting routine (Valéry et al.,
2014). This two-parameter module estimates the amount of
water from melting snow based on a degree-day approach.
Fed with total precipitation, air temperature, and elevation
data, CemaNeige separates the solid precipitation fraction
from the liquid fraction and stores it in a conceptual reser-
voir (snowpack). The model simulates two internal state vari-
ables of the snowpack: the thermal inertia of the snowpack
Ctg (dimensionless; higher values indicate later snowmelt)
and a degree-day melting factor Kf (mm ◦C−1; higher val-
ues indicate a faster rate of snowmelt). The latter determines
the elapsed melt blade that will be added to the hydrological
model. These parameters are optimized for each model.

All the hydrological models were forced with the same in-
put data: daily precipitation and ETP based on a catchment’s
air temperature and the extraterrestrial radiation (Oudin et al.,
2005).

To calibrate the hydrological models, we computed the
modified Kling–Gupta efficiency (KGEm) as an objective
function (Gupta et al., 2009; Kling et al., 2012) and used the
shuffled complex evolution (SCE) as the automatic optimiza-
tion algorithm (Duan et al., 1994), which is recommended for
smaller parameter spaces, as is the case here (Arsenault et al.,
2014).

2.2 Case study and hydrometeorological data sets

2.2.1 Study area

The study is based on a set of 30 Canadian catchments spread
over the province of Quebec. These catchments’ temporal
streamflow patterns are primarily influenced by nivo-pluvial
events (snow accumulation, melt, and rainfall dynamics) dur-
ing spring and pluvial events during spring and fall. The pre-
vailing climate is humid continental, Dfb, according to the
Köppen classification (Kottek et al., 2006). Land uses are
mainly dominated by mixed woods, coniferous forests, and
agricultural lands. Figure 2 displays their location, and Ta-
ble 3 summarizes physical features and hydrological signa-
tures.

2.2.2 Hydrometeorological observations

The time series of observations extend over 22 years, from
January 1995 to December 2016. They were provided by the

Direction d’Expertise Hydrique du Québec (DEHQ). They
consist of precipitation, minimum and maximum air temper-
ature, and streamflow series at a 3 h time step. Climatologi-
cal data stem from station-based measurements interpolated
on a 0.1◦-resolution grid using ordinary kriging. For temper-
ature, kriging is applied at the sea level using an elevation
gradient of −0.005 ◦C m−1. The entire study area is located
south of the 50th parallel, considered a region with higher-
quality meteorological observations because of the density
of the ground-based network (Bergeron, 2016).

Concerning the river discharge series, the DEHQ’s hy-
drometric station network records data continuously, every
15 min, and transmits measurements each hour to an inte-
grated collection system where they are subsequently pro-
cessed and validated. However, despite constant monitoring
and improvements in measurement strategies, these series
have missing values during winter since river icing causes
a time-varying redefinition of the flow conditions, resulting
in highly unreliable measurements. Accordingly, the winter
period (December–March) will not be included in the analy-
sis.

In this study, we followed Klemeš (1986) by dividing the
available series into two segments: 1997–2007 for calibrating
model parameters and 2008–2016 for computing the good-
ness of fit. The 3 previous years of each period allowed for
the spin-up of the models.

2.3 Forecast evaluation

A multi-criteria evaluation is applied to measure different
facets contributing to the overall quality of the forecasts. We
primarily consider scores commonly used in ensemble fore-
casting to evaluate accuracy, reliability, sharpness, bias, and
overall performance (Brown et al., 2010; Anctil and Ramos,
2019). Verification was conditioned on lead time and catch-
ment size over 2011–2016. To highlight the sensitivity of
the results to catchment size, we defined three catchment
groups: smaller (< 800 km2: 11 catchments), medium (be-
tween 800 km2 and 3000 km2: 10 catchments), and larger
(≥ 3000 km2: 9 catchments).

To increase the readability of the text, the equations for
each of the selected metrics have been placed in Appendix A.
Figure 3 proposes a graphical explanation for some of them.

2.3.1 Evaluation criteria

The relative bias (BIAS) is used to measure the overall un-
conditional bias (systematic errors) of the forecasts (Anctil
and Ramos, 2019). Mathematically, it is defined as the ra-
tio between the mean of the ensemble average and the mean
observation. BIAS is sensitive to the direction of errors: val-
ues higher (lower) than 1 indicate an overall overestimation
(underestimation) of the observed values.
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Table 2. Main characteristics of the seven lumped models. Modified from Seiller et al. (2012).

Model No. of No. of Derived from
parameters reservoirs

M1 9 2 CEQUEAU (Girard et al., 1972)
M2 9 3 HBV (Bergström and Forsman, 1973)
M3 7 3 IHACRES (Jakeman et al., 1990)
M4 6 4 MORDOR (Garçon, 1999)
M5 8 4 PDM (Moore and Clarke, 1981)
M6 9 5 SACRAMENTO (Burnash et al., 1973)
M7 8 4 XINANJIANG (Zhao et al., 1980)

Figure 2. Spatial distribution of the 30 studied catchments. Data layers: Direction d’Expertise Hydrique du Québec: catchment boundary,
open hydrometric stations, province of Quebec delimitation. Generated by Emixi Valdez, 23 May 2021, using ArcGIS for Desktop Advanced,
version 10.4. Redlands, CA: esri, 2015.

The CRPS is a common metric to measure the overall per-
formance of forecasts (Fig. 3a). It represents the quadratic
distance between the CDF of the forecasts and the empirical
CDF of the observations (Hersbach, 2000). The CRPS shares
the same unit as the predicted variable. A value of 0 indicates
a perfect forecast, and there is no upper bound. As the CRPS
assesses the forecast for a single time step, the mean con-
tinuous ranked probability score (MCRPS) is defined as the
average CRPS over the entire evaluation period. We estimate
the CRPS from the empirical CDF of forecasts.

Reliability is the alignment between the forecast probabili-
ties and the frequency of observations. It describes the condi-
tional bias related to the forecasts. In this study, it was eval-
uated using the reliability diagram (Wilks, 2011), a graphi-
cal verification tool that plots forecast probabilities against
observed event frequencies (Fig. 3b). The range of forecast
probabilities is divided into K bins according to the forecast
probability (horizontal axis). The sample size in each bin is
often included as a histogram. A perfectly reliable system is
represented by a 1 : 1 line, which means that the probability
of the forecast is equal to the frequency of the event.

In order to compare the reliability score of precipitation
with the reliability score of streamflow forecasts (and for
practical purposes and simplification), we use the mean ab-
solute error from the reliability diagram (MAErd, Fig. 3c). In
this case, the MAErd measures the distance between the pre-
dicted reliability curve and the diagonal (perfect reliability).

To compute the MAErd, we calculate nine confidence inter-
vals with a nominal confidence level of 10 %–90 %, with an
increment of 10 % for each emitted forecast. Then, it was
established whether or not each confidence interval covered
the observation for each forecast and each confidence inter-
val. In a well-calibrated distribution, the observation inside
each confidence interval and its corresponding nominal con-
fidence level should be close, taking the form of a linear re-
lationship of 1 : 1 (as the reliability diagram).

To see the performance of the post-processor conditioned
to precipitation amount, we decided to use the reliability di-
agram to evaluate the reliability of the forecast probability of
precipitation for thresholds of different exceedance probabil-
ities (EPs) in the sampled climatological probability distribu-
tion, namely, 0.05, 0.5, 0.75, and 0.95. We turn the ensemble
forecast into binary predictions that have the value 1 if the
precipitation amount exceeds the thresholds based on these
quantiles and 0 otherwise.

To measure the degree of variability of the forecasts or
the sharpness of the ensemble forecasts, we use the 90 % in-
terquantile range (IQR). It is defined as the difference be-
tween the 95th and 5th percentiles of the forecast distribution
(Fig. 3d). The narrower the IQR, the sharper the ensemble.
As the sharpness is a property of the unconditional distri-
bution of forecasts only (sharp forecasts are not necessarily
accurate or reliable; sharp forecasts are accurate if they are
also reliable), we use this attribute as a complement to the
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Table 3. Main characteristics of the 30 catchments. Mean annual values and the coefficient of variation were computed over 1995–2016.

Descriptor (reference) Abbreviation Min. Med. Max.
(unit)

Surface S (km2) 514 1158 6768
Mean elevation Zm (m) 70 362 583
Mean annual total precipitation Ptm (mm yr−1) 891 1013 1170
Mean annual solid precipitation (L’hôte et al., 2005) Psm (mm yr−1) 379 613 756
Mean annual evapotranspiration (Oudin et al., 2005) ETPm (mm yr−1) 440 531 626
Mean annual runoff Qm (mm yr−1) 403 634 946
Coeff. of variation (Donnelly et al., 2016) CV (–) 132 234 344

Figure 3. Graphical representation of the CRPS, reliability diagram, MAE of the reliability diagram (MAErd), and IQR forecast evaluation
criteria.

reliability (i.e., given two reliable systems, sharper is better)
(Gneiting et al., 2007). The frequency of forecasts shown in
the reliability histogram (Fig. 3b) gives information on sam-
ple size and sharpness as well. A sharp forecast tends to pre-
dict probabilities near 0 or 1.

2.3.2 Skill scores

Skill scores (SSs) are used to evaluate the performance of a
forecast system against the performance of a reference fore-
cast. The criteria described in Sect. 2.3.1 can be transformed
into a SS by using the relationship described in Eq. (6):

SS= 1−
ScoreSyst

ScoreRef , (6)

where SScoreSyst and SScoreRef are the scores of the fore-
casting system and the reference, respectively. The SS values
range from −∞ to 1. If SS is superior (inferior) to 0, the
forecast performs better (worse) than the reference. When it
is equal to 0, both systems have the same performance or
skill.

Since our goal is to determine the value added by a pre-
cipitation post-processor in the quantification of streamflow
forecasting uncertainty, we use the raw forecasts as a bench-
mark (Pappenberger et al., 2015).

3 Results

Results are presented in three subsections. In Sect. 3.1, we
present the performance of the raw and post-processed pre-
cipitation forecasts. In Sect. 3.2, we discuss the performance
of the raw and post-processed streamflow forecasts and the
contribution to the performance of the sources of uncertainty
considered in each forecasting system analyzed, highlighting
the interactions with the precipitation post-processor. Finally,
the performance of the precipitation post-processor condi-
tioned to catchment size is presented in Sect. 3.3.

3.1 Ensemble precipitation forecasts

This section assesses and compares the quality of the raw
(blue) and post-processed (red) precipitation forecasts (aver-
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age precipitation over the catchments). Values presented are
average daily scores over the evaluation period (2011–2016).
Verification metrics for the ensemble precipitation forecasts
are shown in Figs. 4 and 5. Figure 4 presents BIAS, MCRPS,
MAErd, and IQR scores as a function of lead time. Each box
plot combines values from all the catchments. Figure 5 shows
the reliability diagrams for the probability of precipitation
forecasts exceeding the 0.05, 0.5, 0.75, and 0.95 quantiles
for lead times 1, 3, and 6 d. The confidence bounds shown
in the curves result from a bootstrap with 1000 random sam-
ples representing the 90 % confidence interval. The curves
represent the median curve of the 30 catchments. The inset
histograms depict the frequency with which each probability
was issued. Values supporting the qualitative analysis repre-
sent the mean of the catchments.

3.1.1 Performance of raw precipitation forecasts

As expected, the quality of the raw forecasts generally de-
creases with increasing lead times. BIAS values range on
average from 1.13 to 1.12 for lead times 1 and 6 d, respec-
tively, indicating that the precipitation forecasts overestimate
the observations. The MCRPS shows that the overall forecast
quality decreases with lead time (from 1.29 to 2.14) while
reliability improves (from 0.13 to 0.06), as revealed by the
reliability diagram mean absolute error (MAErd). This is a
general characteristic of weather forecasting systems, as the
dispersion of members increases with the forecast horizon
to capture increased forecast errors. Reliability improvement
is reflected in BIAS, where a slight decrease in the overes-
timation is observed as the lead time increases. The typical
trade-off between reliability and sharpness is also illustrated
(the MAErd vs. IQR). IQR has an opposite behavior to the
MAErd, indicating a less sharp forecast with increased lead
time.

Regarding the reliability diagram, raw precipitation fore-
casts tend to under-forecast the low probabilities and over-
forecast the high ones. Similarly, as shown in Fig. 4, raw
precipitation reliability increases with lead time except for
large precipitation amounts (0.95 EP event).

3.1.2 Performance of corrected precipitation forecasts

As illustrated in Fig. 4, the CSGD post-processor substan-
tially reduces the relative bias of the meteorological forecasts
since day 1, and its effectiveness is maintained over time and
for all catchments. The BIAS of the post-processed precip-
itation forecasts ranges from 1.02 to 1.04 for lead times 1
and 6 d, respectively. When considering MCRPS, the per-
formance of the CSGD post-processor decreases when in-
creasing lead times. For example, at lead times 1 and 6 d,
the MCRPS equals 1.29 and 2.14, respectively. This result is
expected as the predictors use information from the raw fore-
casts (Scheuerer and Hamill, 2015), which also decreases in
MCRPS quality with lead time.

In terms of MAErd, the post-processed and raw forecasts
have an inverse behavior: while reliability increases rapidly
with lead time for raw forecasts, it slightly decreases for post-
processed forecasts. CSGD MAErd values range from 0.04 to
0.07 for lead times 1 and 6 d, respectively. On the other hand,
the post-processor was unable to consistently improve the
precipitation ensemble’s reliability and sharpness. Rather, in
contrast to the raw ensemble, the IQR increases regardless of
whether precipitation reliability improves or not. However,
on day 6, we note that raw forecasts are more reliable on
median values over the catchments while also being sharper
than post-processed forecasts.

The reliability diagram confirms the results in Fig. 4. In
general, the performance of the CSDG post-processor in
terms of reliability decreases with increasing lead times and
precipitation thresholds. The CSGD post-processed precipi-
tation forecasts are already reliable at short lead times (1 d)
except for the EP event of 0.05, which in fact corresponds
closely to the probability threshold of zero precipitation. The
CSGD post-processor tends to generate forecasts that un-
derestimate the observations for this threshold, although this
trend decreases as lead time increases. This can be attributed
to the fact that the CSGD post-processor retains the climato-
logical shift parameter (δ = δcl) that tends to produce a bias
in POPf estimates (Ghazvinian et al., 2020). Moreover, in
both cases (raw and post-processed), the more reliable the
forecast, the flatter the histogram. This indicates that the fore-
casts predict all probability ranges with the same frequency,
and therefore the system is not sharp (a perfectly sharp sys-
tem populates only 0 % and 100 %).

3.2 Ensemble streamflow forecasts

This section assesses the quality of the raw streamflow fore-
casts (blue) and the contribution of the precipitation post-
processor (red) to forecast performance from quantifying dif-
ferent sources of uncertainty. Scores are presented for days 1,
3, and 6 in box plots representing all catchments. Figures 6
and 7 illustrate the main interactions of the precipitation post-
processor with the hydrological forecasting systems. As sum-
marized in Table 1, systems are ordered from the simplest (A:
one source of uncertainty) to most complex (D: three sources
of uncertainty). Values supporting the qualitative analysis
represent the mean of the catchments.

3.2.1 Performance of raw streamflow forecasts

BIAS indicates that systems B and C present the highest and
lowest performances, respectively (Fig. 6, BIAS; blue box
plots). For system B, BIAS values range on average from
1.04 to 1.03 for lead times 1 and 6 d, respectively. These val-
ues are 1.23 and 1.25 for system C. In fact, the systems that
benefit from EnKF (i.e., B and D) show better performance,
especially at the first lead times. For example, the BIAS val-
ues for system D increase from 1.05 to 1.06 for lead times 1
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Figure 4. BIAS, MCRPS, MAErd, and IQR of raw (blue) and post-processed (red) daily catchment-based precipitation forecasts for lead
times of 1, 3, and 6 d over the evaluation period (2011–2016). Box plots represent the distribution of the scores over 30 catchments.

Figure 5. Reliability diagrams of raw (blue) and CSDG post-processed (red) precipitation forecasts for lead times of 1, 3, and 6 d and different
exceedance probability (EP) thresholds (> 0.05,0.5,0.75, and 0.95 quantile of observations), calculated over the evaluation period (2011–
2016). The lines correspond to the median curve of all 30 catchments. The bars indicate 90 % confidence intervals of observed frequencies
from bootstrap resampling. The inset histograms depict the frequencies with which the category was issued.

and 6 d, respectively. As the EnKF DA updates the hydrolog-
ical model states only once (when the forecast is issued), its
effects fade out over time. This explains why systems A and
B tend to behave similarly as lead time increases. In the case
of system A, the BIAS values decrease from 1.08 to 1.07 for
lead times 1 and 6 d, respectively. This behavior is inherited

from the precipitation forecast as explained in Sect. 3.1.1.
System C, which exploits multiple models, overestimates the
observations in most catchments, especially at the first lead
time. This behavior is inherited from the hydrological mod-
els (see the Supplement). This behavior is not penalized as
much in systems with a single model since they use the me-
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Figure 6. Relative bias (BIAS) and MCRPS of the ensemble streamflow forecasts of the four hydrological prediction systems and lead times
1, 3, and 6 d when considering raw (blue) and post-processed (red) precipitation forecasts. Box plots represent the score variability over the
30 catchments.

Figure 7. MAE of the reliability diagram (MAErd) and interquantile range (IQR) of the ensemble streamflow forecasts of the four hydrolog-
ical prediction systems and lead times 1, 3, and 6 d when considering raw (blue) and post-processed (red) precipitation forecasts. Box plots
represent the score variability over the 30 catchments.

dian during calibration. Although at first glance this seems
like a better alternative, it is not realistic. In practice, it is
difficult to predict which model will be the best predictor on
any given day and basin. The BIAS evaluation also reveals
that catchment diversity is one factor explaining differences
in performance. As lead time increases, forecasts tend to un-
derestimate the observations for some catchments.

As in BIAS, systems B and D are the ones that present the
best MCRPS (Fig. 6, MCRPS; blue box plots). The values
for the four systems range from 0.12, 0.08, 0.09, and 0.07 at

lead time 1 d to 0.15, 0.14, 0.14, and 0.13 at lead time 6 d,
respectively. The improvement brought by systems B and D
could be attributed to the fact that these are the two systems
with the largest number of members. Studies have shown that
sample size influences the computation of some criteria, such
as the CRPS (Ferro et al., 2008). However, Figs. 6 and 7 show
that the effect of the quantification of uncertainty sources is
more critical than the ensemble size since systems B, C, and
D present a similar range of score when the contribution of
EnKF is minimal (i.e., on day 6). These results are in agree-
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ment with those found by Thiboult et al. (2016) and Bourgin
et al. (2014), who suggested that short-range forecasts bene-
fit most from data assimilation. From Fig. 6 we can also see
that system A presents the most unfavorable scenario, which
is expected since it only carries meteorological forcing un-
certainty with it, and the accuracy of weather forecasts tends
to decrease with lead time (Fig. 4, MCRPS; blue box plots).

The MAErd and IQR, together, allow us to evaluate the
contribution of each tool to uncertainty quantification in
terms of their ability to capture the total uncertainty over
time. The MAErd shows that system A follows a pattern simi-
lar to the weather forecasts (Fig. 4, MAErd), becoming more
reliable with increasing lead times (their values range from
0.47 to 0.29 for lead times 1 and 6 d, respectively) but less
sharp (values of IQR from 0.02 to 0.13). In general, when a
system has an under-dispersion, it is sharper but unreliable.

System B loses reliability on day 3 (from 0.14 to 0.20)
because the EnKF effects fade out over time. However, it be-
comes slightly more reliable on day 6 (from 0.20 to 0.18)
because of the spread of the precipitation forecasts. This
is also the case with system C, which also benefits from
the meteorological ensemble. Unlike system B, its perfor-
mance remains almost constant (∼ 0.11) over time, thanks
to the hydrological multimodel. System D is less reliable
on day 1. According to Thiboult et al. (2016), the combina-
tion of EnKF and the multimodel ensemble causes an over-
dispersion since the EnKF indirectly quantifies uncertainty
from the hydrological model structure and its parameters
when performing DA with the estimation of initial condition
uncertainty. Nevertheless, forecast over-dispersion is reduced
as the EnKF effects vanish with lead time, and the system
becomes more reliable on day 6 (MAErd values= 0.11, 0.08,
and 0.07 for lead times 1, 3, and 6 d, respectively). Although
the EnKF loses its effectiveness over time, the difference be-
tween systems C and D on day 6 reveals that its contribution
to forecast performance is still important at longer lead times.

3.2.2 Interaction of the precipitation post-processor
with the hydrological forecasting systems

In terms of BIAS (Fig. 6, BIAS; red box plots), we ob-
serve that post-processing precipitation forecasts has a much
higher impact on the quality of precipitation forecasts (Fig. 4,
BIAS; red box plots) over time than on the quality of stream-
flow forecasts. For example, the percentage improvement
over the lead times in precipitation was 8.83 %, while the sys-
tem with the greatest improvement (system A) was 5.11 %.
On day 1, the CSGD post-processor does not have much ef-
fect on streamflow forecasts, except for system A, which is a
system that depends exclusively on the ability of the ensem-
ble precipitation forecasts to quantify forecast uncertainty.
Even on the first day, the post-processor has a negative ef-
fect on system B, reducing its performance by 1.66 %, while
systems C and D were improved by less than 1 %. However,
these systems were improved by a higher percentage (6.13 %

and 6.27 %, respectively) than systems A and B (4.87 % and
3.39 %, respectively) at the furthest lead times.

Additionally, the increased bias on days 3 and 6 in system
A reveals that at these lead times forcing uncertainty does not
represent the dominant source of uncertainty for some catch-
ments. This implies that a simple chain with a precipitation
post-processor may be insufficient to systematically provide
unbiased hydrological forecast systems. At these lead times,
in terms of BIAS, the performance of raw forecasts in sys-
tems B and D are generally similar to the performance of
post-processed forecasts in system A. System C, which has
the lowest performance, is also improved by the precipita-
tion post-processor. However, this improvement still shows
the worst performance (average BIAS= 1.18) compared to
the other systems based on raw precipitation forecasts (aver-
age BIAS: A= 1.08, B= 1.03, and D= 1.06).

In terms of overall quality (MCRPS), the streamflow fore-
casts based on post-processed precipitation forecasts perform
better for systems A and B, but only at the shorter lead times
(Fig. 6, MCRPS). These systems improved by 13.91 % and
18.83 %, respectively, on day 1. In the longer lead times, the
effect of the CSDG post-processor is reduced. For system A,
the improvements fluctuate between 7.78 % and 6.11 % for
lead times 3 and 6 d, respectively. These values are equal to
12.80 % and 10.06 % for system B. Systems C and D, on the
other hand, appear to be unaffected by the post-processing of
precipitation forecasts at the short lead times and slightly im-
proved by the post-processor with increasing time. For sys-
tem C, the improvements range from 2.12 % to 5.92 % for
lead times 1 and 6 d, respectively, while for system D, these
values are equal to 1.17 % and 3.46 %.

We also observe that the performance of raw fore-
casts in all systems, notably in systems B (average
MCRPS= 0.11) and D (average MCRPS= 0.10), is gener-
ally better than post-processed forecasts in system A (av-
erage MCRPS= 0.13). Furthermore, differences are higher
at shorter lead times and tend to decrease at longer lead
times. This indicates that benefits are brought by quantify-
ing more sources of uncertainty, especially at shorter lead
times, instead of just relying on forcing uncertainty quantifi-
cation through post-processed ensemble precipitation fore-
casts to enhance the overall performance of ensemble stream-
flow forecasting systems.

In terms of reliability (Fig. 7, MAErd), systems that use a
single hydrological model (A and B) are the ones that benefit
the most from post-processing precipitation forecasts. When
a multimodel approach is used (C and D), the system be-
comes more robust, and differences in streamflow forecast
quality from using or not a precipitation post-processor are
small. The improvements of the four systems on day 1 are
equal to 4.83 %, 19.7 %, 0.28 % and −6.43 %. On day 6,
these values are 20.79 %, 55.20 %, 9.20 % and 9.46 %. These
values suggest that the contribution of the CSGD precipita-
tion post-processor is more important for system B (i.e., the
post-processor has better interaction with the DA EnKF). The
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Table 4. Percentage of performance improvement (positive val-
ues) or deterioration (negative values) brought by the precipita-
tion post-processor according to each criterion of forecast quality
(BIAS, MCRPS, MAErd, IQR) when evaluating precipitation (Pt)
and streamflow (Sys-A to Sys-D) forecasts.

Pt Sys-A Sys-B Sys-C Sys-D

BIAS (%) 8.83 5.11 1.74 4.31 4.40
MCRPS (%) 11.51 9.33 13.98 5.32 3.28
MAE (%) 32.27 14.85 45.35 7.69 0.42
IQR (%) −6.78 −26.19 −50.53 −3.05 −6.51

underlying reason for this is associated with the fact that the
CSGD over-dispersion (Fig. 5, first column) compensates for
the loss of dispersion from the use of EnKF DA, in contrast
to system D, which is already over-dispersed. The reliability
of system B decreased by 6.43 % on the first day with the
post-processor.

It is interesting to note that, for systems B, C, and
D, streamflow forecasts based on raw precipitation fore-
casts are always much better (average MAErd = 0.17, 0.11,
and 0.09, respectively) than streamflow forecasts based on
post-processed precipitation forecasts in system A (average
MAErd = 0.32). Similarly to the bias and the overall per-
formance, this indicates that forcing uncertainty only is not
enough to deliver reliable streamflow forecasts, and quanti-
fying other sources of hydrological uncertainty can be more
efficient than only post-processing precipitation forecasts.

For the IQR (Fig. 7, IQR), we again see a trade-off with
reliability. The increased dispersion that contributes to the
reliability of the systems makes the forecasts less sharp. For
example, system B, which shows the greatest benefit from the
precipitation post-processing in terms of reliability, is also
the one that is less sharp when compared to its raw forecast
counterpart. Finally, although post-processed systems C and
D display similar reliability scores, the more complex system
does not display sharper forecasts. The gain in the system’s
complexity does not translate into an important gain in relia-
bility/sharpness of the forecasts.

Table 4 summarizes the percentage of performance im-
provement (positive values) or deterioration (negative values)
brought by the precipitation post-processor according to each
criterion of forecast quality (BIAS, MCRPS, MAErd, IQR)
when evaluating precipitation (Pt) and streamflow (Sys-A to
Sys-D) forecasts.

3.3 Effect of catchment size

Figure 8 shows the MAErd of the median results of the catch-
ments analyzed according to three groups (smaller, medium,
and larger) and for the 7 d of lead time. The first column cor-
responds to the MAErd of precipitation forecasts and the rest
to the MAErd of streamflow forecasts issued by the four hy-
drological prediction systems. In general, the performance of

precipitation and streamflow forecasts increases with catch-
ment size. This is particularly observed in the streamflow
forecasts and may be related to the fact that larger catchments
tend to experience lower streamflow variability (Sivapalan,
2003), and it is thus easier for the hydrological models to
simulate their streamflows (Andréassian et al., 2004). More-
over, weather can differ substantially over a couple of kilo-
meters, and the resolution of NWP models is often too coarse
to capture these variations in smaller catchments. For exam-
ple, extreme localized events can be missed in small catch-
ments if the amount of precipitation is well predicted but in
the wrong location. In larger catchments, a buffer effect can
be generated, and displacements of precipitation may impact
less the predictions of streamflow.

The effect of post-processing on precipitation forecasts
remains practically constant over time, independently of
the catchment size. Improvements from precipitation post-
processing are greatest on the first 3 d for the three catch-
ment groups. From day 4 onwards, the raw forecast be-
comes more reliable. When evaluating the streamflow fore-
casts, the groups that benefited most from the post-processor
were those with the smaller- and medium-sized catchments
(Fig. 8, top and middle panels). The effect of the precipitation
post-processor for the group with the larger catchments is
practically negligible, as we can see in Fig. 8, bottom panel,
as the red and blue curves are superposed.

Concerning the systems, the most benefited are systems A
and B, in contrast to systems C and D, whose improvements
are reflected in the most distant lead times, corroborating the
results obtained in Sect. 3.2. The gain in streamflow in the
last few days comes from the fact that the CSGD compen-
sates for the loss of dispersion of the systems in the last few
lead times. This dispersion is not beneficial to the raw pre-
cipitation, as it increases with time. This explains why even
though the raw precipitation is more reliable in the late lead
times, the post-processor still generates gains in streamflow
forecast performance.

The evolution of the MAErd of the raw forecasts illustrates
the contribution of each of the tools used to quantify forecast
uncertainty in the systems. For example, in system A, MAErd
inherits the patterns of the meteorological forecasts: it be-
comes more reliable with increasing lead time. For system
B, we see the contribution of EnKF DA for the first lead time
and the decrease in performance until day 4, when the contri-
bution from the spread of the precipitation ensemble forecast
becomes dominant over the reduction of uncertainty from the
DA and the hydrological forecasts start to spread again. In
system C, the MAErd decreases with regard to the MAErd
of systems A and B, and it remains constant over time, con-
firming that the multimodel is the source that contributes the
most to the reliability of the ensemble streamflow forecasts.
Finally, the results for system D show a peak of high spread
on day 1. This over-dispersion is generated by combining the
multimodel and the EnkF DA.
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Figure 8. MAErd for raw (blue) and precipitation post-processed (red) forecasts for precipitation (Pt) and streamflow forecasts as a function
of forecast lead time. The first column represents the MAErd for the raw and post-processed precipitation forecasts. The remaining columns
represent the four streamflow forecasting systems (A, B, C, and D). On top: the smaller catchment group. In the middle: the medium
catchment group. On the bottom: the larger catchment group.

3.3.1 Gain in streamflow forecasts from the CSGD
post-processing

Figure 9 presents the MCRPS skill scores of precipitation
forecasts (Pt-MCRPS SS) against the skill scores of stream-
flow forecasts (Q-MCRPS SS) after application of the CSGD
post-processor to the raw precipitation forecasts. The skill
scores are computed using the raw forecasts as a reference.
The results are presented for the three catchment groups and
lead times 1, 3, and 6 d.

Figure 9 shows that, overall, improvements in precipita-
tion forecasts are mostly associated with improvements in
streamflow forecasts (points located in quadrant I; top right).
In a few cases (Sys-B day 1; Sys-C and Sys-D days 3 and
6), however, improvements in precipitation forecasts are as-
sociated with negative gains in streamflow forecasts (points
located in quadrant II; top left). In some cases, improvements
in precipitation are negligible but streamflow forecasts dete-
riorate. These cases are mainly observed in smaller catch-
ments, in longer lead times (day 6), and for the systems that
include hydrological model structure uncertainty (Sys-C and
Sys-D).

Figure 9 also reveals how the different forecasting systems
interact with the precipitation post-processor to improve or
deteriorate the performance of the streamflow forecasts. For
example, on day 3, considering system A (Sys-A), the gain
in precipitation for a catchment pertaining to the group of
smaller catchments (blue circle in the red square) does not
impact the skill score of the streamflow forecasts. However,
when activating the EnKF DA (e.g., Sys-B), the streamflow

forecast performance of the same catchment is improved.
This improvement remains when evaluating system C and
system D, although the skill score is lower (the example is in-
dicated with red arrows in the figure). This illustrates the fact
that the effect of a precipitation post-processor can be ampli-
fied when combined with the quantification of other sources
of hydrological uncertainty.

A clear pattern related to catchment size is not evident, al-
though smaller- to medium-sized catchments seem to display
higher skill scores for streamflow forecasts.

4 Discussion

In this section, we discuss the questions of this study. Is pre-
cipitation post-processing needed in order to improve stream-
flow forecasts when dealing with a forecasting system that
fully or partially quantifies many sources of uncertainty?
How does the performance of different uncertainty quan-
tification tools compare? Finally, how does each uncertainty
quantification tool contribute to improving streamflow fore-
cast performance across different lead times and catchment
sizes?

Although the precipitation post-processor undeniably im-
proves the quality of precipitation forecasts (Figs. 4 and 5),
our results suggest that a modeling system that only tack-
les the quantification of forcing (precipitation) uncertainties
(in our case, system A) with a precipitation post-processor is
insufficient to produce reliable and accurate streamflow fore-
casts (Figs. 6–8). For example, in terms of bias, the improve-

https://doi.org/10.5194/hess-26-197-2022 Hydrol. Earth Syst. Sci., 26, 197–220, 2022



212 E. S. Valdez et al.: Post-processing precipitation forecasts and many sources of hydrological uncertainty

Figure 9. MCRPS skill score of precipitation forecasts against the MCRPS skill score of streamflow forecasts after application of the CSGD
precipitation post-processor. The skill scores are computed using raw forecasts as a reference. Results are shown for lead times of 1, 3, and
6 d and catchment group. The red box and arrows in the middle panels highlight the interaction of the precipitation post-processor with the
different sources of uncertainty for the same catchment.

ment brought by the post-processor to the worst-performing
systems (systems A and C) did not outperform the other sys-
tems based on the raw precipitation forecasts. Interestingly,
our study also shows that considering a post-processor while
quantifying all sources of uncertainty does not always lead
to the best results in terms of streamflow forecast perfor-
mance either (e.g., Fig. 8, system D), at least with the tools
used in this study. With an in-depth analysis of various con-
figurations of forecasting systems, our study confirms pre-
vious findings indicating that precipitation improvements do
not propagate linearly and proportionally to streamflow fore-
casts. Although all systems benefit from precipitation post-
processing, improvements are conditioned to many factors,
the most important being (of those evaluated in this study)
system configuration, catchment size, and forecast quality at-
tribute.

The performance of the systems exploiting a multimodel
(systems C and D) was less improved by the post-processor
than the systems with DA and ensemble precipitation alone
(systems A and B), notably for the first few days of lead
times. However, the degree of improvement depends on
the attribute evaluated. For example, systems A and B im-
proved overall quality by 5.11 % and 1.74 %, respectively.
In contrast, the percentages in reliability were 14.85 % and
45.35 %, representing a substantial difference with systems
C and D (improved by 7.69 % and 0.42 %, respectively) (see
Table 4). Several reasons can explain these differences. For
example, the CSGD post-processor has a strong effect on the
ensemble spread and tends toward over-dispersion. In sys-
tems where the ensembles are more dispersed than needed
(e.g., system D), this specific combination produces a greater

over-dispersion that affects the system’s reliability. As shown
in Fig. 7, the multimodel approach was the main contribu-
tor to increasing ensemble spread over lead time. In contrast,
DA has a lesser effect on the spread of the ensemble mem-
bers. The application of a DA procedure has more impact on
the biases of the ensemble mean. This explains why, when
post-processing is not applied to precipitation forecasts, sys-
tems endowed with DA present the lowest bias and the best
overall performance and multimodel systems present the best
reliability.

Table 5 summarized under which circumstances a sim-
ple system with a precipitation post-processor may be a bet-
ter option than to quantify all (or at least the most impor-
tant) known sources of uncertainty. It shows, for instance,
that a user interested in better CRPS performance at longer
lead times (here, day 6) should look forward to implement-
ing a forecasting system that considers DA and a post-
processing (Sys-B+CSGD). Combined with precipitation
post-processing, less complex systems can be good alterna-
tives, such as those considering forcing and initial condition
uncertainty (Figs. 6 and 7, system B) and those considering
forcing and multimodel uncertainty (Fig. 8, system C). If the
priority is to achieve a reliable and accurate system, then sys-
tem B with precipitation post-processor presents a better al-
ternative than a system like D. This is important since cur-
rent operational systems are often similar to systems B and C
because they are less computationally demanding and more
prone to producing information in a timely fashion. For ex-
ample, for a potential end-user that seeks a fast system to
explore policy actions in a very short term, system D is not
appropriate.
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Table 5. Synthesis of the best options available for a forecast user
when partial uncertainty quantification systems (A, B, and C) with a
precipitation post-processor are compared against a full uncertainty
quantification system D without a post-processor in terms of BIAS,
overall quality, and reliability for days 1 and 6.

Sys-A+CSGD Sys-B+CSGD Sys-C+CSGD

Day 1 Day 6 Day 1 Day 6 Day 1 Day 6

BIAS X X – X X X
MCRPS X X X X X –
MAErd X X – – – X

(X): simple systems with post-processor outperform raw-system D. (X): simple systems
with post-processor do not outperform raw-system D. (–): simple systems with
post-processor have similar performance to raw-system D.

Although post-processing techniques in hydrology are
quite mature, there are still some ambiguities as to how to
use them and under which circumstances their application
is most operationally advantageous. Based on our results,
we cannot give a definitive answer if the precipitation post-
processor is a mandatory step or not. However, under similar
conditions to those studied here, there has been an indica-
tion that precipitation post-processing may be skipped when
(1) the hydrological uncertainty is dominant and (2) its draw-
backs are relevant for the end-user. In the first case, the im-
provements brought by the post-processor could not offset
the hydrological errors and may even amplify them (e.g., sys-
tems C and D). Another example is in large basins, where the
precipitation error is smaller and the errors of initial condi-
tions are more significant. The second case is probably worth
a whole discussion on its own. For example, the results of sta-
tistical post-processors are usually probability distributions
that are disconnected in time and space. If the decisions de-
pend on precipitation forecasts that must be very coherent
(coherent traces in time and space), it is better to put efforts
into a streamflow post-processor or in another component
of the forecasting chain because the loss of space–time co-
herency brought by statistical precipitation post-processors
is likely to generate a different response from the catch-
ment (faster/slower flood and event duration, for instance).
The need to apply, after the statistical post-processing, an
effective reordering technique to retrieve coherent ensemble
traces will then be crucial. Another situation is when a draw-
back is amplified by another component such as when the
post-processor has tendencies to over-dispersion and is used
in a system that is already over-dispersed. Another situation,
not studied here, is when the effect of the post-processor is
already accounted for by another element in the hydrome-
teorological forecasting chain. It is not worth the effort to
apply a precipitation post-processor if a hydrological uncer-
tainty processor that lumps all sources of uncertainty will be
applied later.

The activation of post-processing and the system’s com-
ponent selection also depends on the most important fea-

tures of the forecasting chain envisaged by the end-user.
Likely the improvements experienced in a system such as D
and the implementation of a complex and sophisticated cor-
rection technique will not be justified due to the time and
computational and human resources that such improvements
demand. Although syntheses of benchmarking performance
studies can be helpful for deciding on investments, at least
when resources are scarce, knowing the minimum percentage
of improvement required of the post-processor for decision-
making is also a crucial factor. From our study, for instance,
in the hypothetical case that a system needs to improve BIAS
by more than 10 %, applying a post-processor would not be
sufficient (Table 4).

Concerning catchment size, the groups that benefited most
from the post-processor were the ones with the smaller- and
medium-sized catchments. In the case of the larger catch-
ments, the effect was almost negligible. NWP forecasts of
precipitation are usually more uncertain in small domains,
where precipitation forcing is also generally the most domi-
nant source of uncertainty. This means that the use of a condi-
tional bias correction, such as the CSGD post-processor used
here, based on predictors that can represent well the catch-
ment’s characteristics, becomes crucial. Missed or underesti-
mated extreme precipitation events have a more critical im-
pact on small catchments than on large ones, which typi-
cally present a more area-integrated hydrological response.
Larger catchments generally have greater variability over
their drainage area, so uncertainties associated with initial
conditions may be more dominant than uncertainties associ-
ated with precipitation, and, therefore, the inclusion of the
DA component in the forecasting chain might play a more
critical role.

Finally, selection and implementation of techniques to
quantify different sources of uncertainty have a larger im-
pact on forecast performance over time than the ensemble
size. Most studies conclude that increasing the ensemble
size improves performance (Ferro et al., 2008; Buizza and
Palmer, 1998) and may generate biases when comparing sys-
tems with different ensemble sizes. However, that was not al-
ways the case in our study. System B, with 2500 members,
performed similarly to system C (350 members) in terms of
MCRPS as the EnKF effect fades with increasing lead times.
In terms of relative bias, system A (50 members) outper-
formed system C, as the models did not sufficiently com-
pensate for the error. System D (17 500 members) presented
an over-dispersion for the first few lead times, reducing fore-
cast reliability. Even when using the Ferro et al. (2008) bias
corrector factor for MCRPS (not shown here), the conclu-
sions remain the same: that it is better to prioritize the di-
versity of ensemble members coming from the appropriate
quantification of uncertainty sources than to increase the size
of an ensemble where members come from a single source
of streamflow forecast uncertainty. This conclusion is in line
with Sharma et al. (2019), who found that, in a multimodel
ensemble, the diversity of the models is predominant in the

https://doi.org/10.5194/hess-26-197-2022 Hydrol. Earth Syst. Sci., 26, 197–220, 2022



214 E. S. Valdez et al.: Post-processing precipitation forecasts and many sources of hydrological uncertainty

improvement of skill above an increased ensemble size. An
ensemble dispersion that comes from considering several
sources of uncertainty provides a more comprehensive es-
timate of future streamflow than a dispersion from a single
source.

5 Conclusions

This study aimed to decipher the interaction of a precipitation
post-processor with other tools embedded in a hydrometeo-
rological forecasting chain. We used the CSGD method as
the meteorological post-processor, which yielded a full pre-
dictability distribution of the observation given the ensem-
ble forecast. Seven lumped conceptual hydrological models
were used to create a multimodel framework and estimate
the model structure and parameter uncertainty. Fifty mem-
bers from the EnKF and 50 members from the ECMWF
ensemble precipitation forecast were used to account, re-
spectively, for the initial conditions and forcing uncertain-
ties. From these tools, four hydrological prediction systems
were implemented to generate short- to medium-range (1–
7 d) ensemble streamflow forecasts, which vary from partial
to total traditional uncertainty estimation: system A, forcing,
system B, forcing and initial conditions, system C, forcing
and model structure, and system D, forcing, initial condi-
tions, and model structure. We assessed the contribution of
the precipitation post-processor to the four systems for 30
catchments in the province of Quebec, Canada, as a func-
tion of lead time and catchment size over 2011–2016. The
catchments were divided up into three groups: smaller (<
800 km2), medium (between 800 and 3000 km2), and larger
(> 3000 km2). We assessed and compared the raw precipita-
tion and streamflow forecasts with the post-processed ones.
The evaluation of the forecast quality was carried out by
implementing deterministic and probabilistic scores, which
evaluate different aspects of the overall forecast quality.

The precipitation post-processor resulted in large improve-
ments in the raw precipitation forecasts, especially in terms
of relative bias and reliability. However, its effectiveness
in hydrological forecasts was conditional on the forecast-
ing system, lead time, forecast attribute, and catchment size.
Considering only meteorological uncertainty along with a
post-processor improved streamflow forecast performance
but could still lead to non-satisfactory forecast quality perfor-
mance. However, quantifying all sources of uncertainty and
adding a post-processor may also result in worsened perfor-
mance compared to using raw forecasts. In this study, the
post-processor was shown to combine better with the EnKF
DA than with the multimodel framework, revealing that if in
the case all sources of uncertainties it cannot be quantified,
then the use of DA and a post-processor is a good option,
especially for longer lead times.

Our study also allowed us to conclude that a perfectly re-
liable and accurate precipitation forecast is not enough to

lead to a reliable and accurate streamflow forecast. One must
combine it with at least another source of uncertainty. It is
however true that for a very short-term forecast targeting
flood warning, having the right rainfall is crucial, but when
the catchment has a very strong memory or variability, the
use of past observations in a DA procedure is likely to be
more useful and impactful at the end of the forecasting chain.

Future works could also be oriented in an adequacy-for-
purpose evaluation (Parker, 2020) in addition to traditional
metrics as presented here. In this way, we would be guaran-
teeing whether the systems can fulfill their purpose, under
which circumstances it is not advisable to use them, where
they are failing, and how they could be improved. In other
words, we should use a system that fits decision-making. To
achieve this, it is important to clearly identify the purpose
of the hydrometeorological forecasting chain. This means
obtaining information on what decisions will be made, at
which point (at the output of the rainfall models or at the out-
put of the streamflow models), and under which hydrologi-
cal conditions. The question then shifts from using a post-
processor or not in each system to which sources of uncer-
tainties should be prioritized and quantified. Furthermore,
such evaluation would allow us to know whether implement-
ing each system (with raw and corrected precipitation fore-
casts) would result (or not) in a different decision and how
the decision would (or not) be influenced by the quality (bias,
reliability, accuracy, and sharpness) of the forecast (see, for
instance, Thiboult et al., 2017; Cassagnole et al., 2021). In
the end, the “perfect” system is not only the one that can rep-
resent the dominant hydrological processes and variability,
but also the one that allows us to make the right decision at
the right time and situation.

To the best of the authors’ knowledge, no previous study
has explored the impact of a precipitation post-processor on
a modeling chain that considers all traditional hydrometeo-
rological sources of uncertainty. We nonetheless recognize
some limitations to this study. We calibrated the CSGD pa-
rameters with the operational forecast of the ECMWF, whose
model underwent improvements during the study period.
Modifications to the numerical model could change the er-
ror characteristics of the forecast, affecting the efficiency of
the regression model. However, despite this, results showed
that the precipitation post-processor improved BIAS of pre-
cipitation but did not influence hydrology in the same propor-
tion. This reveals that even sophisticated post-processor tech-
niques used in meteorology do not necessarily suit hydrolog-
ical needs. Based on this experience, it would be interesting
to consider the meteorological bias and dispersion thresholds
at which hydrological predictions are affected (i.e., the mete-
orological error propagates significantly over the hydrology
and is not mitigated by the rainfall-flow transformation pro-
cess described by the hydrological models used).

Other future studies could also focus on determining
whether calibrating the regression model parameters of the
post-processor or calibrating the hydrological models with
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reforecast data would lead to better results. The latter case
could also serve to determine whether the use of a post-
processor may be avoided and how this compares to the use
of a multimodel framework. Is a single calibrated model with
reforecasts better than a multimodel approach? Since sys-
tems with multimodels provide better reliability, it would be
interesting to determine whether this system with a hydro-
logical post-processor that corrects the models’ bias would
improve the forecasting performance without resorting to so-
phisticated precipitation post-processor techniques.

Appendix A: Verification metrics

A1 Relative bias (BIAS)

BIAS=
∑N
k=1Fctavg(k)∑N
k=1Obs(k)

, (A1)

where (Fctavg(k), Obs(k)) is the kth of N pairs of determin-
istic forecasts and observations.

A2 Continuous ranked probability score

CRPS(K)=

∞∫
−∞

[
F ′k(x)−H(x ≥ xobs)

]2dx, (A2)

where Fk(x) is the cumulative distribution function of the
kth realization, x is the predicted variable, and xobs is the
corresponding observed value. H is the Heaviside function,
which equals 0 for predicted values smaller than the observed
value and 1 otherwise.

A3 IQR

IQR=
1
N

N∑
k=1

Fct95(k)−Fct05(k), (A3)

where (Fct95(k),Fct05(k)) is the kth of N pairs of quantiles
of the forecasts.
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